Antimicrobial Stewardship Program: Reducing Antibiotic’s Spectrum of Activity Is not the Solution to Limit the Emergence of Multidrug-Resistant Bacteria
Abstract
:1. Introduction
2. Antibiotic Resistance Is an Ancient Phenomenon Enhanced by Antibiotic Prescriptions
3. The Effect of Antibiotics on the Microbiota Is a Complex Phenomenon
3.1. Gut Microbiota
3.2. Impact of Antibiotic on Gut Microbiota
3.3. Antibiotic Spectrum
3.4. Antibiotic Concentration in Gut Microbiota
4. In Hospitalized Patients, Other Factors Contribute to the Emergence of Resistance
5. How Can We Apply These Findings in Clinical Practice
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Antonelli, M.; Mercurio, G.; Di Nunno, S.; Recchioni, G.; Deangelis, G. De-Escalation Antimicrobial Chemotherapy in Critically III Patients: Pros and Cons. J. Chemother. 2001, 13 Spec No 1, 218–223. [Google Scholar] [CrossRef]
- Rello, J.; Vidaur, L.; Sandiumenge, A.; Rodríguez, A.; Gualis, B.; Boque, C.; Diaz, E. De-Escalation Therapy in Ventilator-Associated Pneumonia. Crit. Care Med. 2004, 32, 2183–2190. [Google Scholar] [CrossRef]
- Deresinski, S. Principles of Antibiotic Therapy in Severe Infections: Optimizing the Therapeutic Approach by Use of Laboratory and Clinical Data. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2007, 45 (Suppl. 3), S177–S183. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Cravoisy, A.; Barraud, D.; Conrad, M.; Nace, L.; Lemarié, J.; Bollaert, P.-E.; Gibot, S. Factors Influencing the Implementation of Antibiotic De-Escalation and Impact of This Strategy in Critically Ill Patients. Crit. Care Lond. Engl. 2013, 17, R140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakbar, I.; De Waele, J.J.; Tabah, A.; Einav, S.; Martin-Loeches, I.; Leone, M. Antimicrobial De-Escalation in the ICU: From Recommendations to Level of Evidence. Adv. Ther. 2020, 37, 3083–3096. [Google Scholar] [CrossRef] [PubMed]
- Pilmis, B.; Le Monnier, A.; Zahar, J.-R. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms 2020, 8, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieneisen, L.; Dasari, M.; Gould, T.J.; Björk, J.R.; Grenier, J.-C.; Yotova, V.; Jansen, D.; Gottel, N.; Gordon, J.B.; Learn, N.H.; et al. Gut Microbiome Heritability Is Nearly Universal but Environmentally Contingent. Science 2021, 373, 181–186. [Google Scholar] [CrossRef]
- O’Toole, P.W.; Jeffery, I.B. Gut Microbiota and Aging. Science 2015, 350, 1214–1215. [Google Scholar] [CrossRef]
- Faith, J.J.; Guruge, J.L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A.L.; Clemente, J.C.; Knight, R.; Heath, A.C.; Leibel, R.L.; et al. The Long-Term Stability of the Human Gut Microbiota. Science 2013, 341, 1237439. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, H.; Klaukka, T.; Vuopio-Varkila, J.; Muotiala, A.; Helenius, H.; Lager, K.; Huovinen, P. The Effect of Changes in the Consumption of Macrolide Antibiotics on Erythromycin Resistance in Group A Streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med. 1997, 337, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Haan, T.J.; Drown, D.M. Unearthing Antibiotic Resistance Associated with Disturbance-Induced Permafrost Thaw in Interior Alaska. Microorganisms 2021, 9, 116. [Google Scholar] [CrossRef]
- Kashuba, E.; Dmitriev, A.A.; Kamal, S.M.; Melefors, O.; Griva, G.; Römling, U.; Ernberg, I.; Kashuba, V.; Brouchkov, A. Ancient Permafrost Staphylococci Carry Antibiotic Resistance Genes. Microb. Ecol. Health Dis. 2017, 28, 1345574. [Google Scholar] [CrossRef]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic Resistance Is Ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Warinner, C.; Rodrigues, J.F.M.; Vyas, R.; Trachsel, C.; Shved, N.; Grossmann, J.; Radini, A.; Hancock, Y.; Tito, R.Y.; Fiddyment, S.; et al. Pathogens and Host Immunity in the Ancient Human Oral Cavity. Nat. Genet. 2014, 46, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Dowd, S.E.; Toranzos, G.A.; Marota, I.; Cano, R.J. Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy. PLoS ONE 2015, 10, e0138135. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, A.C.; Wang, W.; Koteva, K.; Barton, H.A.; McArthur, A.G.; Wright, G.D. A Diverse Intrinsic Antibiotic Resistome from a Cave Bacterium. Nat. Commun. 2016, 7, 13803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benveniste, R.; Davies, J. Aminoglycoside Antibiotic-Inactivating Enzymes in Actinomycetes Similar to Those Present in Clinical Isolates of Antibiotic-Resistant Bacteria. Proc. Natl. Acad. Sci. USA 1973, 70, 2276–2280. [Google Scholar] [CrossRef] [Green Version]
- Humeniuk, C.; Arlet, G.; Gautier, V.; Grimont, P.; Labia, R.; Philippon, A. Beta-Lactamases of Kluyvera Ascorbata, Probable Progenitors of Some Plasmid-Encoded CTX-M Types. Antimicrob. Agents Chemother. 2002, 46, 3045–3049. [Google Scholar] [CrossRef] [Green Version]
- Schlatter, D.C.; Kinkel, L.L. Global Biogeography of Streptomyces Antibiotic Inhibition, Resistance, and Resource Use. FEMS Microbiol. Ecol. 2014, 88, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Shen, K.; Zhang, Y.; Ying, J.; Zhu, T.; Liu, Y.; Xu, L.; Lin, C.; Zhang, K.; Li, P.; et al. Characterization of a Novel BlaKLUC Variant With Reduced β-Lactam Resistance From an IncA/C Group Plasmid in a Clinical Klebsiella Pneumoniae Isolate. Front. Microbiol. 2018, 9, 1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mather, A.E.; Baker, K.S.; McGregor, H.; Coupland, P.; Mather, P.L.; Deheer-Graham, A.; Parkhill, J.; Bracegirdle, P.; Russell, J.E.; Thomson, N.R. Bacillary Dysentery from World War 1 and NCTC1, the First Bacterial Isolate in the National Collection. Lancet Lond. Engl. 2014, 384, 1720. [Google Scholar] [CrossRef]
- Ruppé, E.; Burdet, C.; Grall, N.; de Lastours, V.; Lescure, F.-X.; Andremont, A.; Armand-Lefèvre, L. Impact of Antibiotics on the Intestinal Microbiota Needs to Be Re-Defined to Optimize Antibiotic Usage. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018, 24, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S RRNA Sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar] [CrossRef] [PubMed]
- Dethlefsen, L.; Relman, D.A. Incomplete Recovery and Individualized Responses of the Human Distal Gut Microbiota to Repeated Antibiotic Perturbation. Proc. Natl. Acad. Sci. USA 2011, 108 Suppl 1, 4554–4561. [Google Scholar] [CrossRef] [Green Version]
- Ruppé, E.; Armand-Lefèvre, L.; Estellat, C.; Consigny, P.-H.; El Mniai, A.; Boussadia, Y.; Goujon, C.; Ralaimazava, P.; Campa, P.; Girard, P.-M.; et al. High Rate of Acquisition but Short Duration of Carriage of Multidrug-Resistant Enterobacteriaceae After Travel to the Tropics. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 61, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Woerther, P.-L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in Human Fecal Carriage of Extended-Spectrum β-Lactamases in the Community: Toward the Globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.P.; Bohnhoff, M.; Rifkind, D. The Effect of an Antibiotic on the Susceptibility of the Mouse’s Intestinal Tract to Salmonella Infection. Trans. Am. Clin. Climatol. Assoc. 1957, 68, 51–58. [Google Scholar]
- Shealy, N.G.; Yoo, W.; Byndloss, M.X. Colonization Resistance: Metabolic Warfare as a Strategy against Pathogenic Enterobacteriaceae. Curr. Opin. Microbiol. 2021, 64, 82–90. [Google Scholar] [CrossRef]
- Kim, S.; Covington, A.; Pamer, E.G. The Intestinal Microbiota: Antibiotics, Colonization Resistance, and Enteric Pathogens. Immunol. Rev. 2017, 279, 90–105. [Google Scholar] [CrossRef]
- Lawley, T.D.; Clare, S.; Walker, A.W.; Stares, M.D.; Connor, T.R.; Raisen, C.; Goulding, D.; Rad, R.; Schreiber, F.; Brandt, C.; et al. Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium Difficile Disease in Mice. PLoS Pathog. 2012, 8, e1002995. [Google Scholar] [CrossRef] [Green Version]
- Leo, S.; Lazarevic, V.; Gaïa, N.; Estellat, C.; Girard, M.; Matheron, S.; Armand-Lefèvre, L.; Andremont, A.; Schrenzel, J.; Ruppé, E. The Intestinal Microbiota Predisposes to Traveler’s Diarrhea and to the Carriage of Multidrug-Resistant Enterobacteriaceae after Traveling to Tropical Regions. Gut Microbes 2019, 10, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Stiefel, U.; Pultz, N.J.; Donskey, C.J. Effect of Carbapenem Administration on Establishment of Intestinal Colonization by Vancomycin-Resistant Enterococci and Klebsiella Pneumoniae in Mice. Antimicrob. Agents Chemother. 2007, 51, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pultz, M.J.; Donskey, C.J. Effects of Imipenem-Cilastatin, Ertapenem, Piperacillin-Tazobactam, and Ceftriaxone Treatments on Persistence of Intestinal Colonization by Extended-Spectrum-Beta-Lactamase-Producing Klebsiella Pneumoniae Strains in Mice. Antimicrob. Agents Chemother. 2007, 51, 3044–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa-Gongora, C.; Jessen, L.R.; Kieler, I.N.; Damborg, P.; Bjørnvad, C.R.; Gudeta, D.D.; Pires Dos Santos, T.; Sablier-Gallis, F.; Sayah-Jeanne, S.; Corbel, T.; et al. Impact of Oral Amoxicillin and Amoxicillin/Clavulanic Acid Treatment on Bacterial Diversity and β-Lactam Resistance in the Canine Faecal Microbiota. J. Antimicrob. Chemother. 2020, 75, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Venturini, C.; Bowring, B.; Fajardo-Lubian, A.; Devine, C.; Iredell, J. Effects of Antibiotic Treatment with Piperacillin/Tazobactam versus Ceftriaxone on the Composition of the Murine Gut Microbiota. Antimicrob. Agents Chemother. 2021, 65, e01504-20. [Google Scholar] [CrossRef]
- Brogard, J.M.; Caro-Sampara, F.; Westphal, J.F.; Jehl, F. Biliary diffusion of tazocillin in man. Pathol. Biol. 1999, 47, 836–844. [Google Scholar] [PubMed]
- Grohs, P.; Kernéis, S.; Sabatier, B.; Lavollay, M.; Carbonnelle, E.; Rostane, H.; Souty, C.; Meyer, G.; Gutmann, L.; Mainardi, J.L. Fighting the Spread of AmpC-Hyperproducing Enterobacteriaceae: Beneficial Effect of Replacing Ceftriaxone with Cefotaxime. J. Antimicrob. Chemother. 2014, 69, 786–789. [Google Scholar] [CrossRef]
- Burdet, C.; Grall, N.; Linard, M.; Bridier-Nahmias, A.; Benhayoun, M.; Bourabha, K.; Magnan, M.; Clermont, O.; d’Humières, C.; Tenaillon, O.; et al. Ceftriaxone and Cefotaxime Have Similar Effects on the Intestinal Microbiota in Human Volunteers Treated by Standard-Dose Regimens. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Pilmis, B.; Jiang, O.; Mizrahi, A.; Nguyen Van, J.-C.; Lourtet-Hascoët, J.; Voisin, O.; Le Lorc’h, E.; Hubert, S.; Ménage, E.; Azria, P.; et al. No Significant Difference between Ceftriaxone and Cefotaxime in the Emergence of Antibiotic Resistance in the Gut Microbiota of Hospitalized Patients: A Pilot Study. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 104, 617–623. [Google Scholar] [CrossRef]
- Lee, S.-E.; Lim, J.-Y.; Ryu, D.-B.; Kim, T.W.; Park, S.S.; Jeon, Y.-W.; Yoon, J.-H.; Cho, B.-S.; Eom, K.-S.; Kim, Y.-J.; et al. Alteration of the Intestinal Microbiota by Broad-Spectrum Antibiotic Use Correlates with the Occurrence of Intestinal Graft-versus-Host Disease. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2019, 25, 1933–1943. [Google Scholar] [CrossRef]
- Doan, T.; Hinterwirth, A.; Worden, L.; Arzika, A.M.; Maliki, R.; Abdou, A.; Kane, S.; Zhong, L.; Cummings, S.L.; Sakar, S.; et al. Gut Microbiome Alteration in MORDOR I: A Community-Randomized Trial of Mass Azithromycin Distribution. Nat. Med. 2019, 25, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Graziani, A.L.; Gibson, G.A.; MacGregor, R.R. Biliary Excretion of Imipenem-Cilastatin in Hospitalized Patients. Antimicrob. Agents Chemother. 1987, 31, 1718–1721. [Google Scholar] [CrossRef] [Green Version]
- Ikawa, K.; Nakashima, A.; Morikawa, N.; Ikeda, K.; Murakami, Y.; Ohge, H.; Derendorf, H.; Sueda, T. Clinical Pharmacokinetics of Meropenem and Biapenem in Bile and Dosing Considerations for Biliary Tract Infections Based on Site-Specific Pharmacodynamic Target Attainment. Antimicrob. Agents Chemother. 2011, 55, 5609–5615. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.K.; Sahly, Y.; Mistry, G.; Waldman, S.; Musson, D.; Majumdar, A.; Xu, X.; Yu, S.; Lin, J.H.; Singh, R.; et al. Comparative Disposition of [14C]Ertapenem, a Novel Carbapenem Antibiotic, in Rat, Monkey and Man. Xenobiotica Fate Foreign Compd. Biol. Syst. 2004, 34, 379–389. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehus, R.; van Kleef, E.; Mo, Y.; Turlej-Rogacka, A.; Lammens, C.; Carmeli, Y.; Goossens, H.; Tacconelli, E.; Carevic, B.; Preotescu, L.; et al. Quantifying Antibiotic Impact on Within-Patient Dynamics of Extended-Spectrum Beta-Lactamase Resistance. eLife 2020, 9. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Swidsinski, A.; Loening-Baucke, V.; Lochs, H.; Hale, L.-P. Spatial Organization of Bacterial Flora in Normal and Inflamed Intestine: A Fluorescence in Situ Hybridization Study in Mice. World J. Gastroenterol. 2005, 11, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef]
- Sturød, K.; Dhariwal, A.; Dahle, U.R.; Vestrheim, D.F.; Petersen, F.C. Impact of Narrow Spectrum Penicillin V on the Oral and Fecal Resistome in a Young Child Treated for Otitis Media. J. Glob. Antimicrob. Resist. 2019. [Google Scholar] [CrossRef]
- Mulder, M.; Radjabzadeh, D.; Kiefte-de Jong, J.C.; Uitterlinden, A.G.; Kraaij, R.; Stricker, B.H.; Verbon, A. Long-Term Effects of Antimicrobial Drugs on the Composition of the Human Gut Microbiota. Gut Microbes 2020, 12, 1795492. [Google Scholar] [CrossRef] [PubMed]
- Woerther, P.-L.; Lepeule, R.; Burdet, C.; Decousser, J.-W.; Ruppé, É.; Barbier, F. Carbapenems and Alternative β-Lactams for the Treatment of Infections Due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: What Impact on Intestinal Colonisation Resistance? Int. J. Antimicrob. Agents 2018, 52, 762–770. [Google Scholar] [CrossRef]
- Madaras-Kelly, K.; Jones, M.; Remington, R.; Caplinger, C.; Huttner, B.; Samore, M. Description and Validation of a Spectrum Score Method to Measure Antimicrobial De-Escalation in Healthcare Associated Pneumonia from Electronic Medical Records Data. BMC Infect. Dis. 2015, 15, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F.; et al. Elaboration of a Consensual Definition of De-Escalation Allowing a Ranking of β-Lactams. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2015, 21, 649.e1–649.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giantsou, E.; Liratzopoulos, N.; Efraimidou, E.; Panopoulou, M.; Alepopoulou, E.; Kartali-Ktenidou, S.; Manolas, K. De-Escalation Therapy Rates Are Significantly Higher by Bronchoalveolar Lavage than by Tracheal Aspirate. Intensive Care Med. 2007, 33, 1533–1540. [Google Scholar] [CrossRef]
- Niederman, M.S.; Soulountsi, V. De-Escalation Therapy: Is It Valuable for the Management of Ventilator-Associated Pneumonia? Clin. Chest Med. 2011, 32, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Cotta, M.O.; Garnacho-Montero, J.; Schouten, J.; Roberts, J.A.; Lipman, J.; Tacey, M.; Timsit, J.-F.; Leone, M.; Zahar, J.R.; et al. A Systematic Review of the Definitions, Determinants, and Clinical Outcomes of Antimicrobial De-Escalation in the Intensive Care Unit. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Pilmis, B.; Jullien, V.; Tabah, A.; Zahar, J.-R.; Brun-Buisson, C. Piperacillin-Tazobactam as Alternative to Carbapenems for ICU Patients. Ann. Intensive Care 2017, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Ling, M.L.; Tee, Y.M.; Tan, S.G.; Amin, I.M.; How, K.B.; Tan, K.Y.; Lee, L.C. Risk Factors for Acquisition of Carbapenem Resistant Enterobacteriaceae in an Acute Tertiary Care Hospital in Singapore. Antimicrob. Resist. Infect. Control 2015, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Qin, Y.; Liu, J.; Li, Q.; Dong, Y.; Shang, Y.; Huang, Y.; Liu, R. Risk Factors for Carbapenem-Resistant Klebsiella Pneumoniae Infection/Colonization and Predictors of Mortality: A Retrospective Study. Pathog. Glob. Health 2015, 109, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Mavromanolakis, E.; Maraki, S.; Samonis, G.; Tselentis, Y.; Cranidis, A. Effect of Norfloxacin, Trimethoprim-Sulfamethoxazole and Nitrofurantoin on Fecal Flora of Women with Recurrent Urinary Tract Infections. J. Chemother. Florence Italy 1997, 9, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Isaac, S.; Scher, J.U.; Djukovic, A.; Jiménez, N.; Littman, D.R.; Abramson, S.B.; Pamer, E.G.; Ubeda, C. Short- and Long-Term Effects of Oral Vancomycin on the Human Intestinal Microbiota. J. Antimicrob. Chemother. 2017, 72, 128–136. [Google Scholar] [CrossRef]
- Hertz, F.B.; Budding, A.E.; van der Lugt-Degen, M.; Savelkoul, P.H.; Løbner-Olesen, A.; Frimodt-Møller, N. Effects of Antibiotics on the Intestinal Microbiota of Mice. Antibiotics 2020, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Léonard, F.; Andremont, A.; Leclerq, B.; Labia, R.; Tancrède, C. Use of Beta-Lactamase-Producing Anaerobes to Prevent Ceftriaxone from Degrading Intestinal Resistance to Colonization. J. Infect. Dis. 1989, 160, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, C.; Armand-Lefèvre, L.; Magnan, M.; Nazimoudine, A.; Timsit, J.-F.; Ruppé, E. Relationship between the Composition of the Intestinal Microbiota and the Tracheal and Intestinal Colonization by Opportunistic Pathogens in Intensive Care Patients. PLoS ONE 2020, 15, e0237260. [Google Scholar] [CrossRef]
- Araos, R.; Tai, A.K.; Snyder, G.M.; Blaser, M.J.; D’Agata, E.M.C. Predominance of Lactobacillus Spp. Among Patients Who Do Not Acquire Multidrug-Resistant Organisms. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Gosalbes, M.J.; Vázquez-Castellanos, J.F.; Angebault, C.; Woerther, P.-L.; Ruppé, E.; Ferrús, M.L.; Latorre, A.; Andremont, A.; Moya, A. Carriage of Enterobacteria Producing Extended-Spectrum β-Lactamases and Composition of the Gut Microbiota in an Amerindian Community. Antimicrob. Agents Chemother. 2016, 60, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Keith, J.W.; Dong, Q.; Sorbara, M.T.; Becattini, S.; Sia, J.K.; Gjonbalaj, M.; Seok, R.; Leiner, I.M.; Littmann, E.R.; Pamer, E.G. Impact of Antibiotic-Resistant Bacteria on Immune Activation and Clostridioides Difficile Infection in the Mouse Intestine. Infect. Immun. 2020, 88, e00362-19. [Google Scholar] [CrossRef]
- Gjonbalaj, M.; Keith, J.W.; Do, M.H.; Hohl, T.M.; Pamer, E.G.; Becattini, S. Antibiotic Degradation by Commensal Microbes Shields Pathogens. Infect. Immun. 2020, 88, e00012-20. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Ruiz-Garbajosa, P. Co-Resistance: An Opportunity for the Bacteria and Resistance Genes. Curr. Opin. Pharmacol. 2011, 11, 477–485. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-Escalation of Empirical Therapy Is Associated with Lower Mortality in Patients with Severe Sepsis and Septic Shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zahar, J.R.; Garrouste-Orgeas, M.; Ruckly, S.; Essaied, W.; Schwebel, C.; Timsit, J.F.; OUTCOMEREA Study Group. De-Escalation of Pivotal Beta-Lactam in Ventilator-Associated Pneumonia Does Not Impact Outcome and Marginally Affects MDR Acquisition. Intensive Care Med. 2016, 42, 2098–2100. [Google Scholar] [CrossRef]
- Foletto, V.S.; da Rosa, T.F.; Serafin, M.B.; Bottega, A.; Hörner, R. Repositioning of Non-Antibiotic Drugs as an Alternative to Microbial Resistance: A Systematic Review. Int. J. Antimicrob. Agents 2021, 58, 106380. [Google Scholar] [CrossRef]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive Impact of Non-Antibiotic Drugs on Human Gut Bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Liu, D.; Ren, H.-Y.; Zhang, X.-Y.; Zhang, J.; Yang, X.-J. Effects of Sepsis and Its Treatment Measures on Intestinal Flora Structure in Critical Care Patients. World J. Gastroenterol. 2021, 27, 2376–2393. [Google Scholar] [CrossRef]
- Le Bastard, Q.; Berthelot, L.; Soulillou, J.-P.; Montassier, E. Impact of Non-Antibiotic Drugs on the Human Intestinal Microbiome. Expert Rev. Mol. Diagn. 2021, 21, 911–924. [Google Scholar] [CrossRef] [PubMed]
- Paramythiotou, E.; Lucet, J.-C.; Timsit, J.-F.; Vanjak, D.; Paugam-Burtz, C.; Trouillet, J.-L.; Belloc, S.; Kassis, N.; Karabinis, A.; Andremont, A. Acquisition of Multidrug-Resistant Pseudomonas Aeruginosa in Patients in Intensive Care Units: Role of Antibiotics with Antipseudomonal Activity. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 38, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Bretonnière, C.; Leone, M.; Milési, C.; Allaouchiche, B.; Armand-Lefevre, L.; Baldesi, O.; Bouadma, L.; Decré, D.; Figueiredo, S.; Gauzit, R.; et al. Strategies to Reduce Curative Antibiotic Therapy in Intensive Care Units (Adult and Paediatric). Intensive Care Med. 2015, 41, 1181–1196. [Google Scholar] [CrossRef]
- Bernard, J.; Armand-Lefèvre, L.; Luce, E.; El Mniai, A.; Chau, F.; Casalino, E.; Andremont, A.; Ruppé, E. Impact of a Short Exposure to Levofloxacin on Faecal Densities and Relative Abundance of Total and Quinolone-Resistant Enterobacteriaceae. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2016, 22, 646.e1–646.e4. [Google Scholar] [CrossRef] [Green Version]
- Legeay, C.; Thépot-Seegers, V.; Pailhoriès, H.; Hilliquin, D.; Zahar, J.-R. Is Cohorting the Only Solution to Control Carbapenemase-Producing Enterobacteriaceae Outbreaks? A Single-Centre Experience. J. Hosp. Infect. 2018, 99, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.C.; Buckley, A.M.; Spittal, W.; Ewin, D.; Clark, E.; Altringham, J.; Bentley, K.; Moura, I.B.; Wilcox, M.H.; Woodford, N.; et al. The Effect of Intestinal Microbiota Dysbiosis on Growth and Detection of Carbapenemase-Producing Enterobacterales within an in Vitro Gut Model. J. Hosp. Infect. 2021, 113, 1–9. [Google Scholar] [CrossRef] [PubMed]
Biliary Excretion | Activity on Anaerobic Bacteria | Induction of Dysbiosis | References | |||
---|---|---|---|---|---|---|
Beta-Lactamase-Producing Anaerobic Gram-Negative Bacilli | Other Anaerobes | |||||
Penicillin | Amoxicillin | [35] | ||||
Amoxicillin-clavulanic acid | [35] | |||||
Piperacillin-tazobactam | [36,37] | |||||
Cephalosporins | Ceftriaxone | [38,39,40] | ||||
Cefotaxime | [38,39,40] | |||||
Cefepime | [41] | |||||
Macrolides | Azithromycin | [42] | ||||
Clindamycin | ||||||
Carbapenems | Imipenem | Inconclusive data | [43] | |||
Meropenem | [44] | |||||
Ertapenem | [45] | |||||
Fosfomycin | Fosfomycin | [46] | ||||
Aminoglycosides | Gentamicin | [47] | ||||
Amikacin | ||||||
Furanes | Nitrofurantoïn | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliba, R.; Mizrahi, A.; Gauthier, P.d.P.; Alban, L.M.; Zahar, J.-R.; Pilmis, B. Antimicrobial Stewardship Program: Reducing Antibiotic’s Spectrum of Activity Is not the Solution to Limit the Emergence of Multidrug-Resistant Bacteria. Antibiotics 2022, 11, 70. https://doi.org/10.3390/antibiotics11010070
Saliba R, Mizrahi A, Gauthier PdP, Alban LM, Zahar J-R, Pilmis B. Antimicrobial Stewardship Program: Reducing Antibiotic’s Spectrum of Activity Is not the Solution to Limit the Emergence of Multidrug-Resistant Bacteria. Antibiotics. 2022; 11(1):70. https://doi.org/10.3390/antibiotics11010070
Chicago/Turabian StyleSaliba, Rindala, Assaf Mizrahi, Péan de Ponfilly Gauthier, Le Monnier Alban, Jean-Ralph Zahar, and Benoît Pilmis. 2022. "Antimicrobial Stewardship Program: Reducing Antibiotic’s Spectrum of Activity Is not the Solution to Limit the Emergence of Multidrug-Resistant Bacteria" Antibiotics 11, no. 1: 70. https://doi.org/10.3390/antibiotics11010070
APA StyleSaliba, R., Mizrahi, A., Gauthier, P. d. P., Alban, L. M., Zahar, J. -R., & Pilmis, B. (2022). Antimicrobial Stewardship Program: Reducing Antibiotic’s Spectrum of Activity Is not the Solution to Limit the Emergence of Multidrug-Resistant Bacteria. Antibiotics, 11(1), 70. https://doi.org/10.3390/antibiotics11010070