Biofilm Producing Enterococcus Isolates from Vaginal Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Preliminary Tests
2.2. Antimicrobial Susceptibility Test
2.3. Detection of Biofilm
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hainer, B.L.; Gibson, M.V. Vaginitis: Diagnosis and Treatment. Am. Fam. Physician 2011, 83, 807–815. [Google Scholar]
- Kaambo, E.; Africa, C.; Chambuso, R.; Passmore, J.-A.S. Vaginal Microbiomes Associated with Aerobic Vaginitis and Bacterial Vaginosis. Front. Public Health 2018, 6, 78. [Google Scholar] [CrossRef]
- Chee, W.J.Y.; Chew, S.Y.; Than, L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Fact. 2020, 19, 203. [Google Scholar] [CrossRef] [PubMed]
- Kalia, N.; Singh, J.; Kaur, M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Cullins, V.A.; Dominguez, L.; Guberski, T.; Secor, R.M.; Wysocki, S.J. Treating vaginitis. Nurse Pract. 1999, 24, 46, 49–50, 53–58 passim; quiz 64–65. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bian, G.; Zheng, M.; Lu, G.; Chan, W.; Li, W.; Yang, K.; Chen, Z.; Du, Y. Fertility factors affect the vaginal microbiome in women of reproductive age. Am. J. Reprod. Immunol. 2020, 83, e13220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonthalia, S.; Aggarwal, P.; Das, S.; Sharma, P.; Sharma, R.; Singh, S. Aerobic vaginitis—An underdiagnosed cause of vaginal discharge—Narrative review. Int. J. STD AIDS 2020, 31, 1018–1027. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E. Epidemiology and resistance trends of Staphylococcus aureus isolated from vaginal samples: A 10-year retrospective study in Hungary. Acta Dermatovenerol. Alp. Pannonica Adriat. 2019, 28, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Quan, M. Vaginitis: Diagnosis and management. Postgrad. Med. 2010, 122, 117–127. [Google Scholar] [CrossRef]
- Fan, A.; Yue, Y.; Geng, N.; Zhang, H.; Wang, Y.; Xue, F. Aerobic vaginitis and mixed infections: Comparison of clinical and laboratory findings. Arch. Gynecol. Obstet. 2013, 287, 329–335. [Google Scholar] [CrossRef]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef]
- Gupta, V.; Singla, N.; Behl, P.; Sahoo, T.; Chander, J. Antimicrobial susceptibility pattern of vancomycin resistant enterococci to newer antimicrobial agents. Indian J. Med. Res. 2015, 141, 483–486. [Google Scholar] [CrossRef]
- Esmail, M.A.M.; Abdulghany, H.M.; Khairy, R.M. Prevalence of Multidrug-Resistant Enterococcus faecalis in Hospital-Acquired Surgical Wound Infections and Bacteremia: Concomitant Analysis of Antimicrobial Resistance Genes. Infect. Dis. 2019, 12, 1178633719882929. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E. Pandrug Resistance (PDR), Extensive Drug Resistance (XDR), and Multidrug Resistance (MDR) among Gram-Negative Bacilli: Need for International Harmonization in Terminology. Clin. Infect. Dis. 2008, 46, 1121–1122. [Google Scholar] [CrossRef] [Green Version]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.-S.; Ehlers, M.M.; Lombaard, H.; Redelinghuys, M.J.; Kock, M.M. Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit. Rev. Microbiol. 2017, 43, 651–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhajjar, N.; Chatterjee, A.; Spencer, B.L.; Burcham, L.R.; Willett, J.L.E.; Dunny, G.M.; Duerkop, B.A.; Doran, K.S. Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infect. Immun. 2020, 88, e00270-20. [Google Scholar] [CrossRef] [PubMed]
- Shridhar, S.; Dhanashree, B. Antibiotic Susceptibility Pattern and Biofilm Formation in Clinical Isolates of Enterococcus spp. Available online: https://www.hindawi.com/journals/ipid/2019/7854968/ (accessed on 26 June 2020).
- Kelly, M.C.; Mequio, M.J.; Pybus, V. Inhibition of Vaginal Lactobacilli by a Bacteriocin-Like Inhibitor Produced by Enterococcus faecium 62-6: Potential Significance for Bacterial Vaginosis. Infect. Dis. Obstet. Gynecol. 2003, 11, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Singh, M.P.; Goyal, K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front. Public Health 2020, 8, 326. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Pal, N.; Sarkar, S.; Gupta, M. Antibiotic resistance pattern of Enterococci isolates from nosocomial infections in a tertiary care hospital in Eastern India. J. Nat. Sci. Biol. Med. 2015, 6, 394. [Google Scholar] [CrossRef] [Green Version]
- Barman, J.; Nath, R.; Saikia, L. Drug resistance in Enterococcus species in a tertiary level hospital in Assam, India. Indian J. Med. Res. 2016, 143, 107–110. [Google Scholar] [CrossRef]
- Jaiswal, S.; Singh, A.; Verma, R.K.; Singh, D.P.; Kumari, S. Characterization, speciation and antimicrobial resistance pattern of Enterococcus species isolated from clinical specimens at a rural tertiary care hospital. Int. J. Res. Med. Sci. 2017, 5, 3484. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.C.; Cockerill, F.R.; Patel, R. Clinical and Epidemiological Features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum Bacteremia: A Report of 20 Cases. Clin. Infect. Dis. 2001, 32, 1540–1546. [Google Scholar] [CrossRef]
- Meštrović, T.; Matijašić, M.; Perić, M.; Čipčić Paljetak, H.; Barešić, A.; Verbanac, D. The Role of Gut, Vaginal, and Urinary Microbiome in Urinary Tract Infections: From Bench to Bedside. Diagnostics 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.A.; Lewis, A.L. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol. Spectr. 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, P.; Patel, A.; Sahni, A.K.; Praharaj, A.K.; Grover, N.; Chaudhari, C.N.; Das, N.K.; Kulkarni, M. Emergence of multidrug resistant enterococci at a tertiary care centre. Med. J. Armed Forces India 2015, 71, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praharaj, I.; Sujatha, S.; Parija, S.C. Phenotypic & genotypic characterization of vancomycin resistant Enterococcus isolates from clinical specimens. Indian J. Med. Res. 2013, 138, 549–556. [Google Scholar]
- Fernandes, S.C.; Dhanashree, B. Drug resistance & virulence determinants in clinical isolates of Enterococcus species. Indian J. Med. Res. 2013, 137, 981–985. [Google Scholar] [PubMed]
- Kumar, S.; Bandyoapdhyay, M.; Chatterjee, M.; Mukhopadhyay, P.; Poddar, S.; Banerjee, P. The first linezolid-resistant Enterococcus faecium in India: High level resistance in a patient with no previous antibiotic exposure. Avicenna J. Med. 2014, 4, 13. [Google Scholar] [CrossRef]
- Sirichoat, A.; Flórez, A.B.; Vázquez, L.; Buppasiri, P.; Panya, M.; Lulitanond, V.; Mayo, B. Antibiotic Resistance-Susceptibility Profiles of Enterococcus faecalis and Streptococcus spp. From the Human Vagina, and Genome Analysis of the Genetic Basis of Intrinsic and Acquired Resistances. Front. Microbiol. 2020, 11, 1438. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Cox, C.R.; Sarkar, S.K. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS ONE 2019, 14, e0210218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Lee, K.-M.; Kim, D.; Yoon, S.S. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm. Appl. Environ. Microbiol. 2017, 83, e01182-17. [Google Scholar] [CrossRef] [Green Version]
- Sieńko, A.; Wieczorek, P.; Majewski, P.; Ojdana, D.; Wieczorek, A.; Olszańska, D.; Tryniszewska, E. Comparison of antibiotic resistance and virulence between biofilm-producing and non-producing clinical isolates of Enterococcus faecium. Acta Biochim. Pol. 2015, 62, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Woźniak-Biel, A.; Bugla-Płoskońska, G.; Burdzy, J.; Korzekwa, K.; Ploch, S.; Wieliczko, A. Antimicrobial Resistance and Biofilm Formation in Enterococcus spp. Isolated from Humans and Turkeys in Poland. Microb. Drug Resist. 2019, 25, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Present (%) |
---|---|
Age (18–50 years) | 35 (89.7%) |
Pregnancy | 5 (12.8%) |
Vaginal discharge | 39 (100%) |
Fever | 4 (10.25%) |
Itching | 22 (56.4%) |
Antimicrobial Agent | Enterococcus spp. (n = 39) | MIC Range μg/mL | MIC90 μg/mL | MIC50 μg/mL |
---|---|---|---|---|
Ampicillin/Penicillin | 9 (23.08%) | ≤2–≥32 | 32 | 32 |
Ciprofloxacin | 10 (25.64%) | ≤0.5–≥8 | 8 | 8 |
Levofloxacin | 12 (30.77%) | ≤0.5–≥8 | 8 | 8 |
High level gentamicin | 24 (61.54%) | - | - | - |
Erythromycin | 30 (76.92%) | ≤16–256 | 128 | 16 |
Vancomycin | 38 (97.43%) | ≤0.5–≥32 | 1 | 0.5 |
Teicoplanin | 38 (97.43%) | ≤0.5–≥32 | 1 | 0.5 |
Linezolid | 39 (100%) | ≤0.5–4 | 1 | 0.5 |
Tetracycline | 8 (20.51%) | ≤0.5–≥16 | 16 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, M.; Sarkar, S.; SenGupta, M.; Ghosh, S.; Sarkar, R.; Banerjee, P. Biofilm Producing Enterococcus Isolates from Vaginal Microbiota. Antibiotics 2021, 10, 1082. https://doi.org/10.3390/antibiotics10091082
Sengupta M, Sarkar S, SenGupta M, Ghosh S, Sarkar R, Banerjee P. Biofilm Producing Enterococcus Isolates from Vaginal Microbiota. Antibiotics. 2021; 10(9):1082. https://doi.org/10.3390/antibiotics10091082
Chicago/Turabian StyleSengupta, Mallika, Soma Sarkar, Manideepa SenGupta, Sougata Ghosh, Riya Sarkar, and Parthajit Banerjee. 2021. "Biofilm Producing Enterococcus Isolates from Vaginal Microbiota" Antibiotics 10, no. 9: 1082. https://doi.org/10.3390/antibiotics10091082
APA StyleSengupta, M., Sarkar, S., SenGupta, M., Ghosh, S., Sarkar, R., & Banerjee, P. (2021). Biofilm Producing Enterococcus Isolates from Vaginal Microbiota. Antibiotics, 10(9), 1082. https://doi.org/10.3390/antibiotics10091082