Potential Solutions Using Bacteriophages against Antimicrobial Resistant Bacteria
Abstract
:1. Introduction
2. Bacteriophages
2.1. Advantages of Bacteriophages
2.1.1. Self-Replication and Auto Dosing
2.1.2. Narrow and Specific Host Range
2.1.3. Ease of Isolation
2.1.4. Infection of Drug-Resistant Bacteria
2.1.5. Increase in Number of Phage-Related Studies
2.2. Disadvantages of Bacteriophages
2.2.1. Bacteriophage-Resistant Bacteria
2.2.2. Blocking of Phage before Attachment
2.2.3. Production of Extracellular Matrix
2.2.4. Production of Inhibitors
2.2.5. Preventing Phage DNA Entry
2.2.6. Restriction Modification Systems
2.2.7. Bacterial Adaptive Immunity
3. Approaches to the Application of Phages
3.1. Phage Therapy
3.2. Phage Biocontrol
3.3. Integrated Phage Application
3.4. Bacteriophages and Biofilms
3.5. Role of Bacteriophages in Bacterial Communities
3.6. Future Aspects of Bacteriophage Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koskella, B.; Brockhurst, M.A. Bacteria-Phage Coevolution as a Driver of Ecological and Evolutionary Processes in Microbial Communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef] [Green Version]
- Cohan, F.M. What Are Bacterial Species? Ann. Rev. Microbiol. 2002, 56, 457–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coico, R. Gram Staining. Curr. Protoc. Microbiol. 2006, A.3C.1–A.3C.2. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Boil. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Tarkowski, P.; Vereecke, D. Threats and Opportunities of Plant Pathogenic Bacteria. Biotechnol. Adv. 2014, 32, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, W.; de Figueiredo, P.; Criscitiello, M.F. One Health: Addressing Global Challenges at the Nexus of Human, Animal, and Environmental Health. PLoS Pathog. 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Uzal, F.A.; McClane, B.A.; Cheung, J.K.; Theoret, J.; Garcia, J.P.; Moore, R.J.; Rood, J.I. Animal Models to Study the Pathogenesis of Human and Animal Clostridium Perfringens Infections. Vet. Microbiol. 2015, 179, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husnik, F.; Tashyreva, D.; Boscaro, V.; George, E.E.; Lukeš, J.; Keeling, P.J. Bacterial and Archaeal Symbioses with Protists. Curr. Biol. 2021, 31, R862–R877. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamed, S.; Tavares Ranzani-Paiva, M.J.; Tachibana, L.; de Carla Dias, D.; Ishikawa, C.M.; Esteban, M.A. Fish Pathogen Bacteria: Adhesion, Parameters Influencing Virulence and Interaction with Host Cells. Fish Shellfish Immunol. 2018, 80, 550–562. [Google Scholar] [CrossRef]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial Adhesion at the Single-Cell Level. Nat. Rev. Microbiol. 2018, 16, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Cossart, P. How Bacterial Pathogens Colonize Their Hosts and Invade Deeper Tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef]
- Lane, M.C.; Alteri, C.J.; Smith, S.N.; Mobley, H.L.T. Expression of Flagella Is Coincident with Uropathogenic Escherichia coli Ascension to the Upper Urinary Tract. Proc. Natl. Acad. Sci. USA 2007, 104, 16669–16674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eitel, J.; Dersch, P. The YadA Protein of Yersinia Pseudotuberculosis Mediates High-Efficiency Uptake into Human Cells under Environmental Conditions in Which Invasin Is Repressed. Infect. Immun. 2002, 70, 4880–4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Tangcharoensathien, V.; Chanvatik, S.; Sommanustweechai, A. Complex Determinants of Inappropriate Use of Antibiotics. Bull. World Health Organ. 2018, 96, 141. [Google Scholar] [CrossRef]
- Cooper, C.J.; Mirzaei, M.K.; Nilsson, A.S. Adapting Drug Approval Pathways for Bacteriophage-Based Thera-peutics. Front. Microbiol. 2016, 7, 1209. [Google Scholar] [CrossRef] [PubMed]
- Davies, J. Origins and Evolution of Antibiotic Resistance. Microbiología 1996, 12, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Haddadin, A.S.; Fappiano, S.A.; Lipsett, P.A. Methicillin resistant Staphylococcus aureus (MRSA) in the intensive care unit. Postgrad. Med. J. 2002, 78, 385–392. [Google Scholar] [CrossRef]
- Dahanayake, P.; Hossain, S.; Wickramanayake, M.V.K.S.; Heo, G.J. Antibiotic and Heavy Metal Resistance Genes in Aeromonas Spp. Isolated from Marketed Manila Clam (Ruditapes Philippinarum) in Korea. J. Appl. Microbial. 2019, 127, 941–952. [Google Scholar] [CrossRef]
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- Harper, D.R. Introduction to Bacteriophages. Bacteriophages. Springer: Cham, Switzerland, 2021; pp. 3–16. [Google Scholar] [CrossRef]
- Balcázar, J.L. Implications of Bacteriophages on the Acquisition and Spread of Antibiotic Resistance in the Environment. Int. Microbiol. 2020, 23, 475–479. [Google Scholar] [CrossRef]
- McCallin, S.; Sacher, J.C.; Zheng, J.; Chan, B.K. Current State of Compassionate Phage Therapy. Viruses 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial Biofilm and Its Role in the Pathogenesis of Disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus Biofilm: An Emerging Battleground in Microbial Com-munities. Antimicrob. Resist. Infect. Control. 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Loc-Carrillo, C.; Abedon, S.T. Pros and Cons of Phage Therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Knezevic, P.; Obreht, D.; Curcin, S.; Petrusic, M.; Aleksic, V.; Kostanjsek, R.; Petrovic, O. Phages of Pseudomonas aeruginosa: Response to Environmental Factors and in Vitro Ability to Inhibit Bacterial Growth and Biofilm Formation. J. Appl. Microbiol. 2011, 111, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Johansen, H.K.; Aanaes, K.; Wassermann, T.; Alhede, M.; von Buchwald, C.; Høiby, N.P. Aeruginosa in the Paranasal Sinuses and Transplanted Lungs Have Similar Adaptive Mutations as Isolates from Chron-ically Infected CF Lungs. J. Cyst. Fibros. 2013, 12, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, N.; Kutter, E. Phage Therapy: Bacteriophages as Natural, Self-Replicating Antimicrobials. In Practical Handbook of Microbiology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 801–824. [Google Scholar] [CrossRef]
- Romero-Calle, D.; Benevides, R.G.; Góes-Neto, A.; Billington, C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Tagliaferri, T.L.; Jansen, M.; Horz, H.P. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front. Cell. Infect. Microbiol. 2019, 9, 22. [Google Scholar] [CrossRef]
- Kropinski, A.M. Practical Advice on the One-Step Growth Curve. Methods Mol. Biol. 2018, 1681, 41–47. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, P.A.; Nobrega, F.L.; Brouns, S.J.J.; Dutilh, B.E. Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends Microbiol. 2019, 27, 51–63. [Google Scholar] [CrossRef]
- Nale, J.; Redgwell, T.; Millard, A.; Antibiotics, M.C. Efficacy of an Optimised Bacteriophage Cocktail to Clear Clostridium difficile in a Batch Fermentation Model. Antibiotics 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Chanishvili, N.; Chanishvili, T.; Tediashvili, M.; Barrow, P.A. Phages and Their Application against Drug-Resistant Bacteria. J. Chem. Technol. 2001, 76, 689–699. [Google Scholar] [CrossRef]
- Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in Nature. Bacteriophage 2011, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Stenholm, A.R.; Dalsgaard, I.; Middelboe, M. Isolation and Characterization of Bacteriophages Infecting the Fish Pathogen Flavobacterium psychrophilum. Appl. Environ. 2008, 74, 4070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Mejía, J.L.; Muhammed, M.K.; Kot, W.; Neve, H.; Franz, C.M.A.P.; Hansen, L.H.; Vogensen, F.K.; Nielsen, D.S. Optimizing Protocols for Extraction of Bacteriophages Prior to Metagenomic Analyses of Phage Com-munities in the Human Gut. Microbiome 2015, 3, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, N.D.; Kumar, M.S.; Satheesh Babu, T.G.; Bose, S.; Vijayakumar, G.; Baswe, M.; Chatterjee, M.; D’Silva, J.R.; Shetty, K.; Haripriyan, J.; et al. A Novel N4-Like Bacteriophage Isolated from a Wastewater Source in South India with Activity against Several Multidrug-Resistant Clinical Pseudomonas aeruginosa Isolates. mSphere 2021, 6, e01215-20. [Google Scholar] [CrossRef]
- Jamal, M.; Bukhari, S.M.A.U.S.; Andleeb, S.; Ali, M.; Raza, S.; Nawaz, M.A.; Hussain, T.; Rahman, S.U.; Shah, S.S.A. Bacteriophages: An Overview of the Control Strategies against Multiple Bacterial Infections in Different Fields. J. Basic Microbiol. 2019, 59, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Jamalludeen, N.; Johnson, R.P.; Shewen, P.E.; Gyles, C.L. Evaluation of Bacteriophages for Prevention and Treatment of Diarrhea Due to Experimental Enterotoxigenic Escherichia coli O149 Infection of Pigs. Vet. Microbiol. 2009, 136, 135–141. [Google Scholar] [CrossRef]
- Brown, T.L.; Ku, H.; Mnatzaganian, G.; Angove, M.; Petrovski, S.; Kabwe, M.; Tucci, J. The Varying Effects of a Range of Preservatives on Myoviridae and Siphoviridae Bacteriophages Formulated in a Semi-Solid Cream Preparation. Lett. Appl. 2020, 71, 203–209. [Google Scholar] [CrossRef]
- Peng, S.Y.; You, R.I.; Lai, M.J.; Lin, N.T.; Chen, L.K.; Chang, K.C. Highly Potent Antimicrobial Modified Peptides Derived from the Acinetobacter baumannii Phage Endolysin LysAB2. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, M.A.B.; Hao, H.; Shabbir, M.Z.; Wu, Q.; Sattar, A.; Yuan, Z. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. Front. Microbiol. 2016, 7, 1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordström, K.; Forsgren, A. Effect of Protein A on Adsorption of Bacteriophages to Staphylococcus aureus. J. Virol. 1974, 14, 198–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dy, R.L.; Richter, C.; Salmond, G.P.; Fineran, P.C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 2014, 1, 307–331. [Google Scholar] [CrossRef]
- Latka, A.; Maciejewska, B.; Majkowska-Skrobek, G.; Briers, Y.; Drulis-Kawa, Z. Bacteriophage-Encoded Virion-Associated Enzymes to Overcome the Carbohydrate Barriers during the Infection Process. Appl. Microbiol. Biotechnol. 2017, 101, 3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanlon, G.W.; Denyer, S.P.; Olliff, C.J.; Ibrahim, L.J. Reduction in Exopolysaccharide Viscosity as an Aid to Bacteriophage Penetration through Pseudomonas aeruginosa Biofilms. Appl. Environ. Microbiol. 2001, 67, 2746–2753. [Google Scholar] [CrossRef] [Green Version]
- Vallée, M.; de Lapeyrière, O. The Role of the Genes Imm and s in the Development of Immunity against T4 Ghosts and Exclusion of Superinfecting Phage in Escherichia coli Infected with T4. Virology 1975, 67, 219–233. [Google Scholar] [CrossRef]
- Lu, M.J.; Henning, U. Superinfection Exclusion by T-Even-Type Coliphages. Tren. Microbiol. 1994, 2, 137–139. [Google Scholar] [CrossRef]
- Abedon, S.T. Look Who’s Talking: T-Even Phage Lysis Inhibition, the Granddaddy of Virus-Virus Intercellular Communication Research. Viruses 2019, 11, 951. [Google Scholar] [CrossRef] [Green Version]
- McGrath, S.; Fitzgerald, G.F.; Sinderen, D.V. Identification and Characterization of Phage-Resistance Genes in Temperate Lactococcal Bacteriophages. Mol. Microbiol. 2002, 43, 509–520. [Google Scholar] [CrossRef]
- Johnston, C.D.; Cotton, S.L.; Rittling, S.R.; Starr, J.R.; Borisy, G.G.; Dewhirst, F.E.; Lemon, K.P. Systematic Evasion of the Restriction-Modification Barrier in Bacteria. Proc. Natl. Acad. Sci. USA 2019, 166, 11454–11459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, D.; Chakravorty, M. Restriction-Modification System in Bacteriophage MB78. Biochem. Biophys. Res. Commun. 2003, 303, 884–890. [Google Scholar] [CrossRef]
- Krüger, D.H.; Schroeder, C.; Hansen, S.; Rosenthal, H.A. Active Protection by Bacteriophages T3 and T7 against E. Coli B-and K-Specific Restriction of Their DNA. MGG 1977, 153, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Sorek, R. The Phage-Host Arms Race: Shaping the Evolution of Microbes. BioEssays 2011, 33, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Studier, F.W. Multiple Roles of T7 RNA Polymerase and T7 Lysozyme during Bacteriophage T7 Infection. J. Mol. Biol. 2004, 340, 707–730. [Google Scholar] [CrossRef] [Green Version]
- Manghwar, H.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends Plant Sci. 2019, 24, 1102–1125. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Li, J.; Wang, B.; Han, J.; Hao, Y.; Wang, S.; Ma, X.; Yang, S.; Ma, L.; Yi, L.; et al. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front. Bioeng. Biotechnol. 2020, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Luo, M.; Hayes, R.P.; Kim, J.; Ng, S.; Ding, F.; Liao, M.; Ke, A. Structure Basis for Directional R-Loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Cell 2017, 170, 48–60.e11. [Google Scholar] [CrossRef] [Green Version]
- Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I.; et al. Diversity and Evolution of Class 2 CRISPR-Cas Systems. Nat. Rev. Microbiol. 2017, 15, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Mir, A.; Edraki, A.; Lee, J.; Sontheimer, E.J. Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chem. Biol. 2017, 13, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Pyenson, N.C.; Marraffini, L.A. Type III CRISPR-Cas Systems: When DNA Cleavage Just Isn’t Enough. Curr. Opin. Microbiol. 2017, 37, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, S.; Zhang, Y.; Ren, M.; Feng, M.; Peng, N.; Chen, L.; Liang, Y.X.; She, Q. Harnessing Type I and Type III CRISPR-Cas Systems for Genome Editing. Nucleic Acids Res. 2016, 44, e34. [Google Scholar] [CrossRef] [Green Version]
- Samson, J.E.; Magadán, A.H.; Sabri, M.; Moineau, S. Revenge of the Phages: Defeating Bacterial Defences. Nat. Rev. Microbiol. 2013, 11, 675–687. [Google Scholar] [CrossRef]
- Paez-Espino, D.; Sharon, I.; Morovic, W.; Stahl, B.; Thomas, B.C.; Barrangou, R.; Banfield, J.F.; Jansson, J.K. CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus. mBio 2015, 6, e00262-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.; Park, J.H.; Yong, D. Efficacy of Bacteriophage Treatment against Carbapenem-Resistant Acinetobacter baumannii in Galleria Mellonella Larvae and a Mouse Model of Acute Pneumonia. BMC Microbiol. 2019, 19, 70. [Google Scholar] [CrossRef]
- Schmerer, M.; Molineux, I.J.; Bull, J.J. Synergy as a Rationale for Phage Therapy Using Phage Cocktails. PeerJ 2014, 2, e590. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.K.; Nilsson, A.S. Isolation of Phages for Phage Therapy: A Comparison of Spot Tests and Efficiency of Plating Analyses for Determination of Host Range and Efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.R.; de Vos, D.; Friman, V.P.; Pirnay, J.P.; Buckling, A. Effects of Sequential and Simultaneous Applications of Bacteriophages on Populations of Pseudomonas aeruginosa in Vitro and in Wax Moth Larvae. Appl. Environ. Microbiol. 2012, 78, 5646–5652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage Treatment of Human Infections. Bacteriophage 2011, 1, 66. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A Controlled Clinical Trial of a Therapeutic Bacteriophage Preparation in Chronic Otitis Due to Antibiotic-Resistant Pseudomonas aeruginosa; A Preliminary Report of Efficacy. Clin. Otolaryngol. 2009, 34, 349–357. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and Tolerability of a Cocktail of Bacteriophages to Treat Burn Wounds Infected by Pseudomonas aeruginosa (PhagoBurn): A Randomised, Controlled, Double-Blind Phase 1/2 Trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef]
- Chopra, S.; Harjai, K.; Chhibber, S. Potential of Combination Therapy of Endolysin MR-10 and Minocycline in Treating MRSA Induced Systemic and Localized Burn Wound Infections in Mice. Int. J. Med. Microbiol. 2016, 306, 707–716. [Google Scholar] [CrossRef]
- Bolocan, A.S.; Upadrasta, A.; De Almeida Bettio, P.H.; Clooney, A.G.; Draper, L.A.; Ross, R.P.; Hill, C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019, 11, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, Y.J.; Costa, L.; Pereira, C.; Mateus, C.; Cunha, Â.; Calado, R.; Gomes, N.C.M.; Pardo, M.A.; Hernandez, I.; Almeida, A. Phage Therapy as an Approach to Prevent Vibrio anguillarum Infections in Fish Larvae Pro-duction. PLoS ONE 2014, 9, e114197. [Google Scholar] [CrossRef]
- Carrillo, C.L.; Atterbury, R.J.; El-Shibiny, A.; Connerton, P.L.; Dillon, E.; Scott, A.; Connerton, I.F. Bacteriophage Therapy to Reduce Campylobacter Jejuni Colonization of Broiler Chickens. Appl. Environ. Microbiol. 2005, 71, 6554–6563. [Google Scholar] [CrossRef] [Green Version]
- Horváth, M.; Kovács, T.; Koderivalappil, S.; Ábrahám, H.; Rákhely, G.; Schneider, G. Identification of a Newly Isolated Lytic Bacteriophage against K24 Capsular Type, Carbapenem Resistant Klebsiella pneumoniae Isolates. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gao, S.; Dong, Y.; Lu, C.; Liu, Y. Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbial. 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Yung, G.; Dan, J.; Reed, S.; LeFebvre, M.; Logan, C.; Taplitz, R.; Law, N.; Golts, E.; Afshar, K.; et al. Bacteriophage Treatment in a Lung Transplant Recipient. J. Heart Lung Transplant. 2018, 37, 155–156. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeiren, L. Efficacy of Phage P100 on L. Monocytogenes in Refrigerated Vacuum Pack-aged Cooked Ham. Fleischwirtschaft 2019, 99, 92–95. [Google Scholar]
- Yeh, Y.; de Moura, F.H.; Broek, K.V.D.; van den Broek, K.; de Mello, A.S. Effect of Ultraviolet Light, Organic Acids, and Bacteriophage on Salmonella Populations in Ground Beef. Meat Sci. 2018, 139, 44–48. [Google Scholar] [CrossRef]
- Quiroz-Guzmán, E.; Peña-Rodriguez, A.; Vázquez-Juárez, R.; Barajas-Sandoval, D.R.; Balcázar, J.L.; Martínez-Díaz, S.F. Bacteriophage Cocktails as an Environmentally-Friendly Approach to Prevent Vibrio parahaemolyticus and Vibrio harveyi Infections in Brine Shrimp (Artemia franciscana) production. Aquaculture 2018, 492, 273–279. [Google Scholar] [CrossRef]
- Fabijan, A.P.; Lin, R.C.; Ho, J.; Maddocks, S.; Zakour, N.L.B.Z.; Iredell, J.R. Safety of Bacteriophage Therapy in Severe Staphylococcus aureus Infection. Nat. Microbiol. 2020, 5, 446–472. [Google Scholar]
- D’Angelantonio, D.; Scattolini, S.; Boni, A.; Neri, D.; Serafino, G.D.; Connerton, P.; Connerton, I.; Pomilio, F.; Giannatale, E.D.; Migliorati, G.; et al. Bacteriophage Therapy to Reduce Colonization of Campylobacter Jejuni in Broiler Chickens before Slaughter. Viruses 2021, 13, 1428. [Google Scholar] [CrossRef]
- Lam, H.Y.P.; Lai, M.J.; Chen, T.Y.; Wu, W.J.; Peng, S.Y.; Chang, K.C. Therapeutic Effect of a Newly Isolated Lytic Bacteriophage against Multi-Drug-Resistant Cutibacterium acnes Infection in Mice. Int. J. Mol. Sci. 2021, 22, 7031. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, Z.; Yang, K.; Wang, J.; Jousset, A.; Xu, Y.; Shen, Q.; Friman, V.-P. Phage Combination Therapies for Bacterial Wilt Disease in Tomato. Nat. Biotechnol. 2019, 37, 1513–1520. [Google Scholar] [CrossRef]
- Rabiey, M.; Roy, S.R.; Holtappels, D.; Franceschetti, L.; Quilty, B.J.; Creeth, R.; Sundin, G.W.; Wagemans, J.; Lavigne, R.; Jackson, R.W. Phage Biocontrol to Combat Pseudomonas syringae Pathogens Causing Disease in Cherry. Microb. Biotechnol. 2020, 13, 1428–1445. [Google Scholar] [CrossRef]
- Carstens, A.B.; Djurhuus, A.M.; Kot, W.; Hansen, L.H. A Novel Six-Phage Cocktail Reduces Pectobacterium atrosepticum Soft Rot Infection in Potato Tubers under Simulated Storage Conditions. FEMS Microbiol. Lett. 2019, 366, 101. [Google Scholar] [CrossRef]
- Gašić, K.; Kuzmanović, N.; Ivanović, M.; Prokić, A.; Šević, M.; Obradović, A. Complete Genome of the Xanthomonas Euvesicatoria Specific Bacteriophage KΦ1, Its Survival and Potential in Control of Pepper Bacte-rial Spot. Front. Microbiol. 2018, 9, 2021. [Google Scholar] [CrossRef] [PubMed]
- Papaianni, M.; Paris, D.; Woo, S.L.; Fulgione, A.; Rigano, M.M.; Parrilli, E.; Tutino, M.L.; Marra, R.; Manganiello, G.; Casillo, A.; et al. Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas Campestris Pv. Campestris Infection. Front. Microbiol. 2020, 11, 732. [Google Scholar] [CrossRef]
- Das, M.; Bhowmick, T.S.; Ahern, S.J.; Young, R.; Gonzalez, C.F. Control of Pierce’s Disease by Phage. PLoS ONE 2015, 10, e0128902. [Google Scholar] [CrossRef] [Green Version]
- Balogh, B.; Canteros, B.I.; Stall, R.E.; Jones, J.B. Control of Citrus Canker and Citrus Bacterial Spot with Bacteriophages. Plant Dis. 2008, 92, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Schwarczinger, I.; Kolozsváriné Nagy, J.; Künstler, A.; Szabó, L.; Geider, K.; Király, L.; Pogány, M. Characterization of Myoviridae and Podoviridae Family Bacteriophages of Erwinia amylovora from Hungary—Potential of Application in Biological Control of Fire Blight. Eur. J. Plant Pathol. 2017, 149, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-H.; Park, S.-W.; Kim, Y.-K. Bacteriophages of Pseudomonas tolaasii for the Biological Control of Brown Blotch Disease. J. Appl. Biol. Chem. 2011, 54, 99–104. [Google Scholar] [CrossRef]
- Nga, N.T.T.; Tran, T.N.; Holtappels, D.; Ngan, N.L.K.; Hao, N.P.; Vallino, M.; Tien, D.T.K.; Khanh-Pham, N.H.; Lavigne, R.; Kamei, K.; et al. Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. allii. Antibiotics 2021, 10, 517. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Midani, A.; Lee, Y.S.; Kang, S.W.; Kim, M.K.; Choi, T.J. First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch. Plant Pathol. J. 2018, 34, 59–64. [Google Scholar] [CrossRef]
- Hagens, S.; Loessner, M.J. Application of Bacteriophages for Detection and Control of Foodborne Patho-gens. Appl. Microbiol. Biotechnol. 2007, 76, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Speck, P.; Smithyman, A. Safety and Efficacy of Phage Therapy via the Intravenous Route. FEMS Microbiol. Lett. 2016, 363, 248. [Google Scholar] [CrossRef]
- Ganegama Arachchi, G.J.; Cridge, A.G.; Dias-Wanigasekera, B.M.; Cruz, C.D.; McIntyre, L.; Liu, R.; Flint, S.H.; Mutukumira, A.N. Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J. Ind. Microbiol. Biotechnol. 2013, 40, 1105–1116. [Google Scholar] [CrossRef]
- Goodridge, L.D.; Bisha, B. Phage-Based Biocontrol Strategies to Reduce Foodborne Pathogens in Foods. Bacteriophage 2011, 1, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Manohar, P.; Tamhankar, A.J.; Lundborg, C.S.; Nachimuthu, R. Therapeutic Characterization and Efficacy of Bacteriophage Cocktails Infecting Escherichia Coli, Klebsiella pneumoniae, and Enterobacter Species. Front. Microbiol. 2019, 10, 574. [Google Scholar] [CrossRef] [Green Version]
- Guillier, L.; Rossmanith, P.; Fister, S.; Robben, C.; Witte, A.K.; Schoder, D.; Wagner, M. Influence of Environmental Factors on Phage-Bacteria Interaction and on the Efficacy and Infectivity of Phage P100. Front. Microbiol. 2016, 7, 1165. [Google Scholar] [CrossRef]
- Waldor, M.K.; Mekalanos, J.J. Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. Science 1996, 272, 1910–1914. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.D.; Yoon, S.; Kim, M.-H.; Kim, Y.-K.; Yoon, M.-Y.; Cho, Y.-H.; Lim, Y.; Shin, S.H.; Kim, D.-E. Characterization of bacteriophage ϕPto-bp6g, a novel phage that lyses Pseudomonas tolaasii causing brown blotch disease in mushrooms. J. Microbiol. Methods 2012, 91, 514–519. [Google Scholar] [CrossRef]
- Born, Y.; Bosshard, L.; Duffy, B.; Loessner, M.J.; Fieseler, L. Protection of Erwinia amylovora Bacteriophage Y2 from UV-Induced Damage by Natural Compounds. Bacteriophage 2015, 5, e1074330. [Google Scholar] [CrossRef] [Green Version]
- Elhalag, K.; Nasr-Eldin, M.; Hussien, A.; Ahmad, A. Potential Use of Soil borne Lytic Podoviridae Phage as a Biocontrol Agent against Ralstonia solanacearum. J. Basic Microbiol. 2018, 58, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Tewfike, T.A.; Shimaa, M.D. Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann. Agric. Sci. Moshtohor 2015, 53, 615–624. [Google Scholar]
- Abedon, S.T.; García, P.; Mullany, P.; Aminov, R. Editorial: Phage Therapy: Past, Present and Future. Front. Microbiol. 2017, 8, 981. [Google Scholar] [CrossRef] [Green Version]
- Iriarte, F.B.; Balogh, B.; Momol, M.T.; Smith, L.M.; Wilson, M.; Jones, J.B. Factors Affecting Survival of Bacteriophage on Tomato Leaf Surfaces. Appl. Environ. Microbiol. 2007, 73, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Balogh, B.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Obradovic, A.; King, P.; Jackson, L.E. Improved Efficacy of Newly Formulated Bacteriophages for Management of Bacterial Spot on Tomato. Plant Dis. 2003, 87, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obradovic, A.; Jones, J.B.; Momol, M.T.; Balogh, B.; Olson, S.M. Management of Tomato Bacterial Spot in the Field by Foliar Applications of Bacteriophages and SAR Inducers. Plant Dis. 2004, 88, 736–740. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, A.; Ceyssens, P.J.; T’Syen, J.; van Praet, H.; Noben, J.P.; Shaburova, O.V.; Krylov, V.N.; Volckaert, G.; Lavigne, R. The T7-Related Pseudomonas Putida Phage Φ15 Displays Virion-Associated Biofilm Degradation Properties. PLoS ONE 2011, 6, e18597. [Google Scholar] [CrossRef] [Green Version]
- Ferriol-González, C.; Domingo-Calap, P. Phages for Biofilm Removal. Antibiotics 2020, 9, 268. [Google Scholar] [CrossRef]
- Lu, T.K.; Collins, J.J. Dispersing Biofilms with Engineered Enzymatic Bacteriophage. Proc. Natl. Acad. Sci. USA 2007, 104, 11197–11202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, D.R.; Parracho, H.M.R.T.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and Biofilms. Antibiotics 2014, 3, 270–284. [Google Scholar] [CrossRef]
- Chevallereau, A.; Pons, B.J.; van Houte, S.; Westra, E.R. Interactions between Bacterial and Phage Communities in Natural Environments. Nat. Rev. 2021, 1–14. [Google Scholar] [CrossRef]
- Stubbendieck, R.M.; Vargas-Bautista, C.; Straight, P.D. Bacterial Communities: Interactions to Scale. Front. Microbiol. 2016, 7, 1234. [Google Scholar] [CrossRef] [Green Version]
- León, M.; Bastías, R. Virulence Reduction in Bacteriophage Resistant Bacteria. Front. Microbiol. 2015, 6, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, T.G.; Feijoo-Siota, L.; Sánchez-Pérez, A.; Rama, J.R.; Sieiro, C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. Horizontal Gene Transfer; Springer: Cham, Switzerland; New York, NY, USA, 2019; pp. 3–76. [Google Scholar] [CrossRef]
- Daniel, A.; Euler, C.; Collin, M.; Chahales, P.; Gorelick, K.J.; Fischetti, V.A. Synergism between a Novel Chimeric Lysin and Oxacillin Protects against Infection by Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 1603–1612. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.S.; Lehman, S.M.; Tweardy, D.J.; Donlan, R.M.; Trautner, B.W. Bacteriophages are Synergistic with Bacterial Interference for the Prevention of Pseudomonas aeruginosa Biofilm Formation on Urinary Catheters. J. Appl. Microbiol. 2012, 113, 1530–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, D.M.; Cai, X.; Mushegian, A. Evolutionarily Conserved Orthologous Families in Phages Are Relatively Rare in Their Prokaryotic Hosts. J. Bacteriol. 2011, 193, 1806–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttle, C.A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef] [PubMed]
Bacterial Pathogens | Host | Application Method | Control Effect of Bacteriophage | References |
---|---|---|---|---|
Klebsiella pneumoniae | Human, Skin | Phages were administered intraperitoneal 10 min after bacterial challenge mouse model | vB_KpnS_Kp13, effective against all Verona integron-encoded metallo-β-lactamase (VIM) producing K. pneumoniae isolates originating from hospital samples. | [79] |
Aeromonas hydrophila | Fish, poikilothermy animals | Phage applied to A. hydrophila- challenged mice which hearts, livers, spleens, lungs and kidneys were collected for determination of bacterial loads | The phages G65 and Y81 showed considerable bacterial killing effect and potential in preventing formation of A. hydrophila biofilm; and the phages G65, W3 and N21 were able to scavenge mature biofilm effectively. | [80] |
Pseudomonas aeruginosa | Human, lungs | Bacteriophage combination given via intravenous (IV) and inhaled routes to 67-year old male bilateral lung transplant recipient (LTR) who developed recurrent episodes of multi-drug resistant (MDR) P. aeruginosa | Complete control of disease By Bacteriophage combinations (BC). | [81] |
Listeria monocytogenes | Human, Food pathogen | Phage treatment within a minute of contamination with a L. monocytogenes on ham. | Phage treatment kept L. monocytogenes below or at the detection level of 1 CFU/g after 28 (low treatment level) and after 42 days (high treatment level) whereas in the control levels exceeded 1 × 102 CFU/g already after 14 days. | [82] |
Salmonella Spp. | Human, Food pathogen | Combined application of bacteriophages and ultraviolet light applied on ground beef | Bacteriophages (S16 and FO1a) and ultraviolet light (UV) individually decreased approximately 1 log CFU/g. Combination of both showed to decrease twice the individual application. | [83] |
Vibrio parahaemolyticus | Shrimp | Phage therapy (single phages and cocktails) on hatching and survival of brine shrimp (Artemia franciscana) cysts and nauplii exposed to pathogenic strains of V. parahaemolyticus and V. harveyi | 100% hatching in Shrimp Cyst in 13 host compare to 40% hatching cyst in non-treated groups. | [84] |
Staphylococcus aureus | Humans, organ infection | 13 patients with severe S. aureus infections were intravenously administered three Myoviridae bacteriophages (AB-SA01) | Intravenously injected bacteriophages AB_SA01 control S. aureus infection in 13 patiens. | [85] |
Campylobacter jejuni | Chicken | Various MoI was applied on 3 groups of broilers and C. jejuni was enumerated in cecal contents after 40 days. | Reductions in Campylobacter counts were statistically significant in phage treatments with MOI 0.1 compared to the control group. | [86] |
Propionibacterium acnes | Human, skin (wounds) | Phage formulated in cetomacrogol cream aqueous for application. Mice were injected with phages after injection of C. acnes. | Phage treatments applied to mice with multi-drug-resistant (MDR) C. acnes-induced skin inflammation resulted in a significant decrease in inflammatory lesions. | [87] |
Ralstonia solanacearum | Tomato plant | Phage treatment applied on the soil of tomato plant | Increasing the number of phages in combinations decreased the incidence of disease by up to 80% in greenhouse and field experiments during a single crop season. | [88] |
Pseudomonas syringae | Cherry plant | Bean plants and cherry plants sprayed with the pathogenic bacteria and after a day they were sprayed with the selected bacteriophages | Phages could effectively reduce disease progression in vivo, both individually and in cocktails, reinforcing their potential as biocontrol agents in agriculture. | [89] |
Pectobacterium atrosepticum | Potato plants | Tuber maceration with the pathogenic bacteria followed with the phage treatments | Use of the phage cocktail reduced both disease incidence and disease severity by 61% and 64%, respectively, strongly indicating that phage biocontrol has the potential to reduce the economic impact of soft rot in potato production. | [90] |
Xanthomonas euvesicatoria | Pepper plant | Pepper crops were inoculated with the pathogenic bacteria and phages were sprayed on four leaf stage plants | Foliar applications of the unformulated KΦ1 phage suspension effectively controlled pepper bacterial spot compared to the standard treatment and the untreated control. | [91] |
Xanthomonas campestris pv. Campestris | Brassicaceae (Cruciferae) plant | Bacteriophage was sprayed on the bacterial challenged plants | Effect of the Xccφ1 phage treatments on Xcc disease severity showed complete reduction in disease symptom V-shaped chlorotic to necrotic foliar lesions. | [92] |
Xyella fastidiosa | Grapevines | Grapevines injected with bacteriophages | Grape plant treated with bacteriophage cocktail showed no development of Pierce’s Disease symptoms after 4 weeks compare to the control group which showed leaf scorching symptoms. | [93] |
Xanthamonas axonopodis PC. Citri | Orange | Weekly spray if phages in citrus nursery | Treatment of phages in Valencia oranges showed disease progress inhibition in 3 various trial. | [94] |
Erwinia amylovora | pear apple trees | Phage application on applied blossom and pear fruit slice | Three phage isolates (ΦEaH2A, ΦEaH5K and ΦEaH7B) significantly reduced bacterial multiplication and fire blight symptoms as compared to untreated controls. | [95] |
Pseudomonas tolaassi | Mushrooms | Phages were applied on the mushroom tissue using pitting test | Phages can sterilize pathogenic bacteria in mushroom tissues as well as be useful for the biological control of brown blotch disease. | [96] |
Xanthomonas axonopodis pv.alli | onion | Bacteriophages were sprayed on the plant leaves | Phage Φ31 reduced disease symptoms provided a significant increase in crop yield. Phage showed similar control effects compared to bactericides. | [97] |
Acidovorax citrulli | Watermelon, Cucurbitacea | A seed coating method was used to control bacterial disease | Bacteriophage ACP17 and ACPWH were able to protect watermelon seeds and inhibit BFB symptoms. | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi-Midani, A.; Lee, S.-W.; Choi, T.-J. Potential Solutions Using Bacteriophages against Antimicrobial Resistant Bacteria. Antibiotics 2021, 10, 1496. https://doi.org/10.3390/antibiotics10121496
Rahimi-Midani A, Lee S-W, Choi T-J. Potential Solutions Using Bacteriophages against Antimicrobial Resistant Bacteria. Antibiotics. 2021; 10(12):1496. https://doi.org/10.3390/antibiotics10121496
Chicago/Turabian StyleRahimi-Midani, Aryan, Seon-Woo Lee, and Tae-Jin Choi. 2021. "Potential Solutions Using Bacteriophages against Antimicrobial Resistant Bacteria" Antibiotics 10, no. 12: 1496. https://doi.org/10.3390/antibiotics10121496
APA StyleRahimi-Midani, A., Lee, S. -W., & Choi, T. -J. (2021). Potential Solutions Using Bacteriophages against Antimicrobial Resistant Bacteria. Antibiotics, 10(12), 1496. https://doi.org/10.3390/antibiotics10121496