Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion Criteria
2.2. Data Extraction and Assessment of Articles
3. Results
3.1. Search Results and Selected Studies
3.2. Antimicrobial Use in Crop Production
3.3. Antimicrobials Use in Animal Production
3.4. Antimicrobial Use in Aquaculture and Apiculture
3.5. Antimicrobial Resistance in Crop Production
3.6. Antimicrobial Resistance in Animal Production
3.7. Antimicrobial Resistance in Aquaculture and Apiculture
3.8. Drug Residues and Resistance in Food
3.9. AMU and AMR Policies in Africa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parant, A. World population prospects. Futuribles 1990, 141, 49–78. [Google Scholar]
- Schmidt, S. Getting the policy right: Urban agriculture in Dar es Salaam, Tanzania. Int. Dev. Plan. Rev. 2012, 34, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G. Global trends in antimicrobial resistance in animals in low- and middle- income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [Green Version]
- Otte, J.; Pica-Ciamarra, U.; Morzaria, S. A comparative overview of the livestock-environment interactions in Asia and Sub-Saharan Africa. Front. Vet. Sci. 2019, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Thornton, P.K.; Franceschini, G.; Kruska, R.; Chiozza, F.; Notenbaert, A.M. Global Livestock Production Systems; FAO: Rome, Italy; ILRI: Nairobi, Kenya, 2011. [Google Scholar]
- Mesbah Zekar, F.; Granier, S.A.; Marault, M.; Yaici, L.; Gassilloud, B.; Manceau, B. From farms to markets: Gram-negative bacteria resistant to third-generation cephalosporins in fruits and vegetables in a region of north Africa. Front. Microbiol. 2017, 8, 1569. [Google Scholar] [CrossRef]
- Kayombo, M.C.; Mayo, A.W. Assessment of microbial quality of vegetables irrigated with polluted water in Dar es Salaam City, Tanzania. Environ. Ecol. Res. 2018, 6, 229–239. [Google Scholar] [CrossRef]
- FAO. Antimicrobial Resistance and Food of Plant Origin; Food and Agriculture Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Phares, C.A.; Danquah, A.; Atiah, K.; Agyei, F.K.; Michael, O.-T.; Ercoli, V. Antibiotics utilization and farmers’ knowledge of its effects on soil ecosystem in the coastal drylands of Ghana. PLoS ONE 2020, 15, e0228777. [Google Scholar]
- Oluyege, J.; Oluwaniyi, T.; Isajan, O. Composition of antibiotic resistant bacteria from irrigated vegetable farmland. J. Microbiol. Res. 2015, 5, 161–168. [Google Scholar]
- FAO. Averting risks to the food chain. In A Compendium of Proven Emergency Prevention Methods and Tool, 2nd ed.; Food and Agriculture Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schar, D.; Sommanustweechai, A.; Laxminarayan, R.; Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: Optimizing use and addressing antimicrobial resistance. PLoS Med. 2018, 15, e1002521. [Google Scholar] [CrossRef] [Green Version]
- IACG. Interagency Coordination Group on Antimicrobial Resistance (IACG). Surveillance and Monitoring for Antimicrobial Use and Resistance. 2018. Available online: http://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_Surveillance_and_Monitoring_for_AMU_and_AMR_110618.pdf (accessed on 27 June 2021).
- Olanya, O.; Adipala, E.; Hakiza, J.; Kedera, J.; Ojiambo, P.; Mukalazi, J. Epidemiology and population dynamics of Phytophthora infestans in Sub-Saharan Africa: Progress and constraints. Afr. Crop Sci. J. 2001, 9, 185–193. [Google Scholar] [CrossRef]
- Russell, P. Fungicide resistance: Occurrence and management. J. Agric. Sci. 1995, 124, 317–323. [Google Scholar] [CrossRef]
- Morton, V.; Staub, T. A short history of fungicides. Online APSNet Feat. 2008, 308. [Google Scholar] [CrossRef]
- Azevedo, M.-M.; Faria-Ramos, I.; Cruz, L.C.; Pina-Vaz, C.; Gonclaves Rodriques, A. Genesis of azole antifungal resistance from agriculture to clinical settings. J. Agric. Food Chem. 2015, 63, 7463–7468. [Google Scholar] [CrossRef]
- Ngowi, A.; Mbise, T.; Ijani, A.; London, L.; Ajayi, O. Smallholder vegetable farmers in northern Tanzania: Pesticide use practices, perceptions, cost and health effects. Crop Prot. 2007, 26, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Ngowi, A. A study of farmers’ knowledge, attitude and experience in the use of pesticides in coffee farming. Afr. News. Occup. Health Safety 2003, 13, 62–64. [Google Scholar]
- FAO. The FAO Action Plan on Antimicrobial Resistance 2016–2020; FAO: Rome, Italy, 2016. [Google Scholar]
- OIE. Annual Report on Antimicrobial Agents Intended for Use in Animals. In Better Understanding of the Global Situation; First Report; World Organization for Animal Health: Paris, France, 2016. [Google Scholar]
- OIE. Annual Report on Antimicrobial Agents Intended for Use in Animals. In Better Understanding of the Global Situation; Second Report; World Organization for Animal Health: Paris, France, 2017. [Google Scholar]
- OIE. Annual Report on Antimicrobial Agents Intended for Use in Animals. In Better Understanding of the Global Situation; Third Report; World Organization for Animal Health: Paris, France, 2018. [Google Scholar]
- OIE. Annual Report on Antimicrobial Agents Intended for Use in Animals. In Better Understanding of the Global Situation; Fourth Report; World Organization for Animal Health: Paris, France, 2018. [Google Scholar]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eagar, H.; Swan, G.; Van Vuuren, M. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. J. S. Afr. Vet. Assoc. 2012, 83, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamini, M.G.; Keutchatang, F.T.; Mafo, H.Y.; Kansci, G.; Nama, G.M. Antimicrobial usage in the chicken farming in Younde, Cameroon: A cross-sectional study. Int. J. Food Contam. 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Winfield, I.J.; Gerdeaux, D. Fisheries in the densely populated landscapes of Western Europe. In Freshwater Fisheries Ecology; John, F.C., Ed.; Wilely-Blackwell: Oxford, UK, 2015; pp. 181–190. [Google Scholar]
- Donkor, E.S.; Anim-Baidoo, I.; Fei, E.; Amponsah, C.; Olu-Taiwo, M.; Nana-Adjei, D. Occurrence of antibiotic residues and antibiotic-resistant bacteria in Nile tilapia sold in some markets in Accra, Ghana: Public health implications. J. Food Res. 2018, 7, 129. [Google Scholar] [CrossRef]
- Tillotson, G.S.; Doern, G.V.; Blondeau, J.M. Optimal antimicrobial therapy: The balance of potency and exposure. Expert Opin. Investig. Drugs 2006, 15, 335–337. [Google Scholar] [CrossRef]
- Henzelin, A.B.; Perroud, M.C.; Le Breton, M.H.; Hammel, Y.A.; Germain, I.; Bebius, A. Contaminants and residues in food: Strategies (if any) to screen and analyse 119 veterinary drug residues in food from animal origin. In Proceedings of the 5th International Fresenius Conference, Frankfurt, Germany, 29–30 October 2007; p. 6. [Google Scholar]
- Mahmoudi, R.; Moosavy, M.; Norian, R.; Kazemi, S.; Reza, M.; Nadari, A. Detection of oxytetracycline residues in honey samples using ELISA and HPLC methods. Pharm. Sci. 2014, 19, 145–150. [Google Scholar]
- Gea, F.J.; Tello, J.C.; Navarro, M.J. Efficacy and effects on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone pemiciosa. Crop Prot. 2000, 29, 1021–1025. [Google Scholar] [CrossRef]
- Waliyar, F.; Adaniy, M.; Traoré, A. Rational use of fungicide applications to maximize peanut yield under foliar disease pressure in West Africa. Plant Dis. 2000, 84, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Boshoff, W.H.; Pretorius, Z.A.; van Niekerk, B.D. Fungicide efficacy and the impact of stripe rust on spring and winter wheat in South Africa. S. Afr. J. Plant Soil 2003, 20, 11–17. [Google Scholar] [CrossRef]
- Howard, S.; Pasqualotto, A.; Anderson, M.; Leatherbarrow, H.; Albarrag, A.; Harrison, E. Major variations in Aspergillus fumigatus arising within aspergillomas in chronic pulmonary aspergillosis. Mycoses 2013, 56, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Bader, O.; Tünnermann, J.; Dudakova, A.; Tangwattanachuleeporn, M.; Weig, M.; Groß, U. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob. Agents Chemother. 2015, 59, 4356–4359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushi, M.F.; Buname, G.; Bader, O.; Groß, U.; Mshana, S.E. Aspergillus fumigatus carrying TR34/L98H resistance allele causing complicated suppurative otitis media in Tanzania: Call for improved diagnosis of fungi in sub-Saharan Africa. BMC Infect. Dis. 2016, 16, 464. [Google Scholar] [CrossRef] [Green Version]
- Raman, N.M.; Easwaran, M.; Kaul, R.; Bharti, J.; Motelb, K.F.A.; Kaul, T. Antimicrobial Resistance with Special Emphasis on Pathogens in Agriculture. Antimicrob. Resist. One Health Perspect. 2020. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, L.; Klibi, N.; Dziri, R.; Borgo, F.; Boudabous, A.; Ben Slam, K. Prevalence, antimicrobial resistance and genetic lineage of Enterococcus spp. from vegetable, food, soil and irrigation water in farm environments in Tunisia. J. Sci. Food Agric. 2016, 96, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Badali, H.; Vaezi, A.; Haghani, I.; Yazdanparast, S.A.; Hedayati, M.T.; Mousavi, B. Environmental study of azole-resistant Aspergillus fumigatus with TR34/L98H mutations in the cyp51A gene in Iran. Mycoses 2013, 56, 659–663. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; van den Boom, M.; Yntema, J.B.; Hagen, F.; Verweij, P.E. Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J. Antimicrob. Chemother. 2014, 69, 2979–2983. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Kathuria, S.; Hagen, F.; Meis, J.F. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front. Microbiol. 2015, 6, 428. [Google Scholar] [CrossRef] [PubMed]
- Mushi, M.F. Molecular Epidemiology of Azole Resistant Candida spp. and Aspergillus fumigatus in Selected Sites in Tanzania. Ph.D. Thesis, Catholic University of Health and Allied Sciences, Mwanza, Tanzania, 2019. [Google Scholar]
- Nguyen, T.N.; Hotzel, H.; Njeru, J.; Mwituria, J.; El-Adawy, H.; Tomaso, H. Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya. Gut Pathog. 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, S.P.; Vurayai, M.; Holmes, M.; Gupta, S.; Bateman, M.; Goldfarb, D. Phylogenetic analyses and antimicrobial resistance profiles of Campylobacter spp. from diarrhoeal patients and chickens in Botswana. PLoS ONE 2018, 13, e019448. [Google Scholar] [CrossRef]
- Messad, S.; Hamdi, T.-M.; Bouhamed, R.; Ramdani-Bouguessa, N.; Tazir, M. Frequency of contamination and antimicrobial resistance of thermotolerant Campylobacter isolated from some broiler farms and slaughterhouses in the region of Algiers. Food Cont. 2014, 40, 324–328. [Google Scholar] [CrossRef]
- Gblossi Bernadette, G.; Eric Essoh, A.; Elise Solange, K.N.; Natalie, G.; Souleymane, B.; Lamine Sébastien, N. Prevalence and antimicrobial resistance of thermophilic Campylobacter isolated from chicken in Côte d’Ivoire. Int. J. Microbiol. 2012, 2012, 150612. [Google Scholar] [CrossRef] [Green Version]
- Hassanain, N.A. Antimicrobial resistant Campylobacter jejuni isolated from humans and animals in Egypt. Global Vet. 2011, 6, 195–200. [Google Scholar]
- Ewnetu, D.; Mihret, A. Prevalence and antimicrobial resistance of Campylobacter isolates from humans and chickens in Bahir Dar, Ethiopia. Foodborne Pathog. Dis. 2010, 7, 667–670. [Google Scholar] [CrossRef]
- Kassa, T.; Gebre-Selassie, S.; Asrat, D. Antimicrobial susceptibility patterns of thermotolerant Campylobacter strains isolated from food animals in Ethiopia. Vet. Microbiol. 2007, 119, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Antibiotic resistance of Campylobacter recovered from faeces and carcasses of healthy livestock. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abubakar, M.K.; Muigai, A.W.; Ndung’u, P.; Kariuki, S. Investigating carriage, contamination, antimicrobial resistance and assessment of colonization risk factors of Campylobacter spp. in broilers from selected farms in Thika, Kenya. Microbiol. Res. J. Int. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, E.; Rose, V.; Perrier Gros-Claude, J.D.; Tall, F.; Rivoal, K.; Mead, G. Genetic characterization and antibiotic resistance of Campylobacter spp. isolated from poultry and humans in Senegal. J. Appl. Microbiol. 2006, 100, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Jonker, A.; Picard, J. Antimicrobial susceptibility in thermophilic Campylobacter species isolated from pigs and chickens in South Africa. J. S. Afr. Vet. Assoc. 2010, 81, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bester, L.; Essack, S. Prevalence of antibiotic resistance in Campylobacter isolates from commercial poultry suppliers in KwaZulu-Natal, South Africa. J. Antimicrob. Chemother. 2008, 62, 1298–1300. [Google Scholar] [CrossRef] [Green Version]
- Komba, E.V.; Mdegela, R.H.; Msoffe, P.L.; Matowo, D.E.; Maro, M.J. Occurrence, species distribution and antimicrobial resistance of thermophilic Campylobacter isolates from farm and laboratory animals in Morogoro, Tanzania. Vet. World 2014, 7, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Kashoma, I.P.; Kassem, I.I.; Kumar, A.; Kessy, B.M.; Gebreyes, W.; Kazwala, R.R. Antimicrobial resistance and genotypic diversity of Campylobacter isolated from pigs, dairy, and beef cattle in Tanzania. Front. Microbiol. 2015, 6, 1240. [Google Scholar] [CrossRef]
- Gharbi, M.; Béjaoui, A.; Ben Hamda, C.; Jouini, A.; Ghedira, K.; Zrelli, C. Prevalence and antibiotic resistance patterns of Campylobacter spp. isolated from broiler chickens in the north of Tunisia. BioMed Res. Int. 2018, 7943786. [Google Scholar] [CrossRef] [Green Version]
- Simango, C. Antimicrobial susceptibility of Campylobacter species. S. Afr. J. Epidemiol. Infect. 2013, 28, 139–142. [Google Scholar]
- Uzeh, R.E.; Adewumi, F.; Odumosu, B.T. Antibiotic resistance and plasmid analysis of Enterobacteriaceae isolated from retail meat in Lagos Nigeria. One Health Outlook 2021, 3, 10. [Google Scholar] [CrossRef]
- Kagambèga, A.; Lienemann, T.; Frye, J.G.; Barro, N.; Haukka, K. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso. Trop. Med. Health 2018, 46, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyango, D.M.; Ndeda, V.M.; Wandili, S.A.; Wawire, S.A.; Ochieng, P. Antimicrobial profile of Salmonella enterica serotype choleraesuis from free-range swine in Kakamega fish market, western Kenya. J. Infect. Dev. Ctries. 2014, 8, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuvi, G.M.; Ombui, J.N.; Mitema, E.S. Serotypes and antimicrobial resistance profiles of Salmonella isolates from pigs at slaughter in Kenya. J. Infect. Dev. Ctries. 2010, 4, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Djeffal, S.; Bakour, S.; Mamache, B.; Elgroud, R.; Agabou, A.; Chabou, S. Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet. Res. 2017, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Bouzidi, N.; Aoun, L.; Zeghdoudi, M.; Bensouilah, M.; Elgroud, R.; Oucief, I. Salmonella contamination of laying-hen flocks in two regions of Algeria. Food Res. Int. 2012, 45, 897–904. [Google Scholar] [CrossRef]
- Boko, C.K.; Kpodekon, T.M.; Duprez, J.-N.; Imberechts, H.; Taminiau, B.; Bertrand, S. Identification and typing of Salmonella enterica serotypes isolated from guinea fowl (Numida meleagris) farms in Benin during four laying seasons (2007 to 2010). Avian Pathol. 2013, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Akoachere, J.-F.T.; Tanih, N.F.; Ndip, L.M.; Ndip, R.N. Phenotypic characterization of Salmonella typhimurium isolates from food-animals and abattoir drains in Buea, Cameroon. J. Health Popul. Nutr. 2009, 27, 612. [Google Scholar] [PubMed] [Green Version]
- Ahmed, A.M.; Shimamoto, T. Genetic analysis of multiple antimicrobial resistance in Salmonella isolated from diseased broilers in Egypt. Microbiol. Immunol. 2012, 56, 254–261. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.E.; El-Abasy, M.; El-Khayat, F.; Gillespie, T. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog. 2017, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Abdi, R.D.; Mengstie, F.; Beyi, A.F.; Beyene, T.; Waktole, H.; Mammo, B. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infect. Dis. 2017, 17, 352. [Google Scholar] [CrossRef]
- Abunna, F.; Bedasa, M.; Beyene, T.; Ayana, D.; Mamo, B.; Duguma, R. Salmonella: Isolation and antimicrobial susceptibility tests on isolates collected from poultry farms in and around Modjo, Central Oromia, and Ethiopia. J. Anim. Poult. Sci. 2016, 5, 21–35. [Google Scholar]
- Sibhat, B.; Molla Zewde, B.; Zerihun, A.; Muckle, A.; Cole, L.; Boerlin, P. Salmonella serovars and antimicrobial resistance profiles in beef cattle, slaughterhouse personnel and slaughterhouse environment in Ethiopia. Zoonoses Public Health 2011, 58, 102–109. [Google Scholar] [CrossRef]
- Addis, Z.; Kebede, N.; Sisay, Z.; Alemayehu, H.; Wubetie, A.; Kassa, T. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: A cross sectional study. BMC Infect. Dis. 2011, 11, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguale, T.; Birungi, J.; Asrat, D.; Njahira, M.N.; Njuguna, J.; Gebreyes, W.A. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob. Resist. Infect. Control 2017, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfaw, L.; Taye, B.; Alemu, S.; Alemayehu, H.; Sisay, Z.; Negussie, H. Prevalence and antimicrobial resistance profile of Salmonella isolates from dairy products in Addis Ababa, Ethiopia. Afr. J. Microbiol. Res. 2013, 7, 5046–5050. [Google Scholar]
- Eguale, T.; Engidawork, E.; Gebreyes, W.A.; Asrat, D.; Alemayehu, H.; Medhin, G. Fecal prevalence, serotype distribution and antimicrobial resistance of Salmonellae in dairy cattle in central Ethiopia. BMC Microbiol. 2016, 16, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekele, B.; Ashenafi, M. Distribution of drug resistance among enterococci and Salmonella from poultry and cattle in Ethiopia. Trop. Anim. Health Prod. 2010, 42, 857–864. [Google Scholar] [CrossRef]
- Andoh, L.A.; Dalsgaard, A.; Obiri-Danso, K.; Newman, M.; Barco, L.; Olsen, J.E. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana. Epidemiol. Infect. 2016, 144, 3288–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oloso, N.O.; Adeyemo, I.A.; van Heerden, H.; Fasanmi, O.G.; Fasina, F.O. Antimicrobial drug administration and antimicrobial resistance of Salmonella isolates originating from the broiler production value chain in Nigeria. Antibiotics 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dione, M.M.; Ieven, M.; Garin, B.; Marcotty, T.; Geerts, S. Prevalence and antimicrobial resistance of Salmonella isolated from broiler farms, chicken carcasses, and street-vended restaurants in Casamance, Senegal. J. Food Prot. 2009, 72, 2423–2427. [Google Scholar] [CrossRef]
- Madoroba, E.; Kapeta, D.; Gelaw, A.K. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J. Vet. Res. 2016, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, B.S.; Montso, P.K.; Kumar, A.; Ateba, C.N. Distribution of virulence factors, determinants of antibiotic resistance and molecular fingerprinting of Salmonella species isolated from cattle and beef samples: Suggestive evidence of animal-to-meat contamination. Environ. Sci. Pollut. Res. 2018, 25, 32694–32708. [Google Scholar] [CrossRef]
- Igbinosa, I.H. Prevalence and detection of antibiotic-resistant determinant in Salmonella isolated from food-producing animals. Trop. Anim. Health Prod. 2015, 47, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zishiri, O.T.; Mkhize, N.; Mukaratirwa, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J. Vet. Res. 2016, 83, 1–11. [Google Scholar] [CrossRef]
- Mohamed, L.I.; Rodwan, K.; Alseed, A.G. Drug resistance pattern of Salmonella isolated from poultry dropping in Khartoum North. J. Sci. Technol. 2013, 14, 28–33. [Google Scholar]
- Fadlalla, I.M.; Hamid, M.E.; Rahim, A.G.A.; Ibrahim, M.T. Antimicrobial susceptibility of Salmonella serotypes isolated from human and animals in Sudan. J. Public Health Epidemiol. 2012, 4, 19–23. [Google Scholar]
- Elmadiena, M.M.; El Hussein, A.A.; Muckle, C.A.; Cole, L.; Wilkie, E.; Mistry, K. Antimicrobial susceptibility and multi-drug resistance of Salmonella enterica subspecies enterica serovars in Sudan. Trop. Anim. Health Prod. 2013, 45, 1113–1118. [Google Scholar] [CrossRef]
- Salem, R.B.; Abbassi, M.S.; García, V.; García-Fierro, R.; Fernández, J.; Kilani, H. Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype Enteritidis circulating in chicken farms in Tunisia. J. Infect. Public Health 2017, 10, 855–860. [Google Scholar] [CrossRef]
- Odoch, T.; Sekse, C.; L’Abee-Lund, T.M.; Høgberg Hansen, H.C.; Kankya, C.; Wasteson, Y. Diversity and antimicrobial resistance genotypes in non-typhoidal Salmonella isolates from poultry farms in Uganda. Int. J. Environ. Res. Public Health 2018, 15, 324. [Google Scholar] [CrossRef] [Green Version]
- Makaya, P.V.; Matope, G.; Pfukenyi, D. Distribution of Salmonella serovars and antimicrobial susceptibility of Salmonella Enteritidis from poultry in Zimbabwe. Avian Pathol. 2012, 41, 221–226. [Google Scholar] [CrossRef]
- Chenia, H.Y.; Vietze, C. Tetracycline resistance determinants of heterotrophic bacteria isolated from a South African tilapia aquaculture system. Afr. J. Microbiol. Res. 2012. [Google Scholar] [CrossRef] [Green Version]
- Ngbede, E.O.; Raji, M.A.; Kwanashie, C.N.; Kwaga, J.K.P. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop. Anim. Health Prod. 2017, 49, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Beshiru, A.; Igbinosa, I.H.; Omeje, F.I.; Ogofure, A.G.; Eyong, M.M.; Igbinosa, E.O. Multi-antibiotic resistant and putative virulence gene signatures in Enterococcus species isolated from pig farms environment. Microb. Pathog. 2017, 104, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Foka, F.E.; Ateba, C.N. Detection of virulence genes in multidrug resistant enterococci isolated from feedlots dairy and beef cattle: Implications for human health and food safety. BioMed Res. Int. 2019, 5921840. [Google Scholar] [CrossRef] [Green Version]
- Naouel, K.; Aouini, R.; Borgo, F.C.; Karim, B. Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia. Ann. Microbiol. 2014, 65, 1–8. [Google Scholar] [CrossRef]
- Mubita, C.; Syakalima, M.; Chisenga, C.; Munyeme, M.; Bwalya, M.; Chifumpa, G. Antibiograms of faecal Escherichia coli and Enterococci species isolated from pastoralist cattle in the interface areas of the Kafue basin in Zambia. Vet. Arhiv. 2008, 78, 179. [Google Scholar]
- Adinortey, C.A.; Aheto, D.W.; Boateng, A.A.; Agbeko, R. Multiple antibioticresistance-coliform bacteria in some selected fish farms of the central region of Ghana. Scientifica 2020. [Google Scholar] [CrossRef] [PubMed]
- Agoba, E.E.; Adu, F.; Agyare, C.; Boamah, V.E.; Boakye, Y.D. Antibiotic resistance patterns of bacterial isolates from hatcheries and selected fish farms in the Ashanti region of Ghana. J. Microbiol. Antimicrob. 2017, 9, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Fakorede, C.N.; Fatokun, E.N.; Philip-Kantiok, B.; Iwu, C.J.; Jaja, I.F. Bacteriological quality and antibiotics’ susceptibility profile of small-medium scale commercial fish farms in Nigeria. Open Agric. J. 2020, 14, 198–208. [Google Scholar] [CrossRef]
- Raufu, I.A.; Lawan, F.A.; Bello, H.S.; Musa, A.S.; Ameh, J.A.; Ambali, A.G. Occurrence and antimicrobial susceptibility profiles of Salmonella serovars from fish in Maiduguri, Sub-Saharan, Nigeria. Egypt. J. Aquat. Res. 2014, 40, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Wamala, S.P.; Mugimba, K.K.; Mutoloki, S.; Evensen, Ø.; Mdegela, R.; Byarugaba, D.K.; Sørum, H. Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish Aquat. Sci. 2018, 21, 6. [Google Scholar] [CrossRef]
- Hounmanou, Y.; Mdegela, R. Current situation for antimicrobial use, antimicrobial resistance and antimicrobial residues in the food and agriculture sectors in Tanzania: A review. Tanzan. Vet. J. 2018, 35, 58–62. [Google Scholar]
- Nzeh, J. Antibiotics Residue and Resistance Profile of Bacterial Isolates in Imported and Locally Produced Honey from Locations within the Tamale Metropolis of the Northern Region of Ghana. Master’s Thesis, University for Development Studies, Ghana, France, 2020. [Google Scholar] [CrossRef]
- Nayme, K.; Barguigua, A.; Bouchrif, B.; Karraouan, B.; El Otmani, F.; Elmdaghri, N. Genotypic characterization of quinolone resistant-Escherichia coli isolates from retail food in Morocco. J. Environ. Sci. Health 2017, 52, 107–114. [Google Scholar] [CrossRef]
- Mezali, L.; Hamdi, T.M. Prevalence and antimicrobial resistance of Salmonella isolated from meat and meat products in Algiers (Algeria). Foodborne Pathog. Dis. 2012, 9, 522–529. [Google Scholar] [CrossRef]
- Khodabandeh, M.; Mohammadi, M.; Abdolsalehi, M.R.; Hasannejad-Bibalan, M.; Gholami, M.; Alvandimanesh, A.; Pournajaf, A.; Rajabnia, R. High-Level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium; as a serious threat in hospitals. Infect. Disord. Drug Targets 2020, 20, 223–228. [Google Scholar] [CrossRef]
- Ejo, M.; Garedew, L.; Alebachew, Z.; Worku, W. Prevalence and antimicrobial resistance of Salmonella isolated from animal-origin food items in Gondar, Ethiopia. BioMed Res. Int. 2016, 2016, 4290506. [Google Scholar] [CrossRef] [Green Version]
- Eibach, D.; Dekker, D.; Boahen, K.G.; Akenten, C.W.; Sarpong, N.; Campos, C.B. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet. Microbiol. 2018, 217, 7–12. [Google Scholar] [CrossRef]
- Chishimba, K.; Hang’ombe, B.; Muzandu, K.; Mshana, S.; Matee, M.; Nakajima, C. Detection of extended-spectrum beta-lactamase-producing Escherichia coli in market-ready chickens in Zambia. Int. J. Microbiol. 2016, 5275724. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Frielinghaus, L.; Grobusch, M.P.; Köck, R.; Becker, K. The risk to import ESBL-producing Enterobacteriaceae and Staphylococcus aureus through chicken meat trade in Gabon. BMC Microbiol. 2014, 14, 286. [Google Scholar] [CrossRef] [Green Version]
- Bosco, K.J.; Kaddu-Mulindwa, D.H.; Asiimwe, B.B. Antimicrobial drug resistance and plasmid profiles of Salmonella isolates from humans and foods of animal origin in Uganda. Adv. Infect. Dis. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Khallaf, M.; Ameur, N.; Terta, M.; Lakranbi, M.; Senouci, S.; Ennaji, M. Prevalence and antibiotic-resistance of Salmonella isolated from chicken meat marketed in Rabat, Morocco. IJIAS 2014, 6, 1123. [Google Scholar]
- Guetiya Wadoum, R.; Zambou, N.; Anyangwe, F.; Njimou, J.; Coman, M.; Verdenelli, M. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 2016, 57, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Odwar, J.A.; Kikuvi, G.; Kariuki, J.N.; Kariuki, S. A cross-sectional study on the microbiological quality and safety of raw chicken meats sold in Nairobi, Kenya. BMC Res. Notes 2014, 7, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwanyika, G.; Call, D.R.; Rugumisa, B.; Luanda, C.; Murutu, R.; Subbiah, M. Load and prevalence of antimicrobial-resistant Escherichia coli from fresh goat meat in Arusha, Tanzania. J. Food Prot. 2016, 79, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Okorie-Kanu, O.J.; Ezenduka, E.V.; Okorie-Kanu, C.O.; Ugwu, L.C.; Nnamani, U.J. Occurrence and antimicrobial resistance of pathogenic Escherichia coli and Salmonella spp. in retail raw table eggs sold for human consumption in Enugu state, Nigeria. Vet. World 2016, 9, 1312. [Google Scholar] [CrossRef] [PubMed]
- Markhous, N.A.; Tidjani, A.; Doutoum, A.A.; Nadlaou, B.; Doungous, D.M.; Abdourahamane, B. Microbiological characteristics and resistance profile of isolated bacteria in market garden products in N’Djamena, Chad. J. Food Stab. 2019, 2, 21–30. [Google Scholar] [CrossRef]
- Traoré, O.; Nyholm, O.; Siitonen, A.; Bonkoungou, I.J.O.; Traoré, A.S. Prevalence and diversity of Salmonella enterica in water, fish and lettuce in Ouagadougou, Burkina Faso. BMC Microbiol. 2015, 15, 151. [Google Scholar] [CrossRef]
- Akoachere, J.-F.; Tatsinkou, B.F.; Nkengfack, J.M. Bacterial and parasitic contaminants of salad vegetables sold in markets in Fako Division, Cameroon and evaluation of hygiene and handling practices of vendors. BMC Res. Notes 2018, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Gomba, A.; Chidamba, L.; Korsten, L. Antimicrobial resistance profiles of Salmonella spp. from agricultural environments in fruit production systems. Foodborne Pathog. Dis. 2016, 13, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Adzitey, F. Antibiotic resistance of Escherichia coli and Salmonella enterica isolated from cabbage and lettuce samples in Tamale metropolis of Ghana. Int. J. Food Contam. 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Kwaku, G.M.; Samson, S.P.; Charles, M.-R. Resistance of Bacteria Isolates from Cabbage (Brassica oleracea), Carrots (Daucus carota) and Lettuce (Lactuca sativa) in the Kumasi Metropolis of Ghana. Int. J. Nutr. Food Sci. 2016, 5, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Igbeneghu, O.A.; Abdu, A.B. Multiple Antibiotic-resistant bacteria on fluted pumpkin leaves, a herb of therapeutic value. J. Health Pop. Nutr. 2014, 32, 176. [Google Scholar]
- Moussé, W.; Sina, H.; Baba-Moussa, F.; Noumavo, P.; Agbodjato, N.A.; Adjanohoun, A.; Baba-Moussa, L. Identification of Extended-Spectrum β-Lactamases Escherichia coli strains isolated from market garden products and irrigation water in Benin. BioMed Res. Int. 2015, 286473. [Google Scholar] [CrossRef]
- OIE. Standards, Guidelines and Resolution on Antimicrobial Resistance and the Use of Antimicrobial Agents; World Organization for Animal Health: Paris, France, 2015. [Google Scholar]
- CAC. Codex Texts on Foodborne Antimicrobial Resistance; The Codex Alimentarius Commission: Paris, France, 2015. [Google Scholar]
- Ministère de la Santé; Ministère des Ressources Animales et Halieutiques; Ministère de l’Agriculture et des Aménagements Hydrauliques; Ministère de l’Environnement, l’Économie Verte et du Changement Climatiqu. Burkina Faso Plan Stratégique National Multisectoriel de Lutte Contre la Résistance Antimicrobienne 2018–2020; WHO: Geneva, Switzerland, 2018.
- Ethiopian Food, Medicine and Healthcare Administration and Control Authority. Ethiopia Strategy for the Prevention and Containment of Antimicrobial Resistance for Ethiopia, Second Edition, 2015–2020. Available online: https://www.fmhaca.gov.et (accessed on 21 June 2021).
- Egypt Ministerial Decree, No. 974 of 2017 Concerning Registration, Handling and Use of Agricultural Pesticides in Egypt. 2017. Available online: http://www.apc.gov.eg (accessed on 21 June 2021).
- Ministry of Health; Ministry of Food and Agriculture; Ministry of Environment, Science, Technology and Innovation; Ministry of Fisheries and Aquaculture Development. 2017; Ghana National Action Plan for Antimicrobial Resistance, 2017–2020. Available online: https://www.moh.gov.gh (accessed on 21 June 2021).
- Kenya National Action Plan on Prevention and Containment of Antimicrobial Resistance, 2017–2022. Available online: https://www.health.go.ke (accessed on 21 June 2021).
- Mauritius National Action Plan on Antimicrobial Resistance 2017–2021. Ministry of Health and Quality of Life. 2017. Available online: https://www.who.int/publications (accessed on 21 June 2021).
- Morocco Plan Stratégique National de Prévention et de Contrôle de la Résistance aux Antimicrobiens. 2019. Available online: https://www.who.int/publications (accessed on 21 June 2021).
- Nigeria National Action Plan for Antimicrobial Resistance, 2017–2022. Available online: https://www.who.int/publications (accessed on 21 June 2021).
- Department of Health, Department of Agriculture, Forestry and Fisheries. South Africa Guidelines on Implementation of the Antimicrobial Strategy in South Africa: One Health Approach & Governance, 2018–2024. Available online: https://nahf.co.za (accessed on 21 June 2021).
- Sudan: National Action Plan on Antimicrobial Resistance, 2018–2020. Available online: https://www.who.int/publications (accessed on 21 June 2021).
- The United Republic of Tanzania-Ministry of Health Community Development Gender Elderly and Children; World Health Organization. Tanzania: The National Action Plan on Antimicrobial Resistance 2017–2022. 2017. Available online: https://www.afro.who.int/publications (accessed on 21 June 2021).
- Ministre de l’Agriculture & Ministre de la Santé des Ressources Hydrauliques et de la Pêche. Tunisia Plan d’Action National de Lutte Contre la Resistance Aux Antimicrobiens en Tunisie, 2019–2023. 2019. Available online: https://www.who.int/publications (accessed on 21 June 2021).
- Government of Uganda. Uganda Antimicrobial Resistance National Action Plan, 2018–2023. 2019. Available online: https://www.afro.who.int/publications (accessed on 21 June 2021).
- Government of the Republic of Zambia. Zambia Multi-sectoral National Action Plan on Antimicrobial Resistance, 2017–2017. Available online: https://www.afro.who.int/publications (accessed on 21 June 2021).
- Zimbabwe One Health Antimicrobial Resistance National Action Plan 2017–2021: Strategic Framework, Operational Plan, and Monitoring and Evaluation Plan. 2017. Available online: https://www.afro.who.int/publications (accessed on 21 June 2021).
- Jacobs, T.G.; Robertson, J.; van den Ham, H.A.; Iwamoto, K.; Pedersen, H.B.; Mantel-Teeuwisse, A.K. Assessing the impact of law enforcement to reduce over-the-counter (OTC) sales of antibiotics in low-and middle-income countries; a systematic literature review. BMC Health Serv. Res. 2019, 19, 536. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Action Plan for Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Frumence, G.; Mboera, L.E.G.; Sindato, C.; Katale, B.Z.; Kimera, S.; Metta, E. The governance and implementation of the National Action Plan on Antimicrobial Resistance in Tanzania: A qualitative study. Antibiotics 2021, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Sommanustweechai, A.; Tangcharoensanthien, V.; Malathum, K.; Sumpradit, N.; Janejai, N.; Jaroenpoj, S. Implementing national strategies on antimicrobial resistance in Thailand: Potential challenges and solutions. Public Health 2018, 157, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Acharya, K.P.; Subramanya, S.H.; Lopes, B.S. Combating antimicrobial resistance in Nepal: The need for precision surveillance programmes and multi-sectoral partnership. JAC Antimicrob. Resist. 2019, 1, 2–3. [Google Scholar] [CrossRef]
- AU. Africa CDC Framework for Antimicrobial Resistance 2018–2023; Africa Union: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Varma, J.K.; Oppong-Otoo, J.; Ondoa, P.; Perovic, O.; Park, B.J.; Laxminarayan, R. Africa Centres for Disease Control and Prevention’s framework for antimicrobial resistance control in Africa. Afr. J. Lab. Med. 2018, 7, 830. [Google Scholar] [CrossRef]
- Ateba, C.N.; Bezuidenhout, C.C. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int. J. Food Microbiol. 2008, 128, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Christabel, M.; Budambula, N.; Kiiru, J.; Kariuki, S. Characterization of antibiotic resistance in environmental enteric pathogens from Kibera slum in Nairobi-Kenya. Afr. J. Bacteriol. Res. 2012, 4, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.; Novais, Â.; Peixe, L.; Machado, E. Atypical epidemiology of CTX-M-15 among Enterobacteriaceae from a high diversity of non-clinical niches in Angola. J. Antimicrob. Chemother. 2016, 71, 1169–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seni, J.; Moremi, N.; Matee, M.; Van der Meer, F.; DeVinney, R.; Mshana, S. Preliminary insights into the occurrence of similar clones of extended-spectrum beta-lactamase-producing bacteria in humans, animals and the environment in Tanzania: A systematic review and meta-analysis between 2005 and 2016. Zoonoses Public Health 2018, 65, 1–10. [Google Scholar] [CrossRef] [PubMed]
- WHO. Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a one health approach. In Guidance from the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR); WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Selaledi, L.A.; Hassan, Z.M.; Manyelo, T.G.; Mabelebele, M. The current status of the alternative use to antibiotics in poultry production: An African perspective. Antibiotics 2020, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.J.; Legido-Quigley, H.; Hsu, L.Y. Antimicrobial resistance in One Health. In Global Health Security; Springer: Cham, Germany, 2020; pp. 209–229. [Google Scholar]
Country | Animal | Antimicrobial Class | % MDR | Reference |
---|---|---|---|---|
Algeria | Poultry | Beta-lactams, Macrolides, Penicillin, Quinolones, Tetracycline | 100 | [49] |
Botswana | Poultry | Beta-lactams, Fluoroquinolones, Tetracyclines | 27 | [48] |
Côte d’Ivoire | Poultry | Aminoglycosides, Macrolides, Penicillin, Quinolones | [50] | |
Egypt | Cattle, buffalo, sheep, poultry | Aminoglycosides, Macrolides, Penicillin, Phenicols, Tetracyclines | - | [51] |
Ethiopia | Poultry, cattle, pigs, sheep | Aminoglycosides, Cephalosporins, Macrolides, Penicillin, Sulphonamides, Tetracyclines | 14.5 | [52,53] |
Ghana | Cattle, sheep, goat, pigs | Aminoglycosides, Beta-lactams, Macrolides, Phenicols, Quinolones, Sulphonamides Tetracycline | 66.6 | [54] |
Kenya | Poultry | Quinolones, Tetracyclines | 61.3 | [47] |
Kenya | Poultry | Aminoglycosides, Quinolones, Sulphonamides | 79.22 | [55] |
Senegal | Poultry | Quinolones | 11.1 | [56] |
South Africa | Poultry, pigs | Cephalosporins, Tetracyclines | 43 | [57] |
South Africa | Poultry | Beta-lactams, Tetracycline | 43 | [58] |
Tanzania | Cattle, goats, sheep, horses, camels | Macrolides, Quinolones, Lipopeptides | - | [59] |
Tanzania | Pigs, cattle | Aminoglycosides, Beta-lactams, Furanes, Macrolides, Phenicols, Quinolones, Tetracyclines | 56.8 | [60] |
Tunisia | Poultry | Macrolides, Quinolones, Phenicols, Tetracyclines | 100 | [61] |
Zimbabwe | Poultry | Sulphonamides | - | [62] |
Country | Animal | Resistance Gene | Antimicrobial | References |
---|---|---|---|---|
Algeria | Poultry | blaCTX-M-1, blaTEM | Ciprofloxacin, Cefotaxime, | [67] |
Algeria | Poultry | Ampicillin, Cephalothin, Tetracycline, Ofloxacin, Streptomycin, Enrofloxacin, Ciprofloxacin | [68] | |
Benin | Guinea fowl | Oxacillin, Sulfamethoxazole, Colistin | [69] | |
Burkina Faso | Cattle, poultry, pigs | Ampicillin, Chloramphenicol, Streptomycin, Sulphonamide, Trimethoprim | [50] | |
Burkina Faso | Poultry | strA, strB, aadA1, blaTEM-1B, catA1, sul1, sul2, tetB, dfrA1 | Aminoglycoside, Beta-lactams, Phenicol, Sulphonamide, Tetracycline, Trimethoprim | [50] |
Cameroon | Cattle, pigs | Tetracycline, Ampicillin, Amoxicillin, Doxycycline, Co-trimoxazole | [70] | |
Egypt | Poultry | aadA1, aadA2, aadA, dfrA1, dfrA5, dfrA12, dfrA15, dfrA175, blaTEM-1, blaCMY-2, floR, tet(A) | Ampicillin, Streptomycin, Spectinomycin, Kanamycin, Tetracycline, Chloramphenicol, Sulfamethoxazole–trimethoprim | [71] |
Egypt | Poultry | BlaTEM, tetA, tetC, sul1, sul3, cat1, floR | Ampicillin, Tetracycline, Sulphamethoxazole, Chloramphenicol | [72] |
Ethiopia | Poultry | Ampicillin, Chloramphenicol, Ciprofloxacin, Cefoxitin, Kanamycin, Nalidixic acid, Sulfamethoxazole–trimethoprim, Streptomycin, Tetracycline | [73,74] | |
Ethiopia | Cattle | Amoxicillin, Ampicillin, Chloramphenicol, Gentamycin, Kanamycin, Nitrofurantoin, Streptomycin, Sulfisoxazole, Tetracycline | [75,76,77,78] | |
Ethiopia | Cattle, pigs, poultry | blaTEM | Nalidixic acid, Ciprofloxacin | [79] |
Ethiopia | Cattle, poultry | Gentamycin, Ciprofloxacin, Amoxicillin, Ampicillin, Streptomycin | [80] | |
Ghana | Poultry | Nalidixic acid, Tetracycline, Ciprofloxacin, Sulfamethoxazole, Trimethoprim, Ampicillin | [81] | |
Kenya | Pigs | Sulphonamide, Nalidixic acid, Tetracycline, Ampicillin, Erythromycin, Carbenicillin, Chloramphenicol, Gentamicin, Kanamycin, Spectinomycin, Sulfamethoxazole–trimethoprim, Streptomycin, Cephalothin, Ofloxacin, Ciprofloxacin, Norfloxacin | [65] | |
Kenya | Pig | blaTEM, catA1, strA, tet(A) | Ampicillin, Chloramphenicol, Streptomycin, Tetracycline | [66] |
Nigeria | Poultry | Flumequine, Penicillin, Pefloxacin | [82] | |
Senegal | Poultry | Sulfamethoxazole–trimethoprim, Tetracycline, Trimethoprim, Streptomycin, Sulphonamide | [83] | |
South Africa | Cattle | Ampicillin, Cefotaxime, Cephalexin, Enrofloxacin, Erythromycin, Kanamycin, Oxytetracycline, Rifampicin | [84,85] | |
South Africa | Cattle, goats | blaTEM, blapse1, blaAmpC | Tetracycline, Erythromycin | [86] |
South Africa | Poultry | Ampicillin, Amoxicillin, Sulfamethoxazole–trimethoprim, Kanamycin, Gentamicin, Chloramphenicol, Erythromycin, Streptomycin, Tetracycline | [87] | |
Sudan | Poultry | Ciprofloxacin, Chloramphenicol, Tetracycline, Amikacin, Aztreonam, Ceftazidime | [88] | |
Sudan | Cattle, poultry, camels, sheep | Ampicillin, Chloramphenicol, Cephalexin, Furazolidone, Gentamicin, Kanamycin, Nalidixic acid, Streptomycin, Sulfamethoxazole–trimethoprim | [89,90] | |
Tunisia | Poultry | sul1, sul3, strB, blaTEM-1, blaSHV | Nalidixic acid, Ampicillin, Sulphonamide, Streptomycin | [91] |
Uganda | Poultry | blaTEM-1, cmlA, tetA, qnrS, sul1, dhfrI, dhfrVII | Beta-lactams, Chloramphenicol, Tetracycline, Fluoroquinolones, Sulphonamide, Trimethoprim | [92] |
Uganda | Pig | Sulfamethoxazole, Streptomycin, Trimethoprim, Chloramphenicol, Ampicillin, Tetracycline, Kanamycin | [59] | |
Zimbabwe | Poultry | Tetracycline, Ampicillin, Kanamycin | [93] |
Country | Animal | Enterococcus Species | Antimicrobial Agent | Virulent Gene Detected | Reference |
---|---|---|---|---|---|
Ethiopia | Cattle, poultry | E. faecium, E. durans, E.hirea, E. faecalis | Erythromycin, Ampicillin, Clindamycin, Amoxicillin, Cephalothin | [80] | |
Nigeria | Poultry, cattle | E. faecium, E. gallinarum, E. faecalis, E. hirae, E. avium, E. raffinosus, E. durans, E. casseliflavus, E. mundtii | Tetracycline, Gentamicin Erythromycin, Ampicillin | asa1, gelE, cylA, tetK, tetL, tetM, tetO, ermB | [94] |
Nigeria | Poultry | E. faecium | Ampicillin, Aminoglycosides | [95] | |
Nigeria | Pigs | E. faecalis, E. faecium | Clindamycin, Penicillin, Erythromycin, Kanamycin, Gentamicin, Meropenem, Tetracycline | asa1, gelE, Esp | [96] |
South Africa | Cattle | E. faecalis, E. faecium, E. durans, E. avium, E. gallinarum, E. casseliflavus, E. mundtii | Vancomycin, Linezolid, Penicillin, Erythromycin, Tetracycline, Ampicillin, Amoxicillin | CylA, hyl, esp, gelE, asa1 | [97] |
Tunisia | Poultry, cattle, sheep | E. faecium, E. hirae | Erythromycin, Tetracycline | esp, ace | [98] |
Zambia | Cattle | E.faecium, E. faecium | Gentamicin, Amoxicillin, Ampicillin, Tetracycline | [99] |
Food Type | Country | Resistant Organisms | Drugs Resisted | References |
---|---|---|---|---|
Meat products (poultry, cattle, goat, sheep, etc.) | Côte d’Ivoire | C. jejuni, C. coli | Quinolones, Penicillin, Aminoglycosides | [50] |
Morocco | E. coli | Quinolones, Tetracycline, Penicillin, Clavam, Cephalosporin, Sulphonamides, Fluoroquinolones, Dihydrofolates, Aminoglycosides | [107] | |
Algeria | Salmonella spp. | Sulphonamides, Quinolones, Aminoglycosides, Tetracycline | [108] | |
Tunisia | E. faecium | Aminoglycosides, Ansamycins, Quinolones, Furanes | [109] | |
E. faecalis | Macrolides, Tetracycline, Quinolones, Aminoglycosides, Phenicol | [96] | ||
Ethiopia | Salmonella spp. | Tetracycline, Sulphonamides, Dihydrofolates, Penicillin, Furanes, Cephalosporins | [110] | |
Ghana | Campylobacter spp. | Penicillin, Quinolones, Aminoglycosides, Dihydrofolates, Tetracycline, Phenicol, Sulphonamides | [54] | |
E. coli, K. pneumoniae | Quinolones, Aminoglycosides, Dihydrofolates, Sulphonamides | [111] | ||
Zambia | E. coli | Tetracycline, Sulphonamides, Penicillin, Dihydrofolates | [112] | |
South Africa | Salmonella spp. | Aminoglycosides, Penicillin, Phenicol, Ansamycin, Cephalosporin, Tetracycline, Quinolones | [85] | |
Gabon | E. coli, S. aureus | Quinolones, Penicillin | [113] | |
Uganda | Salmonella spp. | Penicillin, Quinolones, Dihydrofolates, Sulphonamides | [114] | |
Morocco | S. enterica | Tetracycline, Quinolones, Penicillin, Aminoglycosides, Clavam, phenicol, Dihydrofolates, Sulphonamides | [115] | |
Cameroon | Salmonella spp. | Tetracycline, Aminoglycosides, Quinolones | [116] | |
Senegal | Salmonella spp. | Dihydrofolates, Sulphonamides, Aminoglycosides, Tetracycline | [83] | |
Kenya | E. coli | Tetracycline, Dihydrofolates, Sulphonamides, Penicillin, Aminoglycosides | [117] | |
Tanzania | E. coli | Tetracycline, Penicillin | [118] | |
Eggs | Nigeria | E. coli, Salmonella spp. | Furanes, Sulphonamides, Penicillin, Dihydrofolates, Tetracycline | [119] |
Vegetables and fruits | E. coli | Penicillin, Glycopeptide, Macrolides, Aminoglycosides, Ansamycins, Sulphonamides, Tetracycline, Dihydrofolates, Carbapenems | [11] | |
Chad | A. hydrophila, A. sobria, E. coli, Salmonella spp., S. aureus | Penicillin, Clavam, Carbapenems, Quinolones, Phenocol, Cephalosporin, Aminoglycosides, Tetracycline, Glycopeptide, Sulphonamides, Dihydrofolates, Ansamycins | [120] | |
Burkina Faso | Salmonella spp. | Aminoglycosides | [121] | |
Uganda | Salmonella spp. | Cephalosporin | [12] | |
Cameroon | S. aureus, S. marcescens | Aminoglycosides | [122] | |
South Africa | Salmonella spp. | Phenicol, Aminoglycosides, Clavam, Penicillin, Sulphonamides, Dihydrofolates | [123] | |
Ghana | E. coli, S. enterica | Quinolones, Penicillin, Macrolides | [124] | |
Ghana | Acinectobacter spp., E. coli, Aeromonas spp., Citrobacter spp., E. cloacae, S. aureus, K. pneumoniae, P. aureginosa, Salmonella spp., Serratia spp., Streptococcus spp. | Penicillin, Cephalosporin, Phenocol, Tetracycline, Sulphonamides | [125] | |
Tunisia | E. coli, C. freundii, Enterobacter spp., K. pneumoniae | Aminoglycosides, Macrolides, Phenicols, Penicillin, Quinolones, Sulphonamides, Tetracycline | [96] | |
E. faecium, E. hirae, E. faecalis, E. casseliflavus | Quinolones, Macrolides, Tetracycline, Phenicols, Aminoglycosides, Glycopeptides | [42] | ||
Nigeria | Enterobacter agglomerans, Proteus vulgaris, Klebsiella spp., Serratia liquefaciens, Staphylococcus spp., Bacillus spp., Pseudomonas fluorescens. | Ampicillin, Cloxacillin, Augmentin, Erythromycin, Tetracycline, Cephalothin, Trimethoprim, Gentamicin, Ciprofloxacin, Ofloxacin | [126] | |
Nigeria | Bacillus spp., E. coli, Staphylococcus aureus, Pseudomonas spp., Klebsiella spp., Proteus spp., Corynebacterium | Gentamycin, Ciprofloxacin, Ceftazidime, Cefotaxime, Perfloxacin, Cefuroxime, Ceftriaxone, Erythromycin, Vancomycin, Penicillin | [11] | |
Algeria | E. cloacae, K. pneumoniae, Acinetobacter, E. cloacae, Pseudomonas spp., C. murliniae | Sulphonamides, Tetracycline, Aminoglycosides, Phenicols, Fluoroquinolones, Cephalosporin | [6] | |
Benin | E. coli | Penicillin | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mshana, S.E.; Sindato, C.; Matee, M.I.; Mboera, L.E.G. Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics 2021, 10, 976. https://doi.org/10.3390/antibiotics10080976
Mshana SE, Sindato C, Matee MI, Mboera LEG. Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics. 2021; 10(8):976. https://doi.org/10.3390/antibiotics10080976
Chicago/Turabian StyleMshana, Stephen E., Calvin Sindato, Mecky I. Matee, and Leonard E. G. Mboera. 2021. "Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review" Antibiotics 10, no. 8: 976. https://doi.org/10.3390/antibiotics10080976
APA StyleMshana, S. E., Sindato, C., Matee, M. I., & Mboera, L. E. G. (2021). Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics, 10(8), 976. https://doi.org/10.3390/antibiotics10080976