Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design, Duration, Sampling and Isolation
4.2. Strain Identification, Colistin Resistance Screening and Phenotypic Detection of Carbapenemases
4.3. Molecular Characterization of ESBL Genes and Whole Genome Sequencing of ESBL-E. coli Isolates
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, N.; Davidson, I.; Yelling, P.; Collinson, A.; Pollard, A.; Johnson, L.; Gibson, N.; Taylor, J.; Wisner, K.; Gaze, W.; et al. Developing a local antimicrobial resistance action plan: The Cornwall One Health Antimicrobial Resistance Group. J. Antimicrob. Chemother. 2017, 72, 2661–2665. [Google Scholar] [CrossRef] [Green Version]
- Cantón, R.; Coque, T.M. The CTX-M beta-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Ikeda, F.; Kamimura, T.; Yokota, Y.; Mine, Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob. Agents Chemother. 1988, 32, 1243–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamang, M.D.; Nam, H.M.; Jang, G.C.; Kim, S.R.; Chae, M.H.; Jung, S.C.; Byun, J.W.; Park, Y.H.; Lim, S.K. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob. Agents Chemother. 2012, 56, 2705–2712. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Lee, H.; Lee, K.; Jeong, S.H.; Bae, I.K.; Kim, J.S.; Kwak, H.S. CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum beta-lactamase in clinical isolates of Escherichia coli from Korea. J. Med. Microbiol. 2009, 58, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Gundran, R.S.; Cardenio, P.A.; Villanueva, M.A.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Vet. Res. 2019, 15, 227. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, E.; Kreyenschmidt, J. ESKAPE bacteria and extended-spectrum-β-lactamase-producing Escherichia coli isolated from wastewater and process water from German poultry slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02748-19. [Google Scholar] [CrossRef] [Green Version]
- Cyoia, P.S.; Koga, V.L.; Nishio, E.K.; Houle, S.; Dozois, C.M.; Tagliari de Brito, K.C.; Guimarães de Brito, B.; Nakazato, G.; Kobayashi, R.K.T. Distribution of ExPEC virulence factors, blaCTX-M, fos A3, and mcr-1 in Escherichia coli isolated from commercialized chicken carcasses. Front. Microbiol. 2019, 9, 3254. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.B.; Seo, K.W.; Kim, Y.B.; Jeon, H.Y.; Lim, S.K.; Lee, Y.J. Molecular characteristics of extended-spectrum and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from commercial layer in Korea. Poult. Sci. 2019, 98, 949–956. [Google Scholar] [CrossRef]
- Lim, J.; Choi, D.; Kim, Y.; Chon, J.; Kim, H.; Park, H.; Moon, J.; Wee, S.; Seo, K. Characterization of Escherichia coli-producing extended-spectrum β-lactamase (ESBL) isolated from chicken slaughterhouses in South Korea. Foodborne Pathog. Dis. 2015, 12, 741–748. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.A.; Park, Y.S.; Choi, M.H.; Lee, G.I.; Lee, K. Risk factors and molecular features of sequence type (ST) 131 extended-spectrum β-Lactamase-producing Escherichia coli in community-onset bacteremia. Sci. Rep. 2017, 7, 14640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.A.; Kim, J.J.; Kim, H.; Lee, K. Community-onset extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 at two Korean community hospitals: The spread of multidrug-resistant E. coli to the community via healthcare facilities. Int. J. Infect. Dis. 2017, 54, 39–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.S.; Song, W.; Jeong, S.H. Molecular characteristics of NDM-5-producing Escherichia coli from a cat and a dog in South Korea. Microb. Drug. Resist. 2020, 26, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Belaynehe, K.M.; Shin, S.W.; Park, K.Y.; Jang, J.Y.; Won, H.G.; Yoon, I.J.; Yoo, H.S. Emergence of mcr-1 and mcr-3 variants coding for plasmid-mediated colistin resistance in Escherichia coli isolates from food-producing animals in South Korea. Int. J. Infect. Dis. 2018, 72, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.K.; Kang, H.Y.; Lee, K.; Moon, D.C.; Lee, H.S.; Jung, S.C. First detection of the mcr-1 gene in Escherichia coli isolated from livestock between 2013 and 2015 in South Korea. Antimicrob. Agents Chemother. 2016, 60, 6991–6993. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Roschanski, N.; Fischer, J.; Falgenhauer, L.; Pietsch, M.; Guenther, S.; Kreienbrock, L.; Chakraborty, T.; Pfeifer, Y.; Guerra, B.; Roesler, U.H. Retrospective analysis of bacterial cultures sampled in German chicken-fattening farms during the years 2011–2012 revealed additional VIM-1 carbapenemase-producing Escherichia coli and a serologically rough Salmonella enterica serovar Infantis. Front. Microbiol. 2018, 9, 538. [Google Scholar] [CrossRef]
- Alcántar-Curiel, M.D.; Fernández-Vázquez, J.L.; Toledano-Tableros, J.E.; Gayosso-Vázquez, C.; Jarillo-Quijada, M.D.; López-Álvarez, M.D.R.; Giono-Cerezo, S.; Santos-Preciadoet, J.I. Emergence of IncFIA plasmid-carrying blaNDM-1 among Klebsiella pneumoniae and Enterobacter cloacae isolates in a tertiary referral hospital in Mexico. Microb. Drug Resist. 2019, 25, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, R.A.; Poirel, L.; Carattoli, A.; Nordmann, P. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PLoS ONE 2012, 7, e34752. [Google Scholar] [CrossRef] [Green Version]
- Cerdeira, L.T.; Lam, M.M.C.; Wyres, K.L.; Wick, R.R.; Judd, L.M.; Lopes, R.; Ribas, R.M.; Morais, M.M.; Holt, K.E.; Lincopan, N. Small IncQ1 and Col-like plasmids harboring blaKPC-2 and Non-Tn4401 elements (NTEKPC-IId) in high-risk lineages of Klebsiella pneumoniae CG258. Antimicrob. Agents Chemother. 2019, 63, e02140–e02141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Lee, J.; Lee, H.; Nam, H.; Moon, D.; Jang, G.; Park, Y.; Jung, Y.; Jung, S.; Wee, S. Trends in antimicrobial sales for livestock and fisheries in Korea during 2003–2012. Kor. J. Veterinary. Res. 2014, 54, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Back, S.H.; Eom, H.S.; Lee, H.H.; Lee, G.Y.; Park, K.T.; Yang, S.J. Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: Antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. Vet. Sci. 2020, 21, e2. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI. Supplement M100; Clinical and Laboratory Standards Institute: Wyne, PA, USA, 2020. [Google Scholar]
- Lee, L.Y.; Korman, T.M.; Graham, M. Rapid time to results and high sensitivity of the CarbaNP test on early cultures. J. Clin. Microbiol. 2014, 52, 4023–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, V.M.; Simner, P.J.; Lonsway, D.R.; Roe-Carpenter, D.E.; Johnson, J.K.; Brasso, W.B.; Bobenchik, A.M.; Lockett, Z.C.; Charnot-Katsikas, A.; Ferraro, M.J.; et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 2321–2323. [Google Scholar] [CrossRef] [Green Version]
- Sidjabat, H.E.; Paterson, D.L.; Adams-Haduch, J.M.; Ewan, L.; Pasculle, A.W.; Muto, C.A.; Tian, G.; Doi, Y. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrob. Agents Chemother. 2009, 53, 4733–4739. [Google Scholar] [CrossRef] [Green Version]
- Center for Genomic Epidemiology. Available online: www.genomicepidemiology.org (accessed on 30 June 2021).
Province | Worker (%) | Poultry (%) | Chicken Meat (%) | Environment (%) | Total (%) |
---|---|---|---|---|---|
Seoul/Gyeonggi | 0/18 (0) | 9/140 (6.4) | 9/100 (9.0) | 4/29 (13.8) | 22/287 (7.7%) |
Gangwon | 0/18 (0) | 13/200 (6.5) | 4/60 (6.7) | 5/25 (20.0) | 22/303 (7.3%) |
Jeolla | 1/9 (11.1) | 3/160 (1.9) | 6/60 (10.0) | 1/14 (7.1) | 11/243 (4.5%) |
Chungcheong | 0/51 (0) | 8/160 (5.0) | 8/60 (13.3) | 3/18 (16.7) | 19/289 (6.6%) |
Gyeongsang | 0/15 (0) | 10/160 (6.3) | 7/60 (11.7) | 2/19 (10.5) | 19/254 (7.5%) |
Total | 1/111 (0.9) | 43/820 (5.2) | 34/340 (10.0) | 15/105 (14.3) | 93/1376 (6.8%) |
Relative Proportion (%) | ||||
---|---|---|---|---|
Worker | Poultry | Chicken Meat | Environment | |
CTX-M-1 group | ||||
CTX-M-1 (n = 11) | 0 (n = 0) | 14.0 (n = 6) | 11.8 (n = 4) | 6.7 (n = 1) |
CTX-M-15 (n = 7) | 0 (n = 0) | 2.3 (n = 1) | 14.7 (n = 5) | 6.7 (n = 1) |
CTX-M-55 (n = 33) | 0 (n = 0) | 34.9 (n = 15) | 29.4 (n = 10) | 53.3 (n = 8) |
CTX-M-61 (n = 1) | 0 (n = 0) | 0 (n = 0) | 2.9 (n = 1) | 0 (n = 0) |
CTX-M-9 group | ||||
CTX-M-14 (n = 33) | 100 (n = 1) | 39.5 (n = 17) | 35.3 (n = 12) | 20 (n = 3) |
CTX-M-27 (n = 3) | 0 (n = 0) | 2.3 (n = 1) | 2.9 (n = 1) | 6.7 (n = 1) |
CTX-M-65 (n = 5) | 0 (n = 0) | 7 (n = 3) | 2.9 (n = 1) | 6.7 (n = 1) |
Total | 100 (n = 1) | 100 (n = 43) | 100 (n = 34) | 100 (n = 15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, Y.A.; Seo, Y.H.; Lee, H.; Lee, K. Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea. Antibiotics 2021, 10, 1050. https://doi.org/10.3390/antibiotics10091050
Kim H, Kim YA, Seo YH, Lee H, Lee K. Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea. Antibiotics. 2021; 10(9):1050. https://doi.org/10.3390/antibiotics10091050
Chicago/Turabian StyleKim, Hyunsoo, Young Ah Kim, Young Hee Seo, Hyukmin Lee, and Kyungwon Lee. 2021. "Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea" Antibiotics 10, no. 9: 1050. https://doi.org/10.3390/antibiotics10091050
APA StyleKim, H., Kim, Y. A., Seo, Y. H., Lee, H., & Lee, K. (2021). Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea. Antibiotics, 10(9), 1050. https://doi.org/10.3390/antibiotics10091050