Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Overview of the Selected Studies
2.2. Study Characteristics of Eligible Studies
2.3. Pooling and Heterogeneity Estimates of Salmonella Species
Prevalence Based on Provinces, Study Years, and Diagnostic Techniques
2.4. Antibiotic Resistance Profile of Salmonella spp. Isolates to Antibiotics
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Search Strategy
4.3. Inclusion and Exclusion Criteria
4.4. Data extraction and Data Collection
4.5. Data Analysis and Assessment of Risk of Bias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ketema, L.; Ketema, Z.; Kiflu, B.; Alemayehu, H.; Terefe, Y.; Ibrahim, M.; Eguale, T. Prevalence and antimicrobial susceptibility profile of Salmonella serovars isolated from slaughtered cattle in Addis Ababa, Ethiopia. Biomed. Res. Int. 2018, 2018, 9794869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.M.; Wang, Y.; Su, L.H.; Chiu, C.H. Nontyphoid Salmonella infection: Microbiology, clinical features, and antimicrobial therapy. Pediatr. Neonatol. 2013, 54, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, G.; Dejenu, G.; Tesema, C.; Arega, B.; Awoke, T.; Alemu, K.; Moges, F. Epidemiology of streptomycin resistant Salmonella from humans and animals in Ethiopia: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0244057. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Bayard, J.; Ramos-Morales, F. Molecular mechanisms used by Salmonella to evade the immune system. Curr. Issues Mol. Biol. 2018, 25, 133–168. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D. Ceftriaxone-resistant Salmonella infection from antibiotic-treated cattle. Gastroenterology 2000, 119, 3–4. [Google Scholar] [CrossRef]
- Ateba, C.N.; Tabi, N.M.; Fri, J.; Bissong, M.E.A.; Bezuidenhout, C.C. Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. Antibiotics 2020, 9, 745. [Google Scholar] [CrossRef]
- Jaja, I.F.; Bhembe, N.L.; Green, E.; Oguttu, J.; Muchenje, V. Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa. Acta Trop. 2019, 190, 129–136. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmid-mediated antimicrobial resistance in Salmonella enterica. Curr. Issues Mol. Biol. 2003, 5, 113–122. [Google Scholar]
- Gokul, B.N.; Menezes, G.A.; Harish, B.N. Acc-1 β-lactamase–producing Salmonella enterica serovar Typhi, India. Emerg. Infect. Dis. 2010, 16, 1170–1171. [Google Scholar] [CrossRef]
- Menezes, G.A.; Khan, M.A.; Harish, B.N.; Parija, S.C.; Goessens, W.; Vidyalakshmi, K.; Baliga, S.; Hays, J. Molecular characterization of antimicrobial resistance in non-typhoidal Salmonellae associated with systemic manifestations from India. J. Med. Microbiol. 2010, 59, 1477–1483. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.E.G.A.; El-Abasy, M.; El-Khayat, F.; Gillespie, T.; Kitade, Y.; Hafez, H.M.; Neubauer, H.; El-Adawy, H. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog. 2017, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kalule, J.B.; Smith, A.M.; Vulindhlu, M.; Tau, N.P.; Nicol, M.P.; Keddy, K.H.; Robberts, L. Prevalence and antibiotic susceptibility patterns of enteric bacterial pathogens in human and non-human sources in an urban informal settlement in Cape Town, South Africa. BMC Microbiol. 2019, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Márquez, F.M.L.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; López, R.L. Biocide tolerance and antibiotic resistance in Salmonella isolates from hen eggshells. Foodborne Pathog. Dis. 2017, 14, 89–95. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic use in poultry production and its effects on bacterial resistance. In Antibiotic Resistance—A Global Threat; Kumar, Y., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Mossoro-Kpinde, C.D.; Manirakiza, A.; Mbecko, J.R.; Misatou, P.; Le Faou, A.; Frank, T. Antimicrobial resistance of enteric Salmonella in Bangui, Central African Republic. J. Trop. Med. 2015, 2015, 483974. [Google Scholar] [CrossRef] [Green Version]
- Amajoud, N.; Bouchrif, B.; El Maadoudi, M.; Senhaji, N.S.; Karraouan, B.; El Harsal, A.; El Abrini, J. Prevalence, serotype distribution, and antimicrobial resistance of Salmonella isolated from food products in Morocco. J. Infect. Dev. Ctries. 2017, 11, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proroga, Y.T.; Capuano, F.; Carullo, M.R.; La Tela, I.; Capparelli, R.; Barco, L.; Pasquale, V. Occurrence and antimicrobial resistance of Salmonella strains from food of animal origin in southern Italy. Folia Microbiol. 2016, 61, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Guerra, B.; Junker, E.; Helmuth, R. Incidence of the recently described sulfonamide resistance gene sul3 among German Salmonella enterica strains isolated from livestock and food. Antimicrob. Agents Chemother. 2004, 48, 2712–2715. [Google Scholar] [CrossRef] [Green Version]
- Mąka, Ł.; Maćkiw, E.; Ścieżyńska, H.; Modzelewska, M.; Popowska, M. Resistance to sulfonamides and dissemination of sul genes among Salmonella spp. isolated from food in Poland. Foodborne Pathog. Dis. 2015, 12, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Infante, B.; Grape, M.; Larsson, M.; Kristiansson, C.; Pallecchi, L.; Rossolini, G.M.; Kronvall, G. Acquired sulphonamide resistance genes in faecal Escherichia coli from healthy children in Bolivia and Peru. Int. J. Antimicrob. Agents 2005, 25, 308–312. [Google Scholar] [CrossRef]
- Vaez, H.; Ghanbari, F.; Sahebkar, A.; Khademi, F. Antibiotic resistance profiles of Salmonella serotypes isolated from animals in Iran: A meta-analysis. Iran. J. Vet. Res. 2020, 21, 188–197. [Google Scholar] [PubMed]
- Velasquez, C.G.; Macklin, K.S.; Kumar, S.; Bailey, M.; Ebner, P.E.; Oliver, H.F.; Martin-Gonzalez, F.S.; Singh, M. Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poult. Sci. 2018, 97, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Elhadi, N. Prevalence and antimicrobial resistance of Salmonella spp. in raw retail frozen imported freshwater fish to Eastern Province of Saudi Arabia. Asian Pac. J. Trop. Biomed. 2014, 4, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Biswas, S.; Paudyal, N.; Pan, H.; Li, X.; Fang, W.; Yue, M. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front. Microbiol. 2019, 10, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaja, I.F.; Oguttu, J.; Jaja, C.J.I.; Green, E. Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. PLoS ONE 2020, 15, e0216914. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.A. A Study of Antibiotic Residues in Meat Sold in Butcheries and Supermarkets Around Mafikeng, North West Province (Doctoral Dissertation, North-West University (South Africa). 2016. Available online: https://repository.nwu.ac.za/bitstream/handle/10394/35485/Ramatla_TA.pdf?sequence=1 (accessed on 12 July 2021).
- Hao, H.; Sander, P.; Iqbal, Z.; Wang, Y.; Cheng, G.; Yuan, Z. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis. Front. Microbiol. 2016, 7, 1626. [Google Scholar] [CrossRef] [Green Version]
- Miruka, O.D.; Rose, K.; Nyandago, W.E. Tetracycline efflux pump in different Salmonella enterica isolated from diarrhea patients in two rural health centers in Western Kenya. Iran. J. Clin. Infect. Dis. 2011, 6, 24–30. [Google Scholar]
- Mokgophi, T.M.; Gcebe, N.; Fasina, F.; Adesiyun, A.A. Antimicrobial resistance profiles of Salmonella isolates on chickens processed and retailed at outlets of the informal market in Gauteng Province, South Africa. Pathogens 2021, 10, 273. [Google Scholar] [CrossRef]
- Theobald, S.; Etter, E.M.C.; Gerber, D.; Abolnik, C. Antimicrobial resistance trends in Escherichia coli in South African poultry: 2009–2015. Foodborne Pathog. Dis. 2019, 16, 652–660. [Google Scholar] [CrossRef]
- Eagar, H.; Swan, G.; Van Vuuren, M. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. J. S. Afr. Vet. Assoc. 2012, 83, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Tayeb, M.A.; Ibrahim, A.S.; Al-Salamah, A.A.; Almaary, K.S.; Elbadawi, Y.B. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz. J. Microbiol. 2017, 48, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Pezzella, C.; Ricci, A.; DiGiannatale, E.; Luzzi, I.; Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 2004, 48, 903–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Liu, Y.; Qin, X.; Aspridou, Z.; Zheng, J.; Wang, X.; Li, Z.; Dong, Q. The Prevalence and Epidemiology of Salmonella in Retail Raw Poultry Meat in China: A Systematic Review and Meta-Analysis. Foods 2021, 10, 2757. [Google Scholar] [CrossRef]
- Alcaine, S.D.; Warnick, L.D.; Wiedmann, M. Antimicrobial resistance in nontyphoidal Salmonella. J. Food Prot. 2007, 70, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.V.T.; Venkitanarayanan, K.; Johny, A.K. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 2018, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Beshiru, A.; Igbinosa, I.H.; Igbinosa, E.O. Prevalence of antimicrobial resistance and virulence gene elements of Salmonella serovars from ready-to-eat (RTE) shrimps. Front. Microbiol. 2019, 10, 1613. [Google Scholar] [CrossRef] [Green Version]
- Adzitey, F.; Asiamah, P.; Boateng, E.F. Prevalence and antibiotic susceptibility of Salmonella enterica isolated from cow milk, milk products and hands of sellers in the Tamale Metropolis of Ghana. J. Appl. Sci. Environ. Manag. 2020, 24, 59–64. [Google Scholar] [CrossRef]
- de Toro, M.; Sáenz, Y.; Cercenado, E.; Rojo-Bezares, B.; García-Campello, M.; Undabeitia, E.; Torres, C. Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals. Int. Microbiol. 2011, 14, 173–181. [Google Scholar]
- Zishiri, O.T.; Mkhize, N.; Mukaratirwa, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J. Vet. Res. 2016, 83, 1–11. [Google Scholar] [CrossRef]
- Shen, W.; Chen, H.; Geng, J.; Wu, R.A.; Wang, X.; Ding, T. Prevalence, serovar distribution, and antibiotic resistance of Salmonella spp. isolated from pork in China: A systematic review and meta-analysis. Int. J. Food Microbiol. 2021, 361, 109473. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Nakazawa, C.; Khin, S.T.M.M.; Iwabuchi, E.; Asai, T.; Ishihara, K. Molecular Characteristics and Antimicrobial Resistance of Salmonella enterica Serovar Schwarzengrund from Chicken Meat in Japan. Antibiotics 2021, 10, 1336. [Google Scholar] [CrossRef]
- Ng, K.C.; Rivera, W.L. Antimicrobial resistance of Salmonella enterica isolates from tonsil and jejunum with lymph node tissues of slaughtered swine in Metro Manila, Philippines. Int. Sch. Res. Not. 2014, 2014, 364265. [Google Scholar] [CrossRef] [PubMed]
- Tawyabur, M.; Islam, M.S.; Sobur, M.A.; Hossain, M.J.; Mahmud, M.M.; Paul, S.; Hossain, M.T.; Ashour, H.M.; Rahman, M.T. Isolation and Characterization of Multidrug-Resistant Escherichia Coli and Salmonella Spp. from Healthy and Diseased Turkeys. Antibiotics 2020, 9, 770. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar] [CrossRef]
- Gouws, P.A.; Brozel, V. Antimicrobial resistance of Salmonella isolates associated with retail chicken and a poultry abattoir. S. Afr. J. Sci. 2000, 96, 254–256. [Google Scholar]
- Gomba, A.; Chidamba, L.; Korsten, L. Antimicrobial resistance profiles of Salmonella spp. from agricultural environments in fruit production systems. Foodborne Pathog. Dis. 2016, 13, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Ramatla, T.; Taioe, M.O.; Thekisoe, O.M.; Syakalima, M. Confirmation of antimicrobial resistance by using resistance genes of isolated Salmonella spp. in chicken houses of North West, South Africa. World Vet. J. 2019, 9, 158–165. [Google Scholar] [CrossRef]
- Adesiyun, A.A.; Nkuna, C.; Mokgoatlheng-Mamogobo, M.; Malepe, K.; Simanda, L. Food safety risk posed to consumers of table eggs from layer farms in Gauteng Province, South Africa: Prevalence of Salmonella species and Escherichia coli, antimicrobial residues, and antimicrobial resistant bacteria. J. Food Saf. 2020, 40, e12783. [Google Scholar] [CrossRef]
- Mafu, N.C.; Pironcheva, G.; Okoh, A.I. Genetic diversity and in vitro antibiotic susceptibility profile of Salmonella species isolated from domestic water and wastewater sources in the Eastern Cape Province of South Africa. Afr. J. Biotechno. 2009, 8, 1263–1269. [Google Scholar]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect. Drug Resist. 2019, 12, 3537–3548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwu, C.J.; Iweriebor, B.C.; Obi, L.C.; Basson, A.K.; Okoh, A.I. Multidrug-resistant Salmonella isolates from swine in the Eastern Cape province, South Africa. J. Food Prot. 2016, 79, 1234–1239. [Google Scholar] [CrossRef]
- Akinola, S.A.; Mwanza, M.; Ateba, C.N. Occurrence, genetic diversities and antibiotic resistance profiles of Salmonella serovars isolated from chickens. Infect. Drug Resist. 2019, 12, 3327–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathole, M.A.; Muchadeyi, F.C.; Mdladla, K.; Malatji, D.P.; Dzomba, E.F.; Madoroba, E. Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in South Africa. Food Control 2017, 72, 219–224. [Google Scholar] [CrossRef]
- Igbinosa, I.H. Prevalence and detection of antibiotic-resistant determinant in Salmonella isolated from food-producing animals. Trop. Anim. Health Prod. 2015, 47, 37–43. [Google Scholar] [CrossRef]
- Odjadjare, E.C.; Olaniran, A.O. Prevalence of antimicrobial resistant and virulent Salmonella spp. in treated effluent and receiving aquatic milieu of wastewater treatment plants in Durban, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 9692–9713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madoroba, E.; Gelaw, A.K.; Kapeta, D. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J. Vet. Res. 2016, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Moré, E.; Ayats, T.; Ryan, P.G.; Naicker, P.R.; Keddy, K.H.; Gaglio, D.; Witteveen, M.; Cerdà-Cuéllar, M. Seabirds (Laridae) as a source of Campylobacter spp., Salmonella spp. and antimicrobial resistance in South Africa. Environ. Microbiol. 2017, 19, 4164–4176. [Google Scholar] [CrossRef]
- Kennedy, B.; Shobo, C.O.; Zishiri, O.T.; Bester, L.A. Surveillance of Salmonella spp. in the environment of public hospitals in KwaZulu-Natal, South Africa. J. Hosp. Infect. 2020, 105, 205–212. [Google Scholar] [CrossRef]
- Dlamini, B.S.; Montso, P.K.; Kumar, A.; Ateba, C.N. Distribution of virulence factors, determinants of antibiotic resistance and molecular fingerprinting of Salmonella species isolated from cattle and beef samples: Suggestive evidence of animal-to-meat contamination. Environ. Sci. Pollut. Res. Int. 2018, 25, 32694–32708. [Google Scholar] [CrossRef]
- Chipangura, J.K.; Chetty, T.; Kgoete, M.; Naidoo, V. Prevalence of antimicrobial resistance from bacterial culture and susceptibility records from horse samples in South Africa. Prev. Vet. Med. 2017, 148, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Risk Factors | Number of Studies | Pooled Estimates | Measure of Heterogeneity | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample Size | Number Positive | Pooled Prevalence | I2 (95% CI) | Cochran’s Q | Heterogeneity I2 (%) | Significance Level Q-p | p-Value | ||
Overall study | |||||||||
Environment | 6 | 1801 | 942 | 69.9 | (41.7–88.3) | 303.643 | 98.353 | 0.161 | 0.04544 |
Animals | 9 | 3722 | 1000 | 41.9 | (18.5–69.5) | 637.355 | 98.745 | 0.577 | 0.33833 |
Animals/humans | 1 | 200 | 146 | - | - | - | - | - | |
Animals/environment | 3 | 904 | 834 | 95.9 | (5.4–100) | 55.253 | 96.380 | 0.304 | 0.30075 |
Animals/humans/environment | 1 | 215 | 8 | - | - | - | - | - | |
Study year | |||||||||
2000–2010 | 1 | 172 | 172 | - | - | - | - | - | |
2010–2021 | 19 | 6691 | 2551 | 49.8 | (33.8–65.9) | 1209.499 | 98.512 | 0.981 | 0.29987 |
Diagnostic technique | |||||||||
PCR | 11 | 3475 | 1551 | 60.2 | (40.9–76.8) | 608.599 | 98.357 | 0.299 | 0.46897 |
Culture | 5 | 1463 | 778 | 76.9 | (14.6–98.5) | 89.158 | 95.514 | 0.428 | 0.16359 |
Serotype | 3 | 1434 | 338 | 22.4 | (3.2–71.3) | 42.054 | 95.244 | 0.258 | 0.05859 |
MALDI-TOF-MS and PCR | 1 | 481 | 263 | - | - | - | - | - | |
Provinces | |||||||||
KwaZulu-Natal | 4 | 2094 | 470 | 40.8 | (7.4–85.6) | 404.768 | 99.259 | 0.735 | 0.50000 |
Gauteng | 3 | 793 | 436 | 59.4 | (4.1–98.1) | 62.831 | 96.817 | 0.832 | 0.30075 |
Eastern Cape | 6 | 2439 | 785 | 46.2 | (21.5–73.0) | 381.864 | 98.691 | 0.796 | 0.09424 |
North West | 4 | 169 | 528 | 75.4 | (19.4–97.5) | 250.522 | 98.802 | 0.389 | 0.24845 |
Northern Cape | 1 | 1069 | 30 | - | - | - | - | - | |
Limpopo | 2 | 1673 | 122 | - | - | - | - | - | |
Western Cape | 3 | 606 | 685 | 94.3 | (1.1–100) | 75.412 | 97.348 | 0.450 | 0.30075 |
Antimicrobial Agents | Number of Studies | Number of Isolates | % Prevalence (95% CI) | I2 (95% CI) |
---|---|---|---|---|
Tetracycline | 9 | 1192 | 67.4 | (53.8–78.6) |
Chloramphenicol | 8 | 243 | 2.6 | (14.6–28.2) |
Ciprofloxacin | 6 | 167 | 28.9 | (8.5–63.9) |
Sulphonamides | 3 | 285 | 92.0 | (37.5–99.5) |
Nalidixic acid | 3 | 144 | 39.8 | (22.3–60.5) |
Streptomycin | 9 | 593 | 37.7 | (17.2–63.8) |
Ampicillin | 13 | 900 | 38.6 | (25.4–53.7) |
Streptomycin | 9 | 593 | 37.7 | (17.2–63.8) |
Amoxicillin | 3 | 80 | 19.2 | (13.8–26.1) |
Trimethoprim | 3 | 477 | 52.2 | (24.7–78.4) |
Enrofloxacin | 6 | 20 | 89.3 | (62.9–97.6) |
Erythromycin | 6 | 954 | 89.3 | (62.9–97.6) |
Gentamicin | 6 | 95 | 15.4 | (7.0–3.5) |
Sulphamethoxazole | 3 | 165 | 39.5 | (32.6–46.8) |
kanamycin | 6 | 172 | 26.7 | (10.1–54.1) |
Imipenem | 3 | 517 | 72.6 | (23.1–95.9) |
Oxytetracycline | 4 | 382 | 77.4 | (31.2–96.3) |
Trimethoprim-sulfamthoxazole | 4 | 110 | 47.5 | (26.3–69.6) |
MDR | 5 | 314 | 28.5 | (11.2–55.7) |
Number of Resistant Isolates (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Provinces | Tetracycline | Ciprofloxacin | Chloramphenicol | Ampicillin | Streptomycin | Gentamicin | Erythromycin | Kanamycin |
KwaZulu-Natal | 52/435: (57.9%) | 16/195: (8.2%) | 32/146: (21.9%) | 257/371: (69.2%) | 40/346: (11.5%) | 49/146: (33.5%) | 18/146: (12.3%) | 5/263: (1.9%) |
Gauteng | - | 1/170: (1.4%) | 41/433: (9.4%) | 4/263: (1.5%) | 141/433: (3.2%) | - | 170/170: (100%) | 75/146: (51.3%) |
Eastern Cape | 543/1197: (45.3%) | 33/307: (10.7%) | 98/370: (26.4%) | 487/635: (76.6%) | 286/410: (69.7%) | 13/112: (11.6%) | 406/438: (92.6%) | 47/152: (30.9%) |
North West | 78/114: (68.4%) | 125/198: (63.1%) | 58/198: (29.2%) | 277/498: (45.5%) | 73/198: (36.8%) | 9/198: (4.5%) | 360/384: (93.7%) | - |
Northern Cape | - | - | - | 5/30: (16.6%) | - | - | - | - |
Limpopo | - | - | - | 41/122: (33.6%) | - | - | - | 27/92: (29.3%) |
Western Cape | - | - | - | - | - | 2/8: (25%) | - | - |
Study (Citation) | Province | Method | Sample Size | No. of Isolates | Isolate Source | Salmonella spp. |
---|---|---|---|---|---|---|
Gouws et al., 2000 [48] | Western Cape | DDM | Culture | 442 | Animal/environment | Salmonella spp. |
Mokgophi et al., 2021 [31] | Gauteng | DDM | PCR | 170 | Animal | S. Bovismorbificans (58.5%); S. Dublin (18.5%); S. Enteritidis (15.7%); S. Mbandaka (12.8%); S. Saintpaul (8.5%); S. Thompson (2.8%); S. Infantis (2.8%); and S. Agona (1.4%). |
Gomba et al., 2016 [49] | Gauteng | DDM | MALTI-TOF-MS and PCR | 263 | Environment | S. Muenchen (33.3%); S. Typhimurium (12/39; 30.8%); S. Heidelberg (20.5%); S. Bsilla (7.7%). |
Ramatla et al., 2019 [50] | North West | DDM | PCR | 114 | Animal | S. Typhimurium (n = 44, 30.5%); S. Enteritidis (n = 18, 12.5%); S. newport (7.6%); S. Heidelberg (11.1%); S. bongori (9%); S. enterica serovar Paratyphi B (4.8%); S. Tennessee (2%); and S. Pullorum (1.3%). |
Adesiyun et al., 2020 [51] | Gauteng | DDM | Culture | 3 | Animal | Salmonella spp. |
Mafu et al., 2012 [52] | Eastern Cape | DDM | Culture | 40 | Environment | Salmonella spp. |
Jaja et al., 2019 [26] | Eastern Cape | DDM | PCR | 112 | Animal | S. Enteritidis |
Mthembu et al., 2019 [53] | Eastern Cape and KwaZulu-Natal | DDM | PCR | 194 | Environment | Salmonella spp. |
Iwu et al., 2016 [54] | Eastern Cape | DDM | PCR | 258 | Animal | Salmonella spp. |
Akinola et al., 2019 [55] | North West | DDM | PCR | 84 | Animal | S. bongori (10.09%); S. Pullorum (1.81%); S. Typhimurium (12.72%); S. Weltevreden; S. Chingola; S. Houten; and S. Bareily (1.81%). |
Mathole et al., 2017 [56] | Limpopo, Eastern Cape, Northern Cape, North West, and KwaZulu Natal | DDM | Serotyping | 30 | Animal | S. Chester (3.3%); S. Cardoner (3.3%); S. Sambrae (3.3%); S. Typhimurium (3.3%); S. Schwarzengrund (6.6%); S. Aarhus (3.3%); S. Pomona (33%); S. Senftenberg (3.3%); and S. Techimani (30%); unclassified Salmonella (20%). |
Igbinosa 2015 [57] | Eastern Cape | DMD | PCR | 150 | Environment | Salmonella spp. |
Odjadjare and Olaniran 2015 [58] | KwaZulu Natal | DMD | PCR | 200 | Environment | Salmonella spp. |
Zishiri et al., 2016 [42] | KwaZulu Natal | DMD | PCR | 146 | Animal/human | Salmonella spp. |
Madoroba et al., 2016 [59] | Limpopo | DDM | PCR | 92 | Animal/environment | S. Heidelberg (2.2%); S. Aberdeen (1.1%); S. Hayindongo (1.1%); S. Mbandaka (2.2%); S. Anatum (2.2%); S. Othmarschen (1.1%); S. Nigeria (2.2%); S. Tennessee (1.1%); S. Cardoner (1.1%); S. Senftenberg (2.2%); and S. Pretoria (2.2%). |
More et al., 2017 [60] | Western Cape | DDM | Culture | 235 | Animal | Salmonella spp. |
Kennedy et al., 2020 [61] | KwaZulu Natal | DDM | PCR | 94 | Environment | Salmonella spp. |
Dlamini et al., 2018 [62] | North West | DDM | Serotyping | 300 | Animal/environment | Salmonella spp. |
Kalule et al., 2019 [13] | Western Cape | DDM | Serotyping | 8 | Human/animal/environment | S. enterica |
Chipangura et al., 2017 [63] | South Africa | DDM | Culture | 58 | Animal | Salmonella spp. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramatla, T.; Tawana, M.; Onyiche, T.E.; Lekota, K.E.; Thekisoe, O. Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 1435. https://doi.org/10.3390/antibiotics10121435
Ramatla T, Tawana M, Onyiche TE, Lekota KE, Thekisoe O. Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics. 2021; 10(12):1435. https://doi.org/10.3390/antibiotics10121435
Chicago/Turabian StyleRamatla, Tsepo, Mpho Tawana, ThankGod E. Onyiche, Kgaugelo E. Lekota, and Oriel Thekisoe. 2021. "Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis" Antibiotics 10, no. 12: 1435. https://doi.org/10.3390/antibiotics10121435
APA StyleRamatla, T., Tawana, M., Onyiche, T. E., Lekota, K. E., & Thekisoe, O. (2021). Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics, 10(12), 1435. https://doi.org/10.3390/antibiotics10121435