The Overlooked Issue of Outpatient Combination Antibiotic Prescribing in Low- and Middle-Income Countries: An Example from Syria
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Setting and Data Source
4.2. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuehn, B.M. Alarming Antimicrobial Resistance Trends Emerge Globally. JAMA 2020, 324, 223. [Google Scholar] [CrossRef]
- Tomas, A.; Pavlović, N.; Stilinović, N.; Horvat, O.; Paut-Kusturica, M.; Dugandžija, T.; Tomić, Z.; Sabo, A. Increase and Change in the Pattern of Antibiotic Use in Serbia (2010–2019). Antibiotics 2021, 10, 397. [Google Scholar] [CrossRef]
- World Bank Country and Lending Groups. Country Classification. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups#:~:text=%EF%BB%BF%EF%BB%BF%20For%20the%20current,those%20with%20a%20GNI%20per (accessed on 31 December 2021).
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Allwell-Brown, G.; Hussain-Alkhateeb, L.; Sewe, M.O.; Kitutu, F.E.; Strömdahl, S.; Mårtensson, A.; Johansson, E.W. Determinants of trends in reported antibiotic use among sick children under five years of age across low-income and middle-income countries in 2005-17: A systematic analysis of user characteristics based on 132 national surveys from 73 countries. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 108, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Do, N.T.T.; Vu, H.T.L.; Nguyen, C.T.K.; Punpuing, S.; Khan, W.A.; Gyapong, M.; Asante, K.P.; Munguambe, K.; Gómez-Olivé, F.X.; John-Langba, J.; et al. Community-based antibiotic access and use in six low-income and middle-income countries: A mixed-method approach. Lancet Glob. health 2021, 9, e610–e619. [Google Scholar] [CrossRef]
- Sartelli, M.; Hardcastle, T.C.; Catena, F.; Chichom-Mefire, A.; Coccolini, F.; Dhingra, S.; Haque, M.; Hodonou, A.; Iskandar, K.; Labricciosa, F.M.; et al. Antibiotic Use in Low and Middle-Income Countries and the Challenges of Antimicrobial Resistance in Surgery. Antibiotics 2020, 9, 497. [Google Scholar] [CrossRef] [PubMed]
- Bebell, L.M.; Muiru, A.N. Antibiotic use and emerging resistance: How can resource-limited countries turn the tide? Glob. Heart 2014, 9, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, J.M.; Patrick, D.M.; Marra, F.; Ng, H.; Bowie, W.R.; Heule, L.; Muscat, M.; Monnet, D.L. Measurement of antibiotic consumption: A practical guide to the use of the Anatomical Thgerapeutic Chemical classification and Definied Daily Dose system methodology in Canada. Can. J. Infect. Dis. 2004, 15, 29–35. [Google Scholar] [CrossRef]
- Alhaffar, M.H.D.B.A.; Janos, S. Public health consequences after ten years of the Syrian crisis: A literature review. Glob. Health 2021, 17, 111. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Hafner, M.; Yerushalmi, E.; Smith, R.; Bellasio, J.; Vardavas, R.; Bienkowska-Gibbs, T.; Rubin, J. Estimating the economic costs of antimicrobial resistance: Model and results. In Santa Monica; RAND Corporation: Cambridge, UK, 2014. [Google Scholar]
- Jakovljevic, M.; Al Ahdab, S.; Jurisevic, M.; Mouselli, S. Antibiotic Resistance in Syria: A Local Problem Turns Into a Global Threat. Front. Public Health 2018, 6, 212. [Google Scholar] [CrossRef] [Green Version]
- Syrian Syndicate for Pharmacists. Laws and Orders That Coordinate Pharmacy Career in Syria. Damascus. 1994. Available online: https://www.moph.gov.lb/userfiles/files/Laws%26Regulations/law367-1994.pdf (accessed on 31 December 2021).
- Aljadeeah, S.; Wirtz, V.J.; Nagel, E. Outpatient antibiotic dispensing for the population with government health insurance in Syria in 2018–2019. Antibiotics 2020, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Bortone, B.; Jackson, C.; Hsia, Y.; Bielicki, J.; Magrini, N.; Sharland, M. High global consumption of potentially inappropriate fixed dose combination antibiotics: Analysis of data from 75 countries. PLoS ONE 2021, 16, e0241899. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Releases the 2019 AWaRe Classification Antibiotics. 2019. Available online: https://www.who.int/medicines/news/2019/WHO_releases2019AWaRe_classification_antibiotics/en/ (accessed on 18 September 2020).
- Levy-Hara, G.; Amábile-Cuevas, C.F.; Gould, I.; Hutchinson, J.; Abbo, L.; Saxynger, L.; Vlieghe, E.; Cardoso, F.L.; Methar, S.; Kanj, S.; et al. “Ten Commandments” for the Appropriate use of Antibiotics by the Practicing Physician in an Outpatient Setting. Front. Microbiol. 2011, 2, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyar, O.J.; Beović, B.; Pulcini, C.; Tacconelli, E.; Hulscher, M.; Cookson, B. ESCMID generic competencies in antimicrobial prescribing and stewardship: Towards a European consensus. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, M.G.; Heil, E.L.; Hayes, B.D. Appropriate Antibiotic Therapy. Emerg. Med. Clin. North Am. 2017, 35, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Benko, R.; Matuz, M.; Viola, R.; Doró, P.; Hajdú, E.; Soós, G. Quantitative disparities in outpatient antibiotic exposure in a Hungarian county. J. Antimicrob. Chemother. 2008, 62, 1448–1450. [Google Scholar] [CrossRef]
- Melaku, T.; Gashaw, M.; Chelkeba, L.; Berhane, M.; Bekele, S.; Lemi, G.; Wakjira, T.; Tesfaw, G.; Mekonnen, Z.; Ali, S.; et al. Evaluation of Adult Outpatient Antibiotics Use at Jimma Medical Center (with Defined Daily Doses for Usage Metrics). Infect. Drug Resist. 2021, 14, 1649–1658. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef]
- Fouad, F.M.; Sparrow, A.; Tarakji, A.; Alameddine, M.; El-Jardali, F.; Coutts, A.P.; El Arnaout, N.; Karroum, L.B.; Jawad, M.; Roborgh, S.; et al. Health workers and the weaponisation of health care in Syria: A preliminary inquiry for The Lancet-American University of Beirut Commission on Syria. Lancet 2017, 390, 2516–2526. [Google Scholar] [CrossRef] [Green Version]
- Abbara, A.; Rawson, T.M.; Karah, N.; El-Amin, W.; Hatcher, J.; Tajaldin, B.; Dar, O.; Dewachi, O.; Sitta, G.A.; Uhlin, B.E. Antimicrobial resistance in the context of the Syrian conflict: Drivers before and after the onset of conflict and key recommendations. Int. J. Infect. Dis. 2018, 73, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Isbera, M. Quality control of pharmaceutical dosage form manufactured in Syria during the current war. In Proceedings of the Joint Event on 4th International Conference on Drug Discovery, Designing Chemistry and Pharmaceutical Analysis & International Conference on Biobetters and Regulatory Affairs, Vancouver, BC, Canada, 27–28 June 2018. [Google Scholar]
- Kallen, M.C.; Natsch, S.; Opmeer, B.C.; Hulscher, M.; Schouten, J.A.; Prins, J.M.; van der Linden, P. How to measure quantitative antibiotic use in order to support antimicrobial stewardship in acute care hospitals: A retrospective observational study. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2019, 38, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wushouer, H.; Wang, Z.; Tian, Y.; Zhou, Y.; Zhu, D.; Vuillermin, D.; Shi, L.; Guan, X. The impact of physicians’ knowledge on outpatient antibiotic use: Evidence from China’s county hospitals. Medicine 2020, 99, e18852. [Google Scholar] [CrossRef]
- McKay, R.; Mah, A.; Law, M.R.; McGrail, K.; Patrick, D.M. Systematic review of factors associated with antibiotic prescribing for respiratory tract infections. Antimicrob. Agents Chemother. 2016, 60, 4106–4118. [Google Scholar] [CrossRef] [Green Version]
- Kabbani, S.; Palms, D.; Bartoces, M.; Stone, N.; Hicks, L.A. Outpatient Antibiotic Prescribing for Older Adults in the United States: 2011 to 2014. J. Am. Geriatr. Soc. 2018, 66, 1998–2002. [Google Scholar] [CrossRef]
- Aabenhus, R.; Siersma, V.; Hansen, M.P.; Bjerrum, L. Antibiotic prescribing in Danish general practice 2004–2013. J. Antimicrob. Chemother. 2016, 71, 2286–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blix, H.S.; Engeland, A.; Litleskare, I.; Rønning, M. Age-and gender-specific antibacterial prescribing in Norway. J. Antimicrob. Chemother. 2007, 59, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Nitzan, O.; Low, M.; Lavi, I.; Hammerman, A.; Klang, S.; Raz, R. Variability in outpatient antimicrobial consumption in Israel. Infection 2010, 38, 12–18. [Google Scholar] [CrossRef]
- Ansari, A.A.; Alawi, S.A.; Qahtani, M.A.; Darwish, A. Outpatient parenteral antimicrobial therapy (OPAT) in the Kingdom of Bahrain: Efficacy, patient satisfaction and cost effectiveness. Open Infect. Dis. J. 2013, 7, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Coenen, S.; Muller, A.; Adriaenssens, N.; Vankerckhoven, V.; Hendrickx, E.; Goossens, H. European Surveillance of Antimicrobial Consumption (ESAC): Outpatient parenteral antibiotic treatment in Europe. J. Antimicrob. Chemother. 2009, 64, 200–205. [Google Scholar] [CrossRef]
- Duncan, C.J.; Barr, D.A.; Seaton, R.A. Outpatient parenteral antimicrobial therapy with ceftriaxone, a review. Int. J. Clin. Pharm. 2012, 34, 410–417. [Google Scholar] [CrossRef] [PubMed]
- WHO Collaborating Centre for Drug Statistics Methodology. Anatomical Therapeutic Chemical (ATC) Classification System: ATC/DDD Index 2020. Available online: http://www.whocc.no/atcddd (accessed on 25 April 2020).
Age Category | Female | Male | Total | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
18–29 | 805 | 15.63% | 121 | 5.09% | 926 | 12.31% |
30–39 | 1614 | 31.35% | 488 | 20.55% | 2102 | 27.94% |
40–49 | 1256 | 24.39% | 738 | 31.07% | 1994 | 26.50% |
50–59 | 1082 | 21.01% | 623 | 26.23% | 1705 | 22.66% |
60–69 | 337 | 6.54% | 266 | 11.20% | 603 | 8.01% |
≥70 | 55 | 1.07% | 139 | 5.85% | 194 | 2.58% |
Total | 5149 | 100.00% | 2375 | 100.00% | 7524 | 100.00% |
Rank | ATC (INN) | No (%) | Rate ** |
---|---|---|---|
1. | J01CR + J01DD | 2427 (27.27%) | 29.85 |
2. | J01DD + J01FA | 1093 (12.28%) | 13.44 |
3. | J01DD + J01DD | 1077 (12.10%) | 13.24 |
4. | J01DC + J01DD | 832 (9.35%) | 10.23 |
5. | J01DD + J01MA | 576 (6.47%) | 7.08 |
6. | J01CR + J01FF | 239 (2.69%) | 2.94 |
7. | J01DD + J01GB | 195 (2.19%) | 2.40 |
8. | J01CA + J01FA | 195 (2.19%) | 2.40 |
9. | J01CR + J01MA | 154 (1.73%) | 1.89 |
10. | J01CR + J01FA | 137 (1.54%) | 1.68 |
Top 10 | 6925 (77.82%) | 85.16 | |
Other (11–144) | 1974 (22.18%) | 24.28 | |
Total | 8899 (100.00%) | 109.44 |
ATC | Dispensing Rate | |||||
---|---|---|---|---|---|---|
Age Group | ||||||
18–29 | 30–39 | 40–49 | 50–59 | 60–69 | ≥70 | |
J01CR + J01DD | 36.22 | 40.04 | 31.06 | 25.44 | 15.53 | 27.46 |
J01DD + J01FA | 15.03 | 16.70 | 13.50 | 11.17 | 11.65 | 13.73 |
J01DD + J01DD | 20.57 | 18.95 | 13.69 | 8.98 | 6.87 | 9.75 |
J01DC + J01DD | 17.25 | 13.50 | 11.85 | 7.52 | 3.29 | 3.97 |
J01DD + J01MA | 5.54 | 8.49 | 5.90 | 6.89 | 7.67 | 13.37 |
J01CR + J01FF | 3.82 | 3.94 | 3.53 | 2.60 | 0.80 | 0.00 |
J01DD + J01GB | 3.33 | 2.87 | 2.42 | 1.87 | 2.39 | 0.72 |
J01CA + J01FA | 2.09 | 2.81 | 2.37 | 2.01 | 2.89 | 2.17 |
J01CR + J01MA | 1.85 | 1.35 | 2.52 | 1.69 | 1.69 | 3.97 |
J01CR + J01FA | 2.96 | 2.25 | 1.94 | 0.78 | 1.49 | 1.08 |
Rank | ATC (INN) | No (%) | Rate * |
---|---|---|---|
1. | J01CR02 + J01DD04 (amoxicillin and BLI* + ceftriaxone) | 1567 (17.61%) | 19.27 |
2. | J01CR02 + J01DD63 (amoxicillin and BLI + ceftriaxone and BLI) | 723 (8.12%) | 8.89 |
3. | J01DD63 + J01FA09 (ceftriaxone and BLI + clarithromycin) | 391 (4.39%) | 4.81 |
4. | J01DD04 + J01DD08 (ceftriaxone + cefixime) | 336 (3.78%) | 4.13 |
5. | J01DD04 + J01FA09 (ceftriaxone + clarithromycin) | 330 (3.71%) | 4.06 |
6. | J01DC02 + J01DD04 (cefuroxime + ceftriaxone) | 298 (3.35%) | 3.66 |
7. | J01DD04 + J01DD15 (ceftriaxone + cefdinir) | 235 (2.64%) | 2.89 |
8. | J01DD08 + J01DD63 (cefixime + ceftriaxone and BLI) | 231 (2.60%) | 2.84 |
9. | J01DC02 + J01DD63 (cefuroxime + ceftriaxone and BLI) | 226 (2.54%) | 2.78 |
10. | J01CR02 + J01FF02 (amoxicillin and BLI + lincomycin) | 218 (2.45%) | 2.68 |
Top 10 | 4555 (51.19%) | 56.02 | |
Other (11–402) | 3455 (38.82%) | 42.49 | |
Total | 8899 (100.00%) | 109.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomas, A.; Aljadeeah, S. The Overlooked Issue of Outpatient Combination Antibiotic Prescribing in Low- and Middle-Income Countries: An Example from Syria. Antibiotics 2022, 11, 74. https://doi.org/10.3390/antibiotics11010074
Tomas A, Aljadeeah S. The Overlooked Issue of Outpatient Combination Antibiotic Prescribing in Low- and Middle-Income Countries: An Example from Syria. Antibiotics. 2022; 11(1):74. https://doi.org/10.3390/antibiotics11010074
Chicago/Turabian StyleTomas, Ana, and Saleh Aljadeeah. 2022. "The Overlooked Issue of Outpatient Combination Antibiotic Prescribing in Low- and Middle-Income Countries: An Example from Syria" Antibiotics 11, no. 1: 74. https://doi.org/10.3390/antibiotics11010074
APA StyleTomas, A., & Aljadeeah, S. (2022). The Overlooked Issue of Outpatient Combination Antibiotic Prescribing in Low- and Middle-Income Countries: An Example from Syria. Antibiotics, 11(1), 74. https://doi.org/10.3390/antibiotics11010074