Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Population Structure, Sequencing and Analysis of Gene Content
2.2. Colistin Resistance Genotypes and Mobile Colistin Resistance Genes
2.3. Acquired Antimicrobial Resistance Genes
2.4. Genetic Characterisation of Plasmids pCFS3313-1 and pCFS3273-2 Containing Siderophore-Encoding Genes and ColV Genes
2.5. Genetic Characterisation and Analysis of Plasmid pCFS3313-3 Containing A Type IV Secretion System (T4SS)
3. Conclusions
4. Materials and Methods
4.1. Bacterial Cultures, Genomics DNA Purification and Sample Preparation for Sequencing
4.2. Bioinformatics Analysis
4.3. Antimicrobial Susceptibility Test (AST)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rasko, D.A.; Rosovitz, M.; Myers, G.S.; Mongodin, E.F.; Fricke, W.F.; Gajer, P.; Crabtree, J.; Sebaihia, M.; Thomson, N.R.; Chaudhuri, R. The pangenome structure of Escherichia coli: Comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 2008, 190, 6881–6893. [Google Scholar] [CrossRef] [Green Version]
- Touchon, M.; Hoede, C.; Tenaillon, O.; Barbe, V.; Baeriswyl, S.; Bidet, P.; Bingen, E.; Bonacorsi, S.; Bouchier, C.; Bouvet, O. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009, 5, e1000344. [Google Scholar] [CrossRef] [Green Version]
- Döpfer, D.; Barkema, H.; Lam, T.; Schukken, Y.; Gaastra, W. Recurrent clinical mastitis caused by Escherichia coli in dairy cows. J. Dairy Sci. 1999, 82, 80–85. [Google Scholar] [CrossRef]
- Burvenich, C.; Van Merris, V.; Mehrzad, J.; Diez-Fraile, A.; Duchateau, L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 2003, 34, 521–564. [Google Scholar] [CrossRef] [Green Version]
- Suojala, L.; Kaartinen, L.; Pyörälä, S. Treatment for bovine Escherichia coli mastitis–an evidence-based approach. J. Vet. Pharmacol. Ther. 2013, 36, 521–531. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (U.S.); National Center for Emerging Zoonotic and Infectious Diseases (U.S.); National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention (U.S.); National Center for Immunization and Respiratory Diseases (U.S.). Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [CrossRef] [Green Version]
- MacLean, D.; Jones, J.D.; Studholme, D.J. Application of’next-generation’sequencing technologies to microbial genetics. Nat. Rev. Microbiol. 2009, 7, 287. [Google Scholar] [CrossRef]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Commensal Escherichia coli of healthy humans: A reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010, 59, 1331–1339. [Google Scholar] [CrossRef]
- Catry, B.; Cavaleri, M.; Baptiste, K.; Grave, K.; Grein, K.; Holm, A.; Jukes, H.; Liebana, E.; Navas, A.L.; Mackay, D. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): Development of resistance in animals and possible impact on human and animal health. Int. J. Antimicrob. Agents 2015, 46, 297–306. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Zhou, Y.; Li, J.; Yin, W.; Wang, S.; Zhang, S.; Shen, J.; Shen, Z.; Wang, Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maciuca, I.E.; Cummins, M.L.; Cozma, A.P.; Rimbu, C.M.; Guguianu, E.; Panzaru, C.; Licker, M.; Szekely, E.; Flonta, M.; Djordjevic, S.P. Genetic features of mcr-1 mediated colistin resistance in CMY-2-producing Escherichia coli from Romanian poultry. Front. Microbiol. 2019, 10, 2267. [Google Scholar] [CrossRef]
- Matamoros, S.; Van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Vinh, T.N.; Hoa, N.T.; Bootsma, M.C.; Van Genderen, P.J. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zelendova, M.; Papagiannitsis, C.C.; Valcek, A.; Medvecky, M.; Bitar, I.; Hrabak, J.; Gelbicova, T.; Barakova, A.; Kutilova, I.; Karpiskova, R. Characterization of the Complete Nucleotide Sequences of mcr-1-Encoding Plasmids From Enterobacterales Isolates in Retailed Raw Meat Products From the Czech Republic. Front. Microbiol. 2021, 11, 3552. [Google Scholar] [CrossRef]
- Kroemer, S.; Galland, D.; Guérin-Faublée, V.; Giboin, H.; Woehrlé-Fontaine, F. Survey of marbofloxacin susceptibility of bacteria isolated from cattle with respiratory disease and mastitis in Europe. Vet. Rec. 2012, 170, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Nordmann, P. Emerging plasmid-encoded colistin resistance: The animal world as the culprit? J. Antimicrob. Chemother. 2016, 71, 2326–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trung, N.V.; Matamoros, S.; Carrique-Mas, J.J.; Nghia, N.H.; Nhung, N.T.; Chieu, T.T.B.; Mai, H.H.; van Rooijen, W.; Campbell, J.; Wagenaar, J.A. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerg. Infect. Dis. 2017, 23, 529. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The C lermont E scherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Ehricht, R.; Mafura, M.; Stokes, M.; Smith, N.; Pritchard, G.C.; Woodward, M.J. Escherichia coli isolates from extraintestinal organs of livestock animals harbour diverse virulence genes and belong to multiple genetic lineages. Vet. Microbiol. 2012, 160, 197–206. [Google Scholar] [CrossRef]
- Irino, K.; Kato, M.; Vaz, T.; Ramos, I.; Souza, M.; Cruz, A.; Gomes, T.; Vieira, M.; Guth, B. Serotypes and virulence markers of Shiga toxin-producing Escherichia coli (STEC) isolated from dairy cattle in São Paulo State, Brazil. Vet. Microbiol. 2005, 105, 29–36. [Google Scholar] [CrossRef]
- Nyholm, O.; Heinikainen, S.; Pelkonen, S.; Hallanvuo, S.; Haukka, K.; Siitonen, A. Hybrids of Shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) among human and animal isolates in Finland. Zoonoses Public Health 2015, 62, 518–524. [Google Scholar] [CrossRef]
- De Toni, F.; De Souza, E.; Pedrosa, F.; Klassen, G.; Irino, K.; Un Rigo, L.; Steffens, M.; Fialho, O.; Farah, S.; Fadel-Picheth, C. A prospective study on Shiga toxin-producing Escherichia coli in children with diarrhoea in Paraná State, Brazil. Lett. Appl. Microbiol. 2009, 48, 645–647. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Amore, G.; Beloeil, P.A.; Bocca, V.; Boelaert, F.; Gibin, D.; Papanikolaou, A.; Rizz, V.; Stoicescu, A.V. Zoonoses, Antimicrobial Resistance and Food-Borne Outbreaks Guidance for Reporting 2020 Data; Wiley Online Library: Hoboken, NJ, USA, 2021; p. 1792E. [Google Scholar]
- Ren, C.-P.; Chaudhuri, R.R.; Fivian, A.; Bailey, C.M.; Antonio, M.; Barnes, W.M.; Pallen, M.J. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J. Bacteriol. 2004, 186, 3547–3560. [Google Scholar] [CrossRef] [Green Version]
- Fox, S.; Goswami, C.; Holden, M.; Connolly, J.P.; Mordue, J.; O’Boyle, N.; Roe, A.; Connor, M.; Leanord, A.; Evans, T.J. A highly conserved complete accessory Escherichia coli type III secretion system 2 is widespread in bloodstream isolates of the ST69 lineage. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Wannemuehler, Y.M.; Nolan, L.K. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2360–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keane, O.M. Genetic diversity, the virulence gene profile and antimicrobial resistance of clinical mastitis-associated Escherichia coli. Res. Microbiol. 2016, 167, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Roussel, P.; Porcherie, A.; Répérant-Ferter, M.; Cunha, P.; Gitton, C.; Rainard, P.; Germon, P. Escherichia coli mastitis strains: In vitro phenotypes and severity of infection in vivo. PLoS ONE 2017, 12, e0178285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schureck, M.A.; Repack, A.; Miles, S.J.; Marquez, J.; Dunham, C.M. Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res. 2016, 44, 7944–7953. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Brodersen, D.E.; Mitarai, N.; Gerdes, K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol. Cell 2018, 70, 768–784. [Google Scholar] [CrossRef] [Green Version]
- Kormutakova, R.; Klucar, L.; Turna, J. DNA sequence analysis of the tellurite-resistance determinant from clinical strain of Escherichia coli and identification of essential genes. Biometals 2000, 13, 135–139. [Google Scholar] [CrossRef]
- Snesrud, E.; McGann, P.; Chandler, M. The birth and demise of the IS Apl1-mcr-1-IS Apl1 composite transposon: The vehicle for transferable colistin resistance. MBio 2018, 9, e02381-02317. [Google Scholar] [CrossRef] [Green Version]
- Snesrud, E.; Ong, A.C.; Corey, B.; Kwak, Y.I.; Clifford, R.; Gleeson, T.; Wood, S.; Whitman, T.J.; Lesho, E.P.; Hinkle, M. Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active IS Apl1 transposon. Antimicrob. Agents Chemother. 2017, 61, e00056-00017. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.V.; Harhay, G.P.; Bono, J.L.; Smith, T.P.; Harhay, D.M. Genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding increased protein quality control mechanisms. Msystems 2017, 2, e00190-00116. [Google Scholar] [CrossRef] [Green Version]
- Alghoribi, M.F.; Doumith, M.; Upton, M.; Al Johani, S.M.; Alzayer, M.; Woodford, N.; Ellington, M.J.; Balkhy, H.H. Complete Genome Sequence of a Colistin-Resistant Uropathogenic Escherichia coli Sequence Type 131 fimH 22 Strain Harboring mcr-1 on an IncHI2 Plasmid, Isolated in Riyadh, Saudi Arabia. Microbiol. Resour. Announc. 2019, 8, e00104–e00119. [Google Scholar] [CrossRef] [Green Version]
- Forde, B.M.; Zowawi, H.M.; Harris, P.N.; Roberts, L.; Ibrahim, E.; Shaikh, N.; Deshmukh, A.; Sid Ahmed, M.A.; Al Maslamani, M.; Cottrell, K. Discovery of mcr-1-Mediated colistin resistance in a highly Virulent Escherichia coli Lineage. mSphere 2018, 3, e00486-00418. [Google Scholar] [CrossRef] [Green Version]
- El Garch, F.; Sauget, M.; Hocquet, D.; LeChaudee, D.; Woehrle, F.; Bertrand, X. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clin. Microbiol. Infect. 2017, 23, 51.e1–51.e4. [Google Scholar] [CrossRef] [Green Version]
- Haenni, M.; Poirel, L.; Kieffer, N.; Châtre, P.; Saras, E.; Métayer, V.; Dumoulin, R.; Nordmann, P.; Madec, J.-Y. Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids. Lancet Infect. Dis. 2016, 16, 281–282. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Xie, M.; Zhang, J.; Yang, Z.; Liu, L.; Liu, X.; Zheng, Z.; Chan, E.W.-C.; Chen, S. Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. J. Antimicrob. Chemother. 2017, 72, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Fang, T.; Zhou, X.; Zhang, D.; Shi, X.; Shi, C. IncHI2 plasmids are predominant in antibiotic-resistant Salmonella isolates. Front. Microbiol. 2016, 7, 1566. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, M.; Spiller, O.B.; Andrey, D.O.; Hinchliffe, P.; Li, H.; MacLean, C.; Niumsup, P.; Powell, L.; Pritchard, M. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Miao, M.; Yan, J.; Wang, M.; Tang, Y.-W.; Kreiswirth, B.N.; Zhang, X.; Chen, L.; Du, H. Expression characteristics of the plasmid-borne mcr-1 colistin resistance gene. Oncotarget 2017, 8, 107596. [Google Scholar] [CrossRef]
- Sun, S.; Negrea, A.; Rhen, M.; Andersson, D.I. Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 2009, 53, 2298–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourrel, A.S.; Poirel, L.; Royer, G.; Darty, M.; Vuillemin, X.; Kieffer, N.; Clermont, O.; Denamur, E.; Nordmann, P.; Decousser, J.-W. Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. J. Antimicrob. Chemother. 2019, 74, 1521–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, M.-D.; Nhu, N.T.K.; Achard, M.E.; Forde, B.M.; Hong, K.W.; Chong, T.M.; Yin, W.-F.; Chan, K.-G.; West, N.P.; Walker, M.J. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli. J. Antimicrob. Chemother. 2017, 72, 2729–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbelle, N.M.; Feldman, C.; Sekyere, J.O.; Maningi, N.E.; Modipane, L.; Essack, S.Y. The resistome, mobilome, virulome and phylogenomics of multidrug-resistant Escherichia coli clinical isolates from Pretoria, South Africa. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Luo, Q.; Yu, W.; Zhou, K.; Guo, L.; Shen, P.; Lu, H.; Huang, C.; Xu, H.; Xu, S.; Xiao, Y. Molecular epidemiology and colistin resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front. Microbiol. 2017, 8, 2262. [Google Scholar] [CrossRef]
- Wüthrich, D.; Brilhante, M.; Hausherr, A.; Becker, J.; Meylan, M.; Perreten, V. A novel trimethoprim resistance gene, dfrA36, characterized from Escherichia coli from calves. mSphere 2019, 4, e00255-19. [Google Scholar] [CrossRef] [Green Version]
- Baron, S.; Jouy, E.; Touzain, F.; Bougeard, S.; Larvor, E.; de Boisseson, C.; Amelot, M.; Keita, A.; Kempf, I. Impact of the administration of a third-generation cephalosporin (3GC) to one-day-old chicks on the persistence of 3GC-resistant Escherichia coli in intestinal flora: An in vivo experiment. Vet. Microbiol. 2016, 185, 29–33. [Google Scholar] [CrossRef]
- Abraham, S.; Kirkwood, R.N.; Laird, T.; Saputra, S.; Mitchell, T.; Singh, M.; Linn, B.; Abraham, R.J.; Pang, S.; Gordon, D.M. Dissemination and persistence of extended-spectrum cephalosporin-resistance encoding IncI1-bla CTXM-1 plasmid among Escherichia coli in pigs. ISME J. 2018, 12, 2352–2362. [Google Scholar] [CrossRef] [Green Version]
- Venturini, C.; Hassan, K.A.; Roy Chowdhury, P.; Paulsen, I.T.; Walker, M.J.; Djordjevic, S.P. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS 26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts. PLoS ONE 2013, 8, e78862. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.H.; Tuckman, M.; Murphy, E.; Bradford, P.A. Identification and sequence of a tet (M) tetracycline resistance determinant homologue in clinical isolates of Escherichia coli. J. Bacteriol. 2006, 188, 7151–7164. [Google Scholar] [CrossRef] [Green Version]
- Staehlin, B.M.; Gibbons, J.G.; Rokas, A.; O’Halloran, T.V.; Slot, J.C. Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in enterobacteria. Genome Biol. Evol. 2016, 8, 811–826. [Google Scholar] [CrossRef] [Green Version]
- Marti, R.; Muniesa, M.; Schmid, M.; Ahrens, C.H.; Naskova, J.; Hummerjohann, J. Heat-resistant Escherichia coli as potential persistent reservoir of extended-spectrum β-lactamases and Shiga toxin-encoding phages in dairy. J. Dairy Sci. 2016, 99, 8622–8632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Lynne, A.M.; David, D.E.; Tang, H.; Xu, J.; Nayak, R.; Kaldhone, P.; Logue, C.M.; Foley, S.L. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates. PLoS ONE 2012, 7, e51160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, A.W.; Power, A.; Hansen, M.; Brandt, K.; Piliposian, G.; Appleby, P.; O’neill, P.; Jones, R.; Sierocinski, P.; Koskella, B. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environ. Int. 2019, 132, 105117. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Hugie, C.N.; Kile, M.L.; Navab-Daneshmand, T. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Front. Environ. Sci. Eng. 2019, 13, 1–17. [Google Scholar] [CrossRef]
- Mellata, M.; Touchman, J.W.; Curtiss, R., III. Full Sequence and Comparative Analysis of the Plasmid pAPEC-1 of Avian Pathogenic E. coli χ7122 (O78∶ K80∶ H9). PLoS ONE 2009, 4, e4232. [Google Scholar] [CrossRef] [Green Version]
- Moran, R.A.; Hall, R.M. Evolution of regions containing antibiotic resistance genes in FII-2-FIB-1 ColV-Colla virulence plasmids. Microb. Drug Resist. 2018, 24, 411–421. [Google Scholar] [CrossRef]
- Sabri, M.; Leveille, S.; Dozois, C.M. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 2006, 152, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, M.; Stork, M. Plasmid-encoded iron uptake systems. Microbiol. Spectr. 2014, 2, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Waters, V.L.; Crosa, J.H. Colicin V virulence plasmids. Microbiol. Rev. 1991, 55, 437–450. [Google Scholar] [CrossRef]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S. Escherichia coli ST131-H 22 as a Foodborne Uropathogen. mBio 2018, 9, e00470-18. [Google Scholar] [CrossRef] [Green Version]
- Wallden, K.; Rivera-Calzada, A.; Waksman, G. Microreview: Type IV secretion systems: Versatility and diversity in function. Cell. Microbiol. 2010, 12, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, R.G.; Walter, S.; McClelland, M.; Schmidt, C.; Steglich, M.; Prager, R.; Bender, J.K.; Fuchs, S.; Schoerner, C.; Rabsch, W. Comparative whole genome analysis of three consecutive Salmonella diarizonae isolates. Int. J. Med. Microbiol. 2017, 307, 542–551. [Google Scholar] [CrossRef]
- Johnson, T.J.; Bielak, E.M.; Fortini, D.; Hansen, L.H.; Hasman, H.; Debroy, C.; Nolan, L.K.; Carattoli, A. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012, 68, 43–50. [Google Scholar] [CrossRef]
- Stokes, M.; Abuoun, M.; Umur, S.; Wu, G.; Partridge, S.; Mevius, D.; Coldham, N.; Fielder, M. Complete sequence of pSAM7, an IncX4 plasmid carrying a novel bla CTX-M-14b transposition unit isolated from Escherichia coli and Enterobacter cloacae from cattle. Antimicrob. Agents Chemother. 2013, 57, 4590–4594. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Li, X.; Niu, B.; Zhang, Z.; Malakar, P.K.; Liu, H.; Pan, Y.; Zhao, Y. A mcr-1-carrying conjugative IncX4 plasmid in colistin-resistant Escherichia coli ST278 strain isolated from dairy cow feces in Shanghai, China. Front. Microbiol. 2018, 9, 2833. [Google Scholar] [CrossRef] [Green Version]
- Anes, J.; Nguyen, S.V.; Eshwar, A.K.; McCabe, E.; Macori, G.; Hurley, D.; Lehner, A.; Fanning, S. Molecular characterisation of multi-drug resistant Escherichia coli of bovine origin. Vet. Microbiol. 2020, 242, 108566. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; Achtman, M.; Brown, D.; Chattaway, M.; Dallman, T.; Delahay, R.; Kornschober, C. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.J. Large-scale neighbor-joining with NINJA. In Proceedings of the International Workshop on Algorithms in Bioinformatics, Philadelphia, PA, USA, 12–13 September 2009; pp. 375–389. [Google Scholar]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Lakin, S.M.; Dean, C.; Noyes, N.R.; Dettenwanger, A.; Ross, A.S.; Doster, E.; Rovira, P.; Abdo, Z.; Jones, K.L.; Ruiz, J. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2017, 45, D574–D580. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galata, V.; Fehlmann, T.; Backes, C.; Keller, A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 2019, 47, D195–D202. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31th ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2021. [Google Scholar]
Strain Id | Clermont Type | Serotype Prediction | Shiga-Toxin Genes |
---|---|---|---|
CFS3373 | B1 | O88:H25 | stx1A/stx1vB |
CFS3248 | E | O121:H15 | n.d. |
CFS3294 | B1 | O45:H16 | n.d. |
Isolate | Plasmid | Accession | Size (bp) | Plasmid Type | β β-Lactamase(s) | Other Resistance Genes | Toxin/ Antitoxin Family |
---|---|---|---|---|---|---|---|
CFS3246 | pCFS3246-1 | CP026930 | 129,230 | IncFIB/IncFII | TEM-1B | aph(3′′)-Ib, aph(6)-Id | VapB/sta1 |
pCFS3246-2 | CP026931 | 62,471 | IncFII | n.d. 1 | n.d. | HokB/YafN | |
pCFS3246-3 | CP053652 | 5279 | ColRNAI_1 | n.d. | n.d. | n.d. | |
CFS3273 | pCFS3273-1 | CP026933 | 268,665 | IncHI2/ IncHI2A/IncQ1 | TEM-1A | aac(3)-IIa, aadA1 (2X), aadA2b, aph(3′)-Ia, aph(3′′)-Ib (2X), aph(6)-Id (2X), catA1, cmlA1, dfrA1, mcr-1.1, sul1, sul2, sul3, tet(A) | HipB/HigB-1/HokB |
pCFS3273-2 | CP026934 | 145,001 | IncFIA/IncFIB/ IncFII | TEM-1B | aph(3′′)-Ib, aph(3′)-Ia, aph(6)-Id, sul2, tet(B) | Type II CcdA/CcdB/VapB/RelE2 | |
pCFS3273-3 | CP053653 | 6648 | ColRNAI_1 | n.d. | n.d. | n.d. | |
CFS3292 | pCFS3292-1 | CP026936 | 192,449 | IncHI2/IncHI2A | aadA1, dfrA1, mcr-1.1, sul1, tet(A), tet(M) | Type II (HigB/HigA) | |
pCFS3292-2 | CP026937 | 131,954 | IncFIB/IncQ1 | TEM-1A | aac(3)-IIa, aadA1, aph(3′′)-Ib (2X), aph(3′)-Ia, aph(6)-Id (2X), dfrA1, sul1, sul2 | yafN/PemI | |
pCFS3292-3 | CP026938 | 99,789 | p0111_1 | n.d. | n.d. | doc | |
CFS3313 | pCFS3313-1 | CP026940 | 155,171 | IncFIB/IncFII /IncQ1 | TEM-1B | aph(3′′)-Ib, aph(6)-Id, dfrA5, sul2, tet(A) | relE2/apxIB/tdeA |
pCFS3313-2 | CP026941 | 111,822 | IncI1-I | CTX-M-1 | sul2, tet(A) | relE2/tcpT/tcpE | |
pCFS3313-3 | CP026942 | 31,764 | IncX4_1 | n.d. | n.d. | n.d. | |
pCFS3313-4 | CP053654 | 3499 | ColRNAI_1? | n.d. | n.d. | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macori, G.; Nguyen, S.V.; Naithani, A.; Hurley, D.; Bai, L.; El Garch, F.; Woehrlé, F.; Miossec, C.; Roques, B.; O’Gaora, P.; et al. Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics 2021, 10, 1041. https://doi.org/10.3390/antibiotics10091041
Macori G, Nguyen SV, Naithani A, Hurley D, Bai L, El Garch F, Woehrlé F, Miossec C, Roques B, O’Gaora P, et al. Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics. 2021; 10(9):1041. https://doi.org/10.3390/antibiotics10091041
Chicago/Turabian StyleMacori, Guerrino, Scott V. Nguyen, Ankita Naithani, Daniel Hurley, Li Bai, Farid El Garch, Frédérique Woehrlé, Christine Miossec, Benjamin Roques, Peadar O’Gaora, and et al. 2021. "Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection" Antibiotics 10, no. 9: 1041. https://doi.org/10.3390/antibiotics10091041
APA StyleMacori, G., Nguyen, S. V., Naithani, A., Hurley, D., Bai, L., El Garch, F., Woehrlé, F., Miossec, C., Roques, B., O’Gaora, P., Bono, J. L., & Fanning, S. (2021). Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics, 10(9), 1041. https://doi.org/10.3390/antibiotics10091041