Genetic Characterization of the Tetracycline-Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterization
2.2. Bacterial Identification
2.3. Minimum Inhibitory Concentrations (MICs)
2.4. Molecular Analysis of tet(X)
3. Discussion
3.1. Bacterial Identification
3.2. Detection of tet(X) Genes
3.3. Molecular Analysis of tet(X)
4. Materials and Methods
4.1. Bacterial Strains
4.2. Phenotypic Characterization
4.3. Bacterial DNA Extraction and Sequencing
4.4. Bacterial Identification
4.5. MICs
4.6. Molecular Analysis of tet(X) Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Avendaño-Herrera, R.; Houel, A.; Irgang, R.; Bernardet, J.F.; Godoy, M.; Nicolas, P.; Duchaud, E. Introduction, expansion and coexistence of epidemic Flavobacterium psychrophilum lineages in Chilean fish farms. Vet. Microbiol. 2014, 170, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Herrera, R. Proper antibiotics use in the Chilean salmon industry: Policy and technology bottlenecks. Aquaculture 2018, 495, 803–805. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- SERNAPESCA. Informe sobre Uso de Antimicrobianos en la Salmonicultura Nacional Año 2020; Servicio Nacional de Pesca y Acuicultura: Valparaíso, Chile, 2021; 11p. Available online: http://www.sernapesca.cl/sites/default/files/informe_atb_2020.pdf (accessed on 20 April 2021).
- Roberts, M.C.; Schwarz, S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. J. Environ. Qual. 2016, 45, 576–592. [Google Scholar] [CrossRef]
- Miranda, C.D. Antimicrobial resistance in salmonid farming. In Antimicrobial Resistance in the Environment; Keen, P.L., Montforts, M.H.M.M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; Chapter 22; pp. 423–451. [Google Scholar]
- Bueno, I.; Travis, D.; González-Rocha, G.; Alvarez, J.; Lima, C.; Benitez, C.G.; Phelps, N.B.D.; Wass, B.; Johnson, T.J.; Zhang, Q.; et al. Antibiotic resistance genes in freshwater trout farms in a watershed in Chile. J. Environ. Qual. 2019, 48, 1462–1471. [Google Scholar] [CrossRef]
- Miranda, C.D.; Zemelman, R. Antimicrobial multiresistance in bacteria from freshwater Chilean salmon farms. Sci. Total Environ. 2002, 293, 207–218. [Google Scholar] [CrossRef]
- Miranda, C.D.; Zemelman, R. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 2002, 212, 31–47. [Google Scholar] [CrossRef]
- Miranda, C.D.; Kehrenberg, C.; Ulep, C.; Schwarz, S.; Roberts, M.C. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 2003, 47, 883–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.C.; No, D.; Kuchmiy, E.; Miranda, C.D. Tetracycline resistance gene tet(39) identified in three new genera of bacteria isolated in 1999 from Chilean salmon farms. J. Antimicrob. Chemother. 2015, 70, 619–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Moore, I.F.; Koteva, K.P.; Bareich, D.C.; Hughes, D.W.; Wright, G.D. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 2004, 279, 52346–52352. [Google Scholar] [CrossRef] [Green Version]
- Volkers, G.; Palm, G.J.; Weiss, M.S.; Wright, G.D.; Hinrichs, W. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 2011, 585, 1061–1066. [Google Scholar] [CrossRef]
- Roberts, M.C. Mechanisms of bacterial antibiotic resistance and lessons learned from environmental tetracycline-resistant bacteria. In Antimicrobial Resistance in the Environment; Keen, P.L., Montforts, M.H., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 93–121. [Google Scholar]
- Fang, L.-X.; Chen, C.; Cui, C.-Y.; Li, X.-P.; Zhang, Y.; Liao, X.-P.; Sun, J.; Liu, Y.-H. Emerging High-Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X). BioEssays 2020, 42, 2000014. [Google Scholar] [CrossRef] [PubMed]
- Verner-Jeffreys, D.W.; Brazier, T.; Perez, R.Y.; Ryder, D.; Card, R.M.; Welch, T.J.; Hoare, R.; Ngo, T.; McLaren, N.; Ellis, R.; et al. Detection of the florfenicol resistance gene floR in Chryseobacterium isolates from rainbow trout. Exception to the general rule? FEMS Microbiol. Ecol. 2017, 93, fix015. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.J. The Family Flavobacteriaceae. In The Prokaryotes: Other Major Lineages of Bacteria and the Archaea; Rosenberg, E., Scheleifer, K.H., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 643–676. [Google Scholar]
- O’Sullivan, L.A.; Rinna, J.; Humphreys, G.; Weightman, A.J.; Fry, J.C. Culturable phylogenetic diversity of the phylum “Bacteroidetes” from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ayala, M.; Segovia, C.; Rojas, R.; Miranda, C.; Santander, J. Draft genome sequence of Epilithonimonas sp. FP211-J200, isolated from an outbreak episode on a rainbow trout (Oncorhynchus mykiss) farm. Genome Announc. 2017, 5, e00819-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakéd, T.; Hantsis-Zacharov, E.; Halpern, M. Epilithonimonas lactis sp. nov., isolated from raw cow’s milk. Int. J. Syst. Evol. Microbiol. 2010, 60, 675–679. [Google Scholar] [CrossRef] [Green Version]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated from Aquatic Animals, 3rd ed.; CLSI supplement VET04; CLSI Standards Centre: Wayne, PA, USA, 2020. [Google Scholar]
- Oh, W.T.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Han, S.J.; Kwon, J.; Park, S.C. Isolation of Chryseobacterium siluri sp. nov., from liver of diseased catfish (Silurus asotus). Heliyon 2020, 6, e03454. [Google Scholar] [CrossRef]
- Kang, D.; Shoaie, S.; Jacquiod, S.; Sørensen, S.J.; Ledesma-Amaro, R. Comparative Genomics Analysis of Keratin-Degrading Chryseobacterium Species Reveals Their Keratinolytic Potential for Secondary Metabolite Production. Microorganisms 2021, 9, 1042. [Google Scholar] [CrossRef] [PubMed]
- Zamora, L.; Fernández-Garayzábal, J.F.; Palacios, M.A.; Sánchez-Porro, C.; Svensson-Stadler, L.A.; Domínguez, L.; Moore, E.R.; Ventosa, A.; Vela, A.I. Chryseobacterium oncorhynchi sp. nov., isolated from rainbow trout (Oncorhynchus mykiss). Syst. Appl. Microbiol. 2012, 35, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-J.; Lee, Y.J.; Pathiraja, D.; Park, B.; Choi, I.-G.; Kim, K.D. Draft genome sequences of Chryseobacterium lactis NCTC11390T isolated from milk, Chryseobacterium oncorhynchi 701B-08T from rainbow trout, and Chryseobacterium viscerum 687B-08T from diseased fish. Genome Announc. 2018, 6, e00628-18. [Google Scholar] [CrossRef] [Green Version]
- Saticioglu, I.B.; Ay, H.; Altun, S.; Duman, M.; Sahin, N. Flavobacterium turcicum sp. nov. and Flavobacterium kayseriense sp. nov. isolated from farmed rainbow trout in Turkey. Syst. Appl. Microbiol. 2021, 44, 126186. [Google Scholar] [CrossRef] [PubMed]
- Zamora, L.; Fernandez-Garayzabal, J.F.; Sanchez-Porro, C.; Palacios, M.A.; Moore, E.R.; Domínguez, L.; Ventosa, A.; Vela, A.I. Flavobacterium plurextorum sp. nov. Isolated from Farmed Rainbow Trout (Oncorhynchus mykiss). PLoS ONE 2013, 8, e67741. [Google Scholar] [CrossRef]
- Stine, C.B.; Li, C.; Crosby, T.C.; Hasbrouck, N.R.; Lam, C.; Tadesse, D.A. Draft whole genome sequences of 18 Flavobacterium spp. Genome Announc. 2017, 5, e00865-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardet, J.F. Cytophaga, Flavobacterium, Flexibacter and Chryseobacterium infections in cultured marine fish. Fish Pathol. 1998, 33, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Loch, T.P.; Faisal, M. Emerging flavobacterial infections in fish: A review. J. Adv. Res. 2015, 6, 283–300. [Google Scholar] [CrossRef]
- Zamora, L.; Vela, A.I.; Palacios, M.A.; Sánchez-Porro, C.; Svensson-Stadler, L.A.; Domínguez, L.; Moore, E.R.B.; Ventosa, A.; Fernández-Garayzábal, J.F. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int. J. Syst. Evol. Microbiol. 2012, 62, 2934–2940. [Google Scholar] [CrossRef] [Green Version]
- Zamora, L.; Vela, A.I.; Palacios, M.A.; Domínguez, L.; Fernández-Garayzábal, J.F. First isolation and characterization of Chryseobacterium shigense from rainbow trout. BMC Vet. Res. 2012, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Kämpfer, P.; Fallschissel, K.; Avendano-Herrera, R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int. J. Syst. Evol. Microbiol. 2011, 61, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, P.; Fernandez, J.; Avendaño-Herrera, R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int. J. Syst. Evol. Microbiol. 2009, 59, 3001–3005. [Google Scholar] [CrossRef] [Green Version]
- Ilardi, P.; Avendaño-Herrera, R. Isolation of Flavobacterium-like bacteria from diseased salmonids cultured in Chile. Bull. Eur. Assoc. Fish Pathol. 2008, 28, 176–185. [Google Scholar]
- Bernardet, J.-F. Family I: Flavobacteriaceae. In Bergey’s Manual of Systematic Bacteriology; Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., Whitman, W.B., Eds.; Springer: New York, NY, USA, 2011; Volume 4, pp. 106–314. [Google Scholar]
- Nicholson, A.C.; Gulvik, C.A.; Whitney, A.M.; Humrighouse, B.W.; Bell, M.E.; Holmes, B.; Steigerwalt, A.G.; Villarma, A.; Sheth, M.; Batra, D.; et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int. J. Syst. Evol. Microbiol. 2020, 70, 4432–4450. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.-K.; Luo, H.-Y.; Liu, M.-F.; Zhao, X.-X.; Jia, R.-Y.; Chen, S.; Sun, K.-F.; Yang, Q.; Wu, Y.; Chen, X.-Y.; et al. Various Profiles of tet Genes Addition to tet(X) in Riemerella anatipestifer Isolates from Ducks in China. Front. Microbiol. 2018, 9, 585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Liu, Z.; Peng, K.; Liu, Y.; Xiao, X.; Wang, Z. Co-occurrence of tet(X) variants in an Empedobacter brevis of shrimp origin. Antimicrob. Agents Chemother. 2019, 63, e01636. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Liu, Y.; Guo, Y.; Zhou, Y.; Xiao, T.; Zhang, S.; Xu, H.; Chen, Y.; Shan, T.; et al. Identification of novel tetracycline resistance gene tet(X14) and its co-occurrence with tet(X2) in a tigecycline-resistant and colistin-resistant Empedobacter stercoris. Emerg. Microb. Infect. 2020, 9, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Dong, N.; Zhang, R.; Liu, C.; Sun, Q.; Lu, J.; Shu, L.; Cheng, Q.; Chan, W.-C.E.; Chen, S. Emergence of an Empedobacter falsenii strain harbouring a tet(X)-variant-bearing novel plasmid conferring resistance to tigecycline. J. Antimicrob. Chemother. 2020, 75, 531–536. [Google Scholar] [CrossRef]
- Umar, Z.; Chen, Q.; Tang, B.; Xu, Y.; Wang, J.; Zhang, H.; Ji, K.; Feng, Y. The poultry pathogen Riemerella anatipestifer appears as a reservoir for Tet(X) tigecycline resistance. Environ. Microbiol. 2021. [Google Scholar] [CrossRef]
- Zhang, R.; Dong, N.; Shen, Z.; Zeng, Y.; Lu, J.; Liu, C.; Zhou, H.; Hu, Y.; Sun, Q.; Cheng, Q.; et al. Epidemiological and phylogenetic analysis reveals Flavobacteriaceae as potential ancestral source of tigecycline resistance gene tet(X). Nat. Commun. 2020, 11, 4648. [Google Scholar] [CrossRef]
- Seyfried, E.E.; Newton, R.J.; Rubert, K.F., IV; Pedersen, J.A.; McMahon, K.D. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb. Ecol. 2010, 59, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.; Wu, X.; Yan, Q.; Ma, Y.; Huang, L.; Qin, Y.; Xu, X. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds. Dis. Aquat. Org. 2016, 120, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, M.; Karkman, A.; Lõhmus, A.; Muziasari, W.I.; Takasu, H.; Wada, S.; Suzuki, S.; Virta, M. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ. Sci. Technol. 2010, 45, 386–391. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Pitkänen, L.K.; Sørum, H.; Stedtfeld, R.D.; Tiedje, J.M.; Virta, M. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic sea fish farms. Front. Microbiol. 2017, 7, 2137. [Google Scholar] [CrossRef] [PubMed]
- Saticioglu, I.B.; Duman, M.; Altun, S. Genome analysis and antimicrobial resistance characteristics of Chryseobacterium aquaticum isolated from farmed salmonids. Aquaculture 2021, 535, 736364. [Google Scholar] [CrossRef]
- He, T.; Wang, R.; Liu, D.; Walsh, T.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Markley, J.; Kumar, H.; Wang, B.; Fang, L.; Irum, S.; Symister, C.; Wallace, M.; Burnham, C.; Andleeb, S.; et al. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Communic. Biol. 2020, 3, 241. [Google Scholar] [CrossRef] [PubMed]
- Speer, B.; Bedzyk, L.; Salyers, A. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J. Bacteriol. 1991, 173, 176–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminov, R. Acquisition and Spread of Antimicrobial Resistance: A tet(X) Case Study. Int. J. Mol. Sci. 2021, 22, 3905. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.D.; LaFrentz, B.R. Laboratory maintenance of Flavobacterium psychrophilum and Flavobacterium columnare. Curr. Protoc. Microbiol. 2007, 6, 13B.1.1–13B.1.12. [Google Scholar] [CrossRef] [PubMed]
- Buller, N.B. Bacteriological Culture Techniques: Microscopy, Culture and Identification. In Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual, 1st ed.; Buller, N.B., Ed.; CABI Publishing: Cambridge, MA, USA, 2004; pp. 83–116. [Google Scholar]
- Bernardet, J.-F.; Nakagawa, Y.; Holmes, B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 2002, 52, 1049–1070. [Google Scholar] [CrossRef]
- Barrow, G.I.; Feltham, R.K.A. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed.; Cambridge University Press: Cambridge, UK, 1993; 331p. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- CLSI (Clinical and Laboratory Standards Institute). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 10th ed.; Approved Standard M07-A10; CLSI Standards Centre: Wayne, PA, USA, 2015. [Google Scholar]
- Concha, C.; Miranda, C.D.; Hurtado, L.; Romero, J. Characterization of Mechanisms Lowering Susceptibility to Flumequine among Bacteria Isolated from Chilean Salmonid Farms. Microorganisms 2019, 7, 698. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Prot. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Enzyme | Activity | |
---|---|---|
FP105 | FP211-J200 | |
Control | Negative | Negative |
Alkaline phosphatase | Positive | Positive |
Esterase (C4) | Positive | Positive |
Esterase lipase (C8) | Positive | Positive |
Lipase (C14) | Negative | Positive |
Leucine arylamidase | Positive | Positive |
Valine arylamidase | Positive | Positive |
Cystine arylamidase | Negative | Positive |
Trypsin | Negative | Negative |
α-chymotrypsin | Negative | Negative |
Acid phosphatase | Positive | Positive |
Naphthol-AS-BI-phosphohydrolase | Positive | Positive |
α-galactosidase | Negative | Negative |
β-galactosidase | Negative | Negative |
β-glucoronidase | Negative | Negative |
α-glucosidase | Negative | Negative |
β-glucosidase | Negative | Negative |
N-acetyl-β-glucosaminidase | Negative | Negative |
α-mannosidase | Negative | Negative |
α-fucosidase | Negative | Negative |
Strain | Percentage of Nucleotide/Amino Acid Similarity * (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | FP105 | FP211-J200 | SNU WT5 | SNU WT7 | MOF25P | BGARF1 | C2 | 701B-08 | F-47 | F-380 | CCGU | |
Control | 100/100 | 99.83/99.48 | 99.83/99.48 | 99.83/99.48 | 99.83/99.48 | 86.00/83.20 | 86.00/83.20 | 85.91/83.20 | 85.82/83.20 | 83.59/82.69 | 83.59/82.69 | 83.76/83.20 |
FP105 | 100/100 | 100/100 | 100/100 | 100/100 | 87.25/84.66 | 87.25/84.66 | 87.16/84.66 | 87.07/84.66 | 84.78/84.13 | 84.78/84.13 | 84.96/84.66 | |
FP211-J200 | 100/100 | 100/100 | 100/100 | 87.25/84.66 | 87.25/84.66 | 87.16/84.66 | 87.07/84.66 | 84.78/84.13 | 84.78/84.13 | 84.96/84.66 | ||
SNU WT5 | 100/100 | 100/100 | 87.25/84.66 | 87.25/84.66 | 87.16/84.66 | 87.07/84.66 | 84.78/84.13 | 84.78/84.13 | 84.96/84.66 | |||
SNU WT7 | 100/100 | 87.25/84.66 | 87.25/84.66 | 87.16/84.66 | 87.07/84.66 | 84.78/84.13 | 84.78/84.13 | 84.96/84.66 | ||||
MOF25P | 100/100 | 100/100 | 99.91/100 | 99.82/100 | 92.61/93.92 | 92.61/93.92 | 90.85/91.27 | |||||
BGARF1 | 100/100 | 99.91/100 | 99.82/100 | 92.61/93.92 | 92.61/93.92 | 90.85/91.27 | ||||||
C-2 | 100/100 | 99.91/100 | 92.52/93.92 | 92.52/93.92 | 90.77/91.27 | |||||||
701B-08 | 100/100 | 92.44/93.92 | 92.44/93.92 | 90.68/91.27 | ||||||||
F-47 | 100/100 | 100/100 | 92.00/92.06 | |||||||||
F-380 | 100/100 | 92.00/92.06 | ||||||||||
CCUG 60112 | 100/100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concha, C.; Miranda, C.D.; Santander, J.; Roberts, M.C. Genetic Characterization of the Tetracycline-Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile. Antibiotics 2021, 10, 1051. https://doi.org/10.3390/antibiotics10091051
Concha C, Miranda CD, Santander J, Roberts MC. Genetic Characterization of the Tetracycline-Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile. Antibiotics. 2021; 10(9):1051. https://doi.org/10.3390/antibiotics10091051
Chicago/Turabian StyleConcha, Christopher, Claudio D. Miranda, Javier Santander, and Marilyn C. Roberts. 2021. "Genetic Characterization of the Tetracycline-Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile" Antibiotics 10, no. 9: 1051. https://doi.org/10.3390/antibiotics10091051
APA StyleConcha, C., Miranda, C. D., Santander, J., & Roberts, M. C. (2021). Genetic Characterization of the Tetracycline-Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile. Antibiotics, 10(9), 1051. https://doi.org/10.3390/antibiotics10091051