Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing
Abstract
:1. Introduction
2. Results
2.1. Isolates Description
2.2. Analytical Evaluation of the Two BMD Kits and the GDM
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing Methods
Broth Microdilution Methods
MIC Gradient Tests
Agar Dilution Method
4.3. MIC Interpretation
4.4. Evaluation of Analytical Performances
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagy, E.; Boyanova, L.; Justesen, U.S. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin. Microbiol. Infect. 2018, 24, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Brook, I.; Wexler, H.M.; Goldstein, E.J.C. Antianaerobic Antimicrobials: Spectrum and Susceptibility Testing. Clin. Microbiol. Rev. 2013, 26, 526–546. [Google Scholar] [CrossRef] [Green Version]
- Brook, I. Anaerobic Infections: Diagnosis and Management; Informa Healthcare USA: New York, NY, USA, 2007. [Google Scholar]
- Salonen, J.H.; Eerola, E.; Meurman, O. Clinical Significance and Outcome of Anaerobic Bacteremia. Clin. Infect. Dis. 1998, 26, 1413–1417. [Google Scholar] [CrossRef]
- Boyanova, L.; Kolarov, R.; Mitov, I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015, 31, 4–10. [Google Scholar] [CrossRef]
- CLSI M100-ED31:2021 Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI: Annapolis Junction, MD, USA, 2021; Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 25 June 2021).
- CASFM/EUCAST: Recommandations 2021, 2021st ed; French Society for Microbiology: Paris, France, 2021; Available online: https://www.sfm-microbiologie.org/2020/10/02/casfm-eucast-v1-2-octobre-2020/ (accessed on 25 June 2021).
- Torres, E.; Delgado-Valverde, M.; Valiente, A.; Pascual, Á.; Rodríguez-Baño, J. Impact of borderline minimum inhibitory concentration on the outcome of invasive infections caused by Enterobacteriaceae treated with β-lactams: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1751–1758. [Google Scholar] [CrossRef]
- Poulet, P.P.; Duffaut, D.; Lodter, J.P. Evaluation of the Etest for determining the in-vitro susceptibilities of Prevotella intermedia isolates to metronidazole. J. Antimicrob. Chemother. 1999, 43, 610–611. [Google Scholar] [CrossRef] [PubMed]
- Croco, J.L.; Erwin, M.E.; Jennings, J.M.; Putnam, L.R.; Jones, R.N. Evaluation of the etest for antimicrobial spectrum and potency determinations of anaerobes associated with bacterial vaginosis and peritonitis. Diagn. Microbiol. Infect. Dis. 1994, 20, 213–219. [Google Scholar] [CrossRef]
- Citron, D.M.; Ostovari, M.I.; Karlsson, A.; Goldstein, E.J. Evaluation of the E test for susceptibility testing of anaerobic bacteria. J. Clin. Microbiol. 1991, 29, 2197–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, C.; Ashhurst-Smith, C.; Ferguson, J. Gram negative anaerobe susceptibility testing in clinical isolates using Sensititre and Etest methods. Pathology 2018, 50, 437–441. [Google Scholar] [CrossRef]
- Cherkaoui, A.; Fischer, A.; Azam, N.; Riat, A.; Schrenzel, J. A comparison of Sensititre ™ Anaerobe MIC plate with ATB ANA® test for the routine susceptibility testing of common anaerobe pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2279–2284. [Google Scholar] [CrossRef]
- Cordovana, M.; Ambretti, S. Antibiotic susceptibility testing of anaerobic bacteria by broth microdilution method using the MICRONAUT-S Anaerobes MIC plates. Anaerobe 2020, 63, 102217. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Susceptibility Test (AST) Systems—Class ii Special Controls Guidance for Industry and FDA, 2018. FDA. Available online: https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-ii-special-controls-guidance-industry-and-fda (accessed on 25 June 2021).
- Nagy, E.; Urbán, E.; Nord, C.E. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin. Microbiol. Infect. 2011, 17, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Kaeuffer, C.; Ruge, T.; Diancourt, L.; Romain, B.; Ruch, Y.; Jaulhac, B.; Boyer, P. First Case of Bacteraemia Due to Carbapenem-Resistant. Antibiotics 2021, 10, 319. [Google Scholar] [CrossRef]
- Yao, P.; Annamaraju, P. Clostridium perfringens. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Forbes, J.D.; Kus, J.V.; Patel, S.N. Antimicrobial susceptibility profiles of invasive isolates of anaerobic bacteria from a large Canadian reference laboratory: 2012–2019. Anaerobe 2021, 70, 102386. [Google Scholar] [CrossRef]
- EUCAST Antimicrobial Wild Type Distributions of Microorganisms. Available online: https://mic.eucast.org/ (accessed on 25 June 2021).
- Park, M.; Rafii, F. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens. Anaerobe 2017, 45, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.J.; Citron, D.M.; Brazier, J.S.; Goldstein, E.J. Identification and antimicrobial resistance patterns of clinical isolates of Clostridium clostridioforme, Clostridium innocuum, and Clostridium ramosum compared with those of clinical isolates of Clostridium perfringens. J. Clin. Microbiol. 1995, 33, 3209–3215. [Google Scholar] [CrossRef] [Green Version]
- Jon, J.V.; Mark, H.W.; Jane, F. Antimicrobial resistance progression in the United Kingdom: A temporal comparison of Clostridioides difficile antimicrobial susceptibilities. Anaerobe 2021, 70, 102385. [Google Scholar] [CrossRef] [PubMed]
- Tally, F.P.; Armfield, A.Y.; Dowell, V.R.; Kwok, Y.-Y.; Sutter, V.L.; Finegold, S.M. Susceptibility of Clostridium ramosum to Antimicrobial Agents. Antimicrob. Agents Chemother. 1974, 5, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, V.; Bozdogan, B.; Mainardi, J.-L.; Legrand, R.; Gutmann, L.; Leclercq, R. Mechanism of Intrinsic Resistance to Vancomycin in Clostridium innocuum NCIB 10674. J. Bacteriol. 2004, 186, 3415–3422. [Google Scholar] [CrossRef] [Green Version]
- Peláez, T.; Alcalá, L.; Alonso, R.; Rodríguez-Créixems, M.; García-Lechuz, J.M.; Bouza, E. Reassessment of Clostridium difficile Susceptibility to Metronidazole and Vancomycin. Antimicrob. Agents Chemother. 2002, 46, 1647–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooijevaar, R.; van Beurden, Y.; Terveer, E.; Goorhuis, A.; Bauer, M.; Keller, J.; Mulder, C.; Kuijper, E. Update of treatment algorithms for Clostridium difficile infection. Clin. Microbiol. Infect. 2018, 24, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Hawser, S.P. Activity of tigecycline against multidrug-resistant clinical isolates of Clostridium spp. from Europe. Int. J. Antimicrob. Agents 2010, 35, 310–311. [Google Scholar] [CrossRef]
- Matuschek, E.; Åhman, J.; Webster, C.; Kahlmeter, G. Antimicrobial susceptibility testing of colistin—Evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. EUCAST Warning against the Use of Gradient Tests for Benzylpenicillin MIC in Streptococcus Pneumoniae; EUCAST: Växjö, Sweden, 2019. [Google Scholar]
- Rennie, R.P.; Turnbull, L.; Brosnikoff, C.; Cloke, J. First Comprehensive Evaluation of the M.I.C. Evaluator Device Compared to Etest and CLSI Reference Dilution Methods for Antimicrobial Susceptibility Testing of Clinical Strains of Anaerobes and Other Fastidious Bacterial Species. J. Clin. Microbiol. 2012, 50, 1153–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentenaar, R.J.; Bovo-Heijmans, B.; Diggle, J.; Fluit, A.C.; Wootton, M. False amoxicillin/clavulanic acid susceptibility in Bacteroides fragilis using gradient strip tests. Anaerobe 2021, 69, 102358. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.; Pestel-Caron, M.; De Rohello, F.L.; Bourgoin, G.; Boyer, S.; Caron, F. Area of technical uncertainty for susceptibility testing of amoxicillin/clavulanate against Escherichia coli: Analysis of automated system, Etest and disk diffusion methods compared to the broth microdilution reference. Clin. Microbiol. Infect. 2020, 26, 1685–e1. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Patel, N.; Lomaestro, B.M.; Rodvold, K.A.; Drusano, G.L. Relationship between Initial Vancomycin Concentration-Time Profile and Nephrotoxicity among Hospitalized Patients. Clin. Infect. Dis. 2009, 49, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, 10th ed.; EUCAST: Växjö, Sweden, 2020; Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 25 June 2021).
Species | Number of Isolates | Blood Culture | Stool | Deep Abscess | Peritoneal Fluid |
---|---|---|---|---|---|
C. perfringens | 17 | 15 | - | 2 | - |
C. difficile | 6 | - | 6 | - | - |
C. ramosum | 6 | 6 | - | - | - |
C. septicum | 6 | 6 | - | - | - |
C. innocuum | 5 | 4 | - | - | 1 |
C. citroniae | 2 | 2 | - | - | - |
C. paraputrificum | 1 | 1 | - | - | - |
C. barati | 1 | 1 | - | - | - |
C. tertium | 1 | 1 | - | - | - |
C. symbiosum | 1 | 1 | - | - | - |
H. hathewayi | 1 | 1 | - | - | - |
Total | 47 |
Molecules | No. of Isolates in Each Category | EA % (n) | CA % (n) | mE % (n) | ME % (n) | VME % (n) | EA % (n) | CA % (n) | mE % (n) | ME % (n) | VME % (n) | EA % (n) | CA % (n) | mE % (n) | ME % (n) | VME % (n) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | R | MICRONAUT-S Anaerobe MIC (24 h) | Sensititre Anaerobe MIC (24 h) | MIC Test Strip (24 h) | |||||||||||||
Penicillin G | 29 | 9 | 8 | 76.1 (35) | 69.6 (32) | 26.1% (12) | 0% (0) | 25% (2) | - | - | - | - | - | 82.6% (38) | 82.6% (38) | 15.2% (7) | 0% (0) | 12.5% (1) |
Piperacillin/tazobactam | 46 | 0 | 0 | 87% (40) | 100% (46) | - | 0% (0) | - | - | - | - | - | - | 71.7% (33) | 100% (46) | - | 0% (0) | - |
Metronidazole | 46 | - | 0 | 69.6% (32) | 97.8% (45) | - | 2.2% (1) | - | - | - | - | - | - | 60.8% (28) | 95.65% (44) | - | 4.35% (2) | - |
Clindamycin | 39 | - | 7 | 63% (29) | 84.8% (39) | - | 10.3% (4) | 42.9% (3) | - | - | - | - | - | 65.2% (30) | 87.9% (40) | - | 10.2% (4) | 28.6% (2) |
Tigecycline | - | - | - | 80.8% (38) | - | - | - | - | - | - | - | - | - | 71.7% (33) | - | - | - | - |
Vancomycin | 34 | - | 12 | 95.7% (44) | 93.4% (43) | - | 0%(0) | 25% (3) | - | - | - | - | - | 97.9% (45) | 97.9% (45) | - | 0%(0) | 8.33% (1) |
S | I | R | MICRONAUT-S Anaerobe MIC (48 h) | Sensititre Anaerobe MIC (48 h) | MIC Test Strip (48 h) | |||||||||||||
Penicillin G | 29 | 6 | 11 | 71.7% (33) | 76.1% (35) | 19.5% (9) | 0% (0) | 18.2% (2) | 87% (40) | 82.6% (38) | 15.2% (7) | 0% (0) | 9.1% (1) | 76.1% (35) | 84.8% (39) | 13.0% (6) | 0% (0) | 9.1% (1) |
Piperacillin/tazobactam | 44 | 2 | 0 | 91.3% (42) | 95.6% (44) | 4.35% (2) | 0% (0) | - | 91.3% (42) | 97.8% (45) | 2.13% (1) | 0% (0) | - | 69.1% (32) | 95.6% (44) | 4.35% (2) | 0% (0) | - |
Metronidazole | 46 | - | 0 | 69.6% (32) | 97.8% (45) | - | 2.2% (1) | - | 43.5% (20) | 95.6% (44) | - | 4.35% (2) | - | 71.7% (33) | 95.6% (44) | - | 4.35% (2) | - |
Clindamycin | 32 | - | 14 | 84.7% (39) | 82.6% (38) | - | 12.5% (4) | 28.6% (4) | 87% (40) | 89.1% (41) | - | 6.25% (2) | 21.4% (3) | 76.1% (35) | 80.4% (37) | - | 6.25% (2) | 50% (7) |
Tigecycline | - | - | - | 82.6% (38) | - | - | - | - | 93.4% (43) | - | - | - | - | 65.2% (30) | - | - | - | - |
Vancomycin | 34 | - | 12 | 97.8% (45) | 97.8% (45) | - | 0%(0) | 8.33% (1) | 97.9% (45) | 93.4% (43) | - | 0% (0) | 25% (3) | 97.9% (45) | 97.9% (45) | - | 0% (0) | 8.33% (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baquer, F.; Ali Sawan, A.; Auzou, M.; Grillon, A.; Jaulhac, B.; Join-Lambert, O.; Boyer, P.H. Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing. Antibiotics 2021, 10, 975. https://doi.org/10.3390/antibiotics10080975
Baquer F, Ali Sawan A, Auzou M, Grillon A, Jaulhac B, Join-Lambert O, Boyer PH. Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing. Antibiotics. 2021; 10(8):975. https://doi.org/10.3390/antibiotics10080975
Chicago/Turabian StyleBaquer, Florian, Asma Ali Sawan, Michel Auzou, Antoine Grillon, Benoît Jaulhac, Olivier Join-Lambert, and Pierre H. Boyer. 2021. "Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing" Antibiotics 10, no. 8: 975. https://doi.org/10.3390/antibiotics10080975
APA StyleBaquer, F., Ali Sawan, A., Auzou, M., Grillon, A., Jaulhac, B., Join-Lambert, O., & Boyer, P. H. (2021). Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing. Antibiotics, 10(8), 975. https://doi.org/10.3390/antibiotics10080975