Antimicrobial Challenge in Acute Care Surgery
Abstract
:1. Introduction
2. Antimicrobial Resistance
3. Inflammatory Response and Infections in Acute Care Surgery: The Evolution of Sepsis Definition and the Role of Biochemical Markers and Prediction Scores
4. The Management of Infections in Acute Care Surgery
4.1. Source Control
- (First) Time: start as soon as possible;
- Totalization: remove any infective source;
- Technique: use adequate techniques;
- (Second) Time: avoid clinical deterioration through required or planned successive procedures.
- Third-generation cephalosporines (e.g., cefotaxime, ceftriaxone, ceftazidime) in combination with metronidazole are active against Enterobacteriaceae and may be considered for uncomplicated IAIs [146,149]. Recently, two fifth-generation cephalosporines, namely ceftolozane/tazobactam and ceftazidime/avibactam, have been approved as treatments for complicated IAIs in combination with metronidazole, given to their action against several multidrug resistant bacteria [150,151,152];
4.2. Infection Prevention and Control
- Preparing for action;
- Baseline assessment;
- Developing and executing an action plan;
- Assessing impact;
- Sustaining the program over the long term.
- Perform hand hygiene;
- Use personal protective equipment in case of possible exposure to infectious agents;
- Follow respiratory hygiene;
- Guarantee adequate patient placement;
- Clean and disinfect environment, patient equipment and medical devices adequately;
- Handle textile and laundry with caution;
- Follow safe injection practices;
- Allow healthcare professional safety;
- Employ transmission-based precautions in case of known or suspected infections.
4.3. Antimicrobial Stewardship
- Dedicate human, financial, and information technology resources to achieve program effectiveness;
- Designate a leader or co-leaders (e.g., physicians or pharmacists) accountable for program development and results;
- Designate a pharmacist able to improve antimicrobial use;
- Implement in-hospital interventions (e.g., prospective audit and feedback or preauthorization);
- Monitor antibiotic use, impact of interventions and infection-related outcomes;
- Report information on antibiotic use and resistance to dedicated hospital workers;
- Educate hospital workers and patients on antibiotic-related adverse reactions, AMR, and optimal antimicrobial use.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Committee to Develop the Reorganized Specialty of Trauma and Emergency Surgery. Acute care surgery: Trauma, critical care, and emergency surgery. J. Trauma 2005, 58, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Kutcher, M.E.; Sperry, J.L.; Rosengart, M.R.; Mohan, D.; Hoffman, M.K.; Neal, M.D.; Alarcon, L.H.; Watson, G.A.; Puyana, J.C.; Bauzá, G.M.; et al. Surgical rescue: The next pillar of acute care surgery. J. Trauma Acute Care Surg. 2017, 82, 280–286. [Google Scholar] [CrossRef]
- Kutcher, M.E.; Sperry, J.L.; Rosengart, M.R.; Mohan, D.; Hoffman, M.K.; Neal, M.D.; Alarcon, L.H.; Watson, G.A.; Puyana, J.C.; Bauzá, G.M.; et al. Technical Evidence Review for Emergency Major Abdominal Operation Conducted for the AHRQ Safety Program for Improving Surgical Care and Recovery. J Am. Coll. Surg. 2020, 231, 743–764. [Google Scholar] [CrossRef]
- Stewart, B.W.K.P.; Khanduri, P.; McCord, C.; Ohene-Yeboah, M.; Uranues, S.; Vega Rivera, F.; Mock, C. Global disease burden of conditions requiring emergency surgery. Br. J. Surg. 2014, 101, e9–e22. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, L.M.; Keeney-Bonthrone, T.P.; Gwinn, E.; Wakam, G.K.; Anderson, M.S.; Delano, M.J. Short-term versus long-term trauma mortality: A systematic review. J. Trauma Acute Care Surg. 2019, 87, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Narayan, M.; Tesoriero, R.; Bruns, B.R.; Klyushnenkova, E.N.; Chen, H.; Diaz, J.J. Acute Care Surgery: Defining the Economic Burden of Emergency General Surgery. J. Am. Coll. Surg. 2016, 222, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Ogola, G.O.; Gale, S.C.; Haider, A.; Shafi, S. The financial burden of emergency general surgery: National estimates 2010 to 2060. J. Trauma Acute Care Surg. 2015, 79, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Chana, P.; Burns, E.M.; Arora, S.; Darzi, A.W.; Faiz, O.D. A Systematic Review of the Impact of Dedicated Emergency Surgical Services on Patient Outcomes. Ann. Surg. 2016, 263, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Havens, J.M.; Peetz, A.B.; Do, W.S.; Cooper, Z.; Kelly, E.; Askari, R.; Reznor, G.; Salim, A. The excess morbidity and mortality of emergency general surgery. J. Trauma Acute Care Surg. 2015, 78, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.W.; Olufajo, O.A.; Brat, G.A.; Rose, J.A.; Zogg, C.K.; Haider, A.H.; Salim, A.; Havens, J.M. Use of National Burden to Define Operative Emergency General Surgery. JAMA Surg. 2016, 151, e160480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergis, A.; Metcalfe, J.; Stogryn, S.E.; Clouston, K.; Hardy, K. Impact of acute care surgery on timeliness of care and patient outcomes: A systematic review of the literature. Can. J. Surg. 2019, 62, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ball, C.G.; Murphy, P.; Verhoeff, K.; Albusadi, O.; Patterson, M.; Widder, S.; Hameed, S.M.; Parry, N.; Vogt, K.; Kortbeek, J.B.; et al. A 30-day prospective audit of all inpatient complications following acute care surgery: How well do we really perform? Can. J. Surg. 2020, 63, E150–E154. [Google Scholar] [CrossRef] [PubMed]
- Sax, H.; Uçkay, I.; Balmelli, C.; Bernasconi, E.; Boubaker, K.; Mühlemann, K.; Ruef, C.; Troillet, N.; Widmer, A.; Zanetti, G.; et al. Overall burden of healthcare-associated infections among surgical patients. Results of a national study. Ann. Surg. 2011, 253, 365–370. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accessed on 17 May 2022).
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar] [CrossRef]
- Howard, S.J.; Catchpole, M.; Watson, J.; Davies, S.C. Antibiotic resistance: Global response needed. Lancet Infect. Dis. 2013, 13, 1001–1003. [Google Scholar] [CrossRef]
- Davis, M.F.; Price, L.B.; Liu, C.M.; Silbergeld, E.K. An ecological perspective on U.S. industrial poultry production: The role of anthropogenic ecosystems on the emergence of drug-resistant bacteria from agricultural environments. Curr. Opin. Microbiol. 2011, 14, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Venter, H.; Henningsen, M.L.; Begg, S.L. Antimicrobial resistance in healthcare, agriculture and the environment: The biochemistry behind the headlines. Essays Biochem. 2017, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Westblade, L.F.; Errington, J.; Dorr, T. Antibiotic tolerance. PLoS Pathog. 2020, 16, e1008892. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Wright, G.D.; Poinar, H. Antibiotic resistance is ancient: Implications for drug discovery. Trends Microbiol. 2012, 20, 157–159. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, A.; Martinez-Martin, N.; Mercadillo, M.; Galán, J.C.; Ghysels, B.; Matthijs, S.; Cornelis, P.; Wiehlmann, L.; Tümmler, B.; Baquero, F.; et al. The neglected intrinsic resistome of bacterial pathogens. PLoS ONE 2008, 3, e1619. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. The need for new antibiotics. Clin. Microbiol. Infect. 2004, 10 (Suppl. 4), 1–9. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. In Government of the United Kingdom; 2016. Available online: https://amr-review.org/sites/default/files/160525_Final_paper_with cover.pdf (accessed on 30 May 2022).
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Huttner, A.; Harbarth, S.; Carlet, J.; Cosgrove, S.; Goossens, H.; Holmes, A.; Jarlier, V.; Voss, A.; Pittet, D. Antimicrobial resistance: A global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob. Resist. Infect. Control 2013, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Antimicrobial Resistance, Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Smith, R.; Coast, J. The true cost of antimicrobial resistance. BMJ 2013, 346, f1493. [Google Scholar] [CrossRef]
- Tillotson, G. Antimicrobial resistance: What’s needed. Lancet Infect. Dis. 2015, 15, 758–760. [Google Scholar] [CrossRef]
- CDC. Multidrug-Resistant Organisms (MDRO) Management. Section IV: MDRO Prevention and Control. Available online: https://www.cdc.gov/infectioncontrol/guidelines/mdro/prevention-control.html (accessed on 16 September 2022).
- Koo, E.; McNamara, S.; Lansing, B.; Olmsted, R.N.; Rye, R.A.; Fitzgerald, T.; Mody, L.; Targeted Infection Prevention TIP Study Team. Making infection prevention education interactive can enhance knowledge and improve outcomes: Results from the Targeted Infection Prevention (TIP) Study. Am. J. Infect. Control 2016, 44, 1241–1246. [Google Scholar] [CrossRef] [Green Version]
- Backman, C.; Taylor, G.; Sales, A.; Marck, P.B. An integrative review of infection prevention and control programs for multidrug-resistant organisms in acute care hospitals: A socio-ecological perspective. Am. J. Infect. Control 2011, 39, 368–378. [Google Scholar] [CrossRef]
- von Lengerke, T.; Ebadi, E.; Schock, B.; Krauth, C.; Lange, K.; Stahmeyer, J.T.; Chaberny, I.F. Impact of psychologically tailored hand hygiene interventions on nosocomial infections with multidrug-resistant organisms: Results of the cluster-randomized controlled trial PSYGIENE. Antimicrob. Resist. Infect. Control 2019, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Gudnadottir, U.; Fritz, J.; Zerbel, S.; Bernardo, A.; Sethi, A.K.; Safdar, N. Reducing health care-associated infections: Patients want to be engaged and learn about infection prevention. Am. J. Infect. Control 2013, 41, 955–958. [Google Scholar] [CrossRef]
- Antonelli, M.; Kushner, I. It’s time to redefine inflammation. FASEB J. 2017, 31, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Eppensteiner, J.; Kwun, J.; Scheuermann, U.; Barbas, A.; Limkakeng, A.T.; Kuchibhatla, M.; Elster, E.A.; Kirk, A.D.; Lee, J. Damage- and pathogen-associated molecular patterns play differential roles in late mortality after critical illness. JCI Insight 2019, 4, 127925. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.D.; Lee, Y.L.; Mulekar, S.; Kuck, J.L.; Brevard, S.B.; Gonzalez, R.P.; Gillespie, M.N.; Richards, W.O. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann. Surg. 2013, 258, 591–596. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Kaukonen, K.M.; Bailey, M.; Pilcher, D.; Cooper, D.J.; Bellomo, R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 2015, 372, 1629–1638. [Google Scholar] [CrossRef]
- Vincent, J.L. Dear SIRS, I’m sorry to say that I don’t like you. Crit. Care Med. 1997, 25, 372–374. [Google Scholar] [CrossRef]
- Pittet, D.; Rangel-Frausto, S.; Li, N.; Tarara, D.; Costigan, M.; Rempe, L.; Jebson, P.; Wenzel, R.P. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: Incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Med. 1995, 21, 302–309. [Google Scholar] [CrossRef]
- Comstedt, P.; Storgaard, M.; Lassen, A.T. The Systemic Inflammatory Response Syndrome (SIRS) in acutely hospitalised medical patients: A cohort study. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected Patients outside the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2017, 195, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Brun-Buisson, C. The epidemiology of the systemic inflammatory response. Intensive Care Med. 2000, 26 (Suppl. 1), S64–S74. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, R.; Derwa, Y.; Bashir, Z.; Giles, E.; Torrance, H.D.; Owen, H.C.; O’Dwyer, M.J.; O’Brien, A.; Stagg, A.J.; Bhattacharya, S.; et al. Systemic Inflammatory Response Syndrome after Major Abdominal Surgery Predicted by Early Upregulation of TLR4 and TLR5. Ann. Surg. 2016, 263, 1028–1037. [Google Scholar] [CrossRef]
- Sido, B.; Teklote, J.R.; Hartel, M.; Friess, H.; Buchler, M.W. Inflammatory response after abdominal surgery. Best Pract. Res. Clin. Anaesthesiol. 2004, 18, 439–454. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Mabvuure, N.T.; Ali, A.; Kozar, R.A.; Herndon, D.N. The surgically induced stress response. JPEN J. Parenter. Enteral Nutr. 2013, 37, 21S–29S. [Google Scholar] [CrossRef]
- Dabrowska, A.M.; Slotwinski, R. The immune response to surgery and infection. Cent. Eur. J. Immunol. 2014, 39, 532–537. [Google Scholar] [CrossRef]
- Alazawi, W.; Pirmadjid, N.; Lahiri, R.; Bhattacharya, S. Inflammatory and Immune Responses to Surgery and Their Clinical Impact. Ann. Surg. 2016, 264, 73–80. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Ono, S.; Sugasawa, H.; Ichikura, T.; Yamamoto, J.; Hase, K. Gastric tube reconstruction by laparoscopy-assisted surgery attenuates postoperative systemic inflammatory response after esophagectomy for esophageal cancer. World J. Surg. 2010, 34, 2830–2836. [Google Scholar] [CrossRef]
- Okholm, C.; Goetze, J.P.; Svendsen, L.B.; Achiam, M.P. Inflammatory response in laparoscopic vs. open surgery for gastric cancer. Scand. J. Gastroenterol. 2014, 49, 1027–1034. [Google Scholar] [CrossRef]
- Lundin, E.S.; Wodlin, N.B.; Nilsson, L.; Theodorsson, E.; Ernerudh, J.; Kjolhede, P. Markers of tissue damage and inflammation after robotic and abdominal hysterectomy in early endometrial cancer: A randomised controlled trial. Sci. Rep. 2020, 10, 7226. [Google Scholar] [CrossRef] [PubMed]
- Widder, A.; Kelm, M.; Reibetanz, J.; Wiegering, A.; Matthes, N.; Germer, C.T.; Seyfried, F.; Flemming, S. Robotic-Assisted versus Laparoscopic Left Hemicolectomy-Postoperative Inflammation Status, Short-Term Outcome and Cost Effectiveness. Int. J. Environ. Res. Public Health 2022, 19, 606. [Google Scholar] [CrossRef] [PubMed]
- Van Hilst, J.; Brinkman, D.J.; de Rooij, T.; van Dieren, S.; Gerhards, M.F.; de Hingh, I.H.; Luyer, M.D.; Marsman, H.A.; Karsten, T.M.; Busch, O.R.; et al. The inflammatory response after laparoscopic and open pancreatoduodenectomy and the association with complications in a multicenter randomized controlled trial. HPB 2019, 21, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Margraf, A.; Ludwig, N.; Zarbock, A.; Rossaint, J. Systemic Inflammatory Response Syndrome after Surgery: Mechanisms and Protection. Anesth. Analg. 2020, 131, 1693–1707. [Google Scholar] [CrossRef]
- Ferraris, V.A.; Ballert, E.Q.; Mahan, A. The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome. Am. J. Surg. 2013, 205, 457–465. [Google Scholar] [CrossRef]
- McSorley, S.T.; Tham, A.; Dolan, R.D.; Steele, C.W.; Ramsingh, J.; Roxburgh, C.; Horgan, P.G.; McMillan, D.C. Perioperative Blood Transfusion is Associated with Postoperative Systemic Inflammatory Response and Poorer Outcomes Following Surgery for Colorectal Cancer. Ann. Surg. Oncol. 2020, 27, 833–843. [Google Scholar] [CrossRef]
- Alhayyan, A.; McSorley, S.; Roxburgh, C.; Kearns, R.; Horgan, P.; McMillan, D. The effect of anesthesia on the postoperative systemic inflammatory response in patients undergoing surgery: A systematic review and meta-analysis. Surg. Open Sci. 2020, 2, 1–21. [Google Scholar] [CrossRef]
- Long, Y.Q.; Feng, X.M.; Shan, X.S.; Chen, Q.C.; Xia, Z.; Ji, F.H.; Liu, H.; Peng, K. Remote Ischemic Preconditioning Reduces Acute Kidney Injury After Cardiac Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesth. Analg. 2022, 134, 592–605. [Google Scholar] [CrossRef]
- McSorley, S.T.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C. The Impact of Preoperative Dexamethasone on the Magnitude of the Postoperative Systemic Inflammatory Response and Complications Following Surgery for Colorectal Cancer. Ann. Surg. Oncol. 2017, 24, 2104–2112. [Google Scholar] [CrossRef] [Green Version]
- Sandini, M.; Ruscic, K.J.; Ferrone, C.R.; Warshaw, A.L.; Qadan, M.; Eikermann, M.; Lillemoe, K.D.; Fernández-del Castillo, C. Intraoperative Dexamethasone Decreases Infectious Complications After Pancreaticoduodenectomy and is Associated with Long-Term Survival in Pancreatic Cancer. Ann. Surg. Oncol. 2018, 25, 4020–4026. [Google Scholar] [CrossRef]
- Suarez-de-la-Rica, A.; Maseda, E.; Anillo, V.; Tamayo, E.; García-Bernedo, C.A.; Ramasco, F.; Hernández-Gancedo, C.; López-Tofiño, A.; Gimenez, M.J.; Granizo, J.J.; et al. Biomarkers (Procalcitonin, C Reactive Protein, and Lactate) as Predictors of Mortality in Surgical Patients with Complicated Intra-Abdominal Infection. Surg. Infect. 2015, 16, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Welsch, T.; Müller, S.A.; Ulrich, A.; Kischlat, A.; Hinz, U.; Kienle, P.; Büchler, M.W.; Schmidt, J.; Schmied, B.M. C-reactive protein as early predictor for infectious postoperative complications in rectal surgery. Int. J. Color. Dis. 2007, 22, 1499–1507. [Google Scholar] [CrossRef]
- Warschkow, R.; Tarantino, I.; Torzewski, M.; Naf, F.; Lange, J.; Steffen, T. Diagnostic accuracy of C-reactive protein and white blood cell counts in the early detection of inflammatory complications after open resection of colorectal cancer: A retrospective study of 1187 patients. Int. J. Color. Dis. 2011, 26, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Straatman, J.; Harmsen, A.M.; Cuesta, M.A.; Berkhof, J.; Jansma, E.P.; van der Peet, D.L. Predictive Value of C-Reactive Protein for Major Complications after Major Abdominal Surgery: A Systematic Review and Pooled-Analysis. PLoS ONE 2015, 10, e0132995. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Zeng, I.S.; Srinivasa, S.; Lemanu, D.P.; Connolly, A.B.; Hill, A.G. Systematic review and meta-analysis of use of serum C-reactive protein levels to predict anastomotic leak after colorectal surgery. Br. J. Surg. 2014, 101, 339–346. [Google Scholar] [CrossRef]
- Aiolfi, A.; Asti, E.; Rausa, E.; Bonavina, G.; Bonitta, G.; Bonavina, L. Use of C-reactive protein for the early prediction of anastomotic leak after esophagectomy: Systematic review and Bayesian meta-analysis. PLoS ONE 2018, 13, e0209272. [Google Scholar] [CrossRef]
- Pochhammer, J.; Scholtes, B.; Keuler, J.; Mussle, B.; Welsch, T.; Schaffer, M. Serum C-reactive protein level after ventral hernia repair with mesh reinforcement can predict infectious complications: A retrospective cohort study. Hernia 2020, 24, 41–48. [Google Scholar] [CrossRef]
- Bona, D.; Micheletto, G.; Bonitta, G.; Panizzo, V.; Cavalli, M.; Rausa, E.; Cirri, S.; Aiolfi, A. Does C-reactive Protein Have a Predictive Role in the Early Diagnosis of Postoperative Complications After Bariatric Surgery? Systematic Review and Bayesian Meta-analysis. Obes. Surg. 2019, 29, 3448–3456. [Google Scholar] [CrossRef]
- Adamina, M.; Steffen, T.; Tarantino, I.; Beutner, U.; Schmied, B.M.; Warschkow, R. Meta-analysis of the predictive value of C-reactive protein for infectious complications in abdominal surgery. Br. J. Surg. 2015, 102, 590–598. [Google Scholar] [CrossRef]
- Plat, V.D.; Voeten, D.M.; Daams, F.; van der Peet, D.L.; Straatman, J. C-reactive protein after major abdominal surgery in daily practice. Surgery 2021, 170, 1131–1139. [Google Scholar] [CrossRef]
- Gans, S.L.; Atema, J.J.; van Dieren, S.; Koerkamp, B.G.; Boermeester, M.A. Diagnostic value of C-reactive protein to rule out infectious complications after major abdominal surgery: A systematic review and meta-analysis. Int. J. Color. Dis. 2015, 30, 861–873. [Google Scholar] [CrossRef]
- Parli, S.E.; Trivedi, G.; Woodworth, A.; Chang, P.K. Procalcitonin: Usefulness in Acute Care Surgery and Trauma. Surg. Infect. 2018, 19, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Assicot, M.; Gendrel, D.; Carsin, H.; Raymond, J.; Guilbaud, J.; Bohuon, C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993, 341, 515–518. [Google Scholar] [CrossRef]
- Schuetz, P.; Albrich, W.; Mueller, B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: Past, present and future. BMC Med. 2011, 9, 107. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Wacker, C.; Prkno, A.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 426–435. [Google Scholar] [CrossRef]
- Annane, D.; Maxime, V.; Faller, J.P.; Mezher, C.; Clec’h, C.; Martel, P.; Gonzales, H.; Feissel, M.; Cohen, Y.; Capellier, G.; et al. Procalcitonin levels to guide antibiotic therapy in adults with non-microbiologically proven apparent severe sepsis: A randomised controlled trial. BMJ Open 2013, 3, e002186. [Google Scholar] [CrossRef] [PubMed]
- Bouadma, L.; Luyt, C.E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef]
- Bloos, F.; Trips, E.; Nierhaus, A.; Briegel, J.; Heyland, D.K.; Jaschinski, U.; Moerer, O.; Weyland, A.; Marx, G.; Gründling, M.; et al. Effect of Sodium Selenite Administration and Procalcitonin-Guided Therapy on Mortality in Patients with Severe Sepsis or Septic Shock: A Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Sartelli, M.; Ansaloni, L.; Bartoletti, M.; Catena, F.; Cardi, M.; Cortese, F.; Di Marzo, F.; Pea, F.; Plebani, M.; Rossolini, G.M.; et al. The role of procalcitonin in reducing antibiotics across the surgical pathway. World J. Emerg. Surg. 2021, 16, 15. [Google Scholar] [CrossRef]
- Green, S.L.; Smith, M.T.D.; Cairns, C.; Clarke, D.L.; Bruce, J.; Bekker, W.; Kong, V.; Laing, G.L. The Combined SIRS + qSOFA (qSIRS) Score is More Accurate Than qSOFA Alone in Predicting Mortality in Patients with Surgical Sepsis in an LMIC Emergency Department. World J. Surg. 2020, 44, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Magyar, C.T.; Haltmeier, T.; Dubuis, J.B.; Osterwalder, A.; Winterhalder, S.; Candinas, D.; Schnüriger, B. Performance of quick sequential organ failure assessment (qSOFA) and modified age disease adjusted qadSOFA for the prediction of outcomes in emergency general surgery patients. J. Trauma Acute Care Surg. 2022, 93, 558–656. [Google Scholar] [CrossRef] [PubMed]
- Ndong, A.; Diallo, A.C.; Tendeng, J.N.; Diallo, A.I.; Diao, M.L.; Sagna, S.A.; Diop, S.; Dia, D.A.; Diouf, D.; Racine, B.I.; et al. QSIRS Can Improve Accuracy of QSOFA and SIRS in Prediction of Mortality in Surgical Emergencies. Surg. J. 2021, 7, e199–e202. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J.A.; Gravante, G.; Butler, N.A.; Sorge, R.; Sayers, R.D.; Bown, M.J. The Systemic Inflammatory Response Syndrome (SIRS)--number and type of positive criteria predict interventions and outcomes in acute surgical admissions. World J. Surg. 2010, 34, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Fransvea, P.; Costa, G.; Lepre, L.; Capolupo, G.T.; Carannante, F.; Puccioni, C.; Costa, A.; La Greca, A.; Giovinazzo, F.; Sganga, G.; et al. Metabolic Syndrome (MetS), Systemic Inflammatory Response Syndrome (SIRS), and Frailty: Is There any Room for Good Outcome in the Elderly Undergoing Emergency Surgery? Front. Surg. 2022, 9, 870082. [Google Scholar] [CrossRef] [PubMed]
- Gando, S.; Shiraishi, A.; Abe, T.; Kushimoto, S.; Mayumi, T.; Fujishima, S.; Hagiwara, A.; Shiino, Y.; Shiraishi, S.I.; Hifumi, T.; et al. The SIRS criteria have better performance for predicting infection than qSOFA scores in the emergency department. Sci. Rep. 2020, 10, 8095. [Google Scholar] [CrossRef]
- Liu, V.X.; Lu, Y.; Carey, K.A.; Gilbert, E.R.; Afshar, M.; Akel, M.; Shah, N.S.; Dolan, J.; Winslow, C.; Kipnis, P.; et al. Comparison of Early Warning Scoring Systems for Hospitalized Patients With and Without Infection at Risk for In-Hospital Mortality and Transfer to the Intensive Care Unit. JAMA Netw. Open 2020, 3, e205191. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Nasrin, T.; Walther, B.A.; Wu, C.C.; Yang, H.C.; Li, Y.C. Prediction of sepsis patients using machine learning approach: A meta-analysis. Comput. Methods Programs Biomed. 2019, 170, 1–9. [Google Scholar] [CrossRef]
- Buch, V.H.; Ahmed, I.; Maruthappu, M. Artificial intelligence in medicine: Current trends and future possibilities. Br. J. Gen. Pract. 2018, 68, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Sofo, L.; Caprino, P.; Schena, C.A.; Sacchetti, F.; Potenza, A.E.; Ciociola, A. New perspectives in the prediction of postoperative complications for high-risk ulcerative colitis patients: Machine learning preliminary approach. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12781–12787. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Tighe, P.J.; Filiberto, A.C.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Rashidi, P.; Upchurch, G.R.; Bihorac, A. Artificial Intelligence and Surgical Decision-making. JAMA Surg. 2020, 155, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, L.; Howard, C.; Picca, L.; Bashir, M. The automaton as a surgeon: The future of artificial intelligence in emergency and general surgery. Eur. J. Trauma Emerg. Surg. 2021, 47, 757–762. [Google Scholar] [CrossRef]
- El Hechi, M.W.; Maurer, L.R.; Levine, J.; Zhuo, D.; El Moheb, M.; Velmahos, G.C.; Dunn, J.; Bertsimas, D.; Kaafarani, H.M. Validation of the Artificial Intelligence-Based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) Calculator in Emergency General Surgery and Emergency Laparotomy Patients. J. Am. Coll. Surg. 2021, 232, 912–919. [Google Scholar] [CrossRef]
- Bertsimas, D.; Dunn, J.; Velmahos, G.C.; Kaafarani, H.M.A. Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator. Ann. Surg. 2018, 268, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Boev, C.; Kiss, E. Hospital-Acquired Infections: Current Trends and Prevention. Crit. Care Nurs. Clin. N. Am. 2017, 29, 51–65. [Google Scholar] [CrossRef]
- World Health Organization. Report on the Burden of Endemic Health Care-Associated Infection Worldwide; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Leaper, D.J.; Van Goor, H.; Reilly, J.; Petrosillo, N.; Geiss, H.K.; Torres, A.J.; Berger, A. Surgical site infection—A European perspective of incidence and economic burden. Int. Wound J. 2004, 1, 247–273. [Google Scholar] [CrossRef]
- GlobalSurg, C. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: A prospective, international, multicentre cohort study. Lancet Infect. Dis. 2018, 18, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Sartelli, M.; Chichom-Mefire, A.; Labricciosa, F.M.; Hardcastle, T.; Abu-Zidan, F.M.; Adesunkanmi, A.K.; Ansaloni, L.; Bala, M.; Balogh, Z.J.; Beltran, M.A.; et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Abu-Zidan, F.M.; Catena, F.; Griffiths, E.A.; Di Saverio, S.; Coimbra, R.; Ordoñez, C.A.; Leppaniemi, A.; Fraga, G.P.; Coccolini, F.; et al. Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: A prospective multicentre study (WISS Study). World J. Emerg. Surg. 2015, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Wacha, H.; Hau, T.; Dittmer, R.; Ohmann, C. Risk factors associated with intraabdominal infections: A prospective multicenter study. Peritonitis Study Group. Langenbecks Arch. Surg. 1999, 384, 24–32. [Google Scholar] [CrossRef]
- Mulier, S.; Penninckx, F.; Verwaest, C.; Filez, L.; Aerts, R.; Fieuws, S.; Lauwers, P. Factors affecting mortality in generalized postoperative peritonitis: Multivariate analysis in 96 patients. World J. Surg. 2003, 27, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Antonelli, M.; Arvaniti, K.; Blot, K.; Creagh-Brown, B.; De Lange, D.; De Waele, J.; Deschepper, M.; Dikmen, Y.; Dimopoulos, G.; et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: AbSeS, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med. 2019, 45, 1703–1717. [Google Scholar] [CrossRef] [PubMed]
- Mazuski, J.E.; Tessier, J.M.; May, A.K.; Sawyer, R.G.; Nadler, E.P.; Rosengart, M.R.; Chang, P.K.; O’Neill, P.J.; Mollen, K.P.; Huston, J.M.; et al. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg. Infect. 2017, 18, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Coccolini, F.; Kluger, Y.; Agastra, E.; Abu-Zidan, F.M.; Abbas, A.E.S.; Ansaloni, L.; Adesunkanmi, A.K.; Atanasov, B.; Augustin, G.; et al. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J. Emerg. Surg. 2021, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; al Naqbi, A. Principles of source control in the management of sepsis. Crit. Care Clin. 2009, 25, 753–768. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Leite, R.M.; Seo, D.J.; Gomez-Eslava, B.; Hossain, S.; Lesegretain, A.; de Souza, A.V.; Bay, C.P.; Zilberstein, B.; Marchi, E.; Machado, R.B.; et al. Nonoperative vs Operative Management of Uncomplicated Acute Appendicitis: A Systematic Review and Meta-analysis. JAMA Surg. 2022, 157, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Tellor, B.; Skrupky, L.P.; Symons, W.; High, E.; Micek, S.T.; Mazuski, J.E. Inadequate Source Control and Inappropriate Antibiotics are Key Determinants of Mortality in Patients with Intra-Abdominal Sepsis and Associated Bacteremia. Surg. Infect. 2015, 16, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Azuhata, T.; Kinoshita, K.; Kawano, D.; Komatsu, T.; Sakurai, A.; Chiba, Y.; Tanjho, K. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit. Care 2014, 18, R87. [Google Scholar] [CrossRef]
- Sartelli, M.; Catena, F.; Ansaloni, L.; Leppaniemi, A.; Taviloglu, K.; van Goor, H.; Viale, P.; Lazzareschi, D.V.; Coccolini, F.; Corbella, D.; et al. Complicated intra-abdominal infections in Europe: A comprehensive review of the CIAO study. World J. Emerg. Surg. 2012, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg. Infect. 2010, 11, 79–109. [Google Scholar] [CrossRef]
- Bloos, F.; Thomas-Rüddel, D.; Rüddel, H.; Engel, C.; Schwarzkopf, D.; Marshall, J.C.; Harbarth, S.; Simon, P.; Riessen, R.; Keh, D.; et al. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: A prospective observational multi-center study. Crit. Care 2014, 18, R42. [Google Scholar] [CrossRef] [PubMed]
- Launey, Y.; Duteurtre, B.; Larmet, R.; Nesseler, N.; Tawa, A.; Mallédant, Y.; Seguin, P. Risk factors for mortality in postoperative peritonitis in critically ill patients. World J. Crit. Care Med. 2017, 6, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Van de Groep, K.; Verhoeff, T.L.; Verboom, D.M.; Bos, L.D.; Schultz, M.J.; Bonten, M.J.; Cremer, O.L. Epidemiology and outcomes of source control procedures in critically ill patients with intra-abdominal infection. J. Crit. Care 2019, 52, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Di Saverio, S.; Birindelli, A.; Kelly, M.D.; Catena, F.; Weber, D.G.; Sartelli, M.; Sugrue, M.; De Moya, M.; Gomes, C.A.; Bhangu, A.; et al. WSES Jerusalem guidelines for diagnosis and treatment of acute appendicitis. World J. Emerg. Surg. 2016, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Di Saverio, S.; Podda, M.; De Simone, B.; Ceresoli, M.; Augustin, G.; Gori, A.; Boermeester, M.; Sartelli, M.; Coccolini, F.; Tarasconi, A.; et al. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J. Emerg. Surg. 2020, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Rushing, A.; Bugaev, N.; Jones, C.; Como, J.J.; Fox, N.; Cripps, M.; Robinson, B.; Velopulos, C.; Haut, E.R.; Narayan, M. Management of acute appendicitis in adults: A practice management guideline from the Eastern Association for the Surgery of Trauma. J. Trauma Acute Care Surg. 2019, 87, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Mayumi, T.; Okamoto, K.; Takada, T.; Strasberg, S.M.; Solomkin, J.S.; Schlossberg, D.; Pitt, H.A.; Yoshida, M.; Gomi, H.; Miura, F.; et al. Tokyo Guidelines 2018: Management bundles for acute cholangitis and cholecystitis. J. Hepatobiliary Pancreat. Sci. 2018, 25, 96–100. [Google Scholar] [CrossRef]
- Pisano, M.; Allievi, N.; Gurusamy, K.; Borzellino, G.; Cimbanassi, S.; Boerna, D.; Coccolini, F.; Tufo, A.; Di Martino, M.; Leung, J.; et al. 2020 World Society of Emergency Surgery updated guidelines for the diagnosis and treatment of acute calculus cholecystitis. World J. Emerg. Surg. 2020, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Ansaloni, L.; Pisano, M.; Coccolini, F.; Peitzmann, A.B.; Fingerhut, A.; Catena, F.; Agresta, F.; Allegri, A.; Bailey, I.; Balogh, Z.J.; et al. 2016 WSES guidelines on acute calculous cholecystitis. World J. Emerg. Surg. 2016, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Tarasconi, A.; Coccolini, F.; Biffl, W.L.; Tomasoni, M.; Ansaloni, L.; Picetti, E.; Molfino, S.; Shelat, V.; Cimbanassi, S.; Weber, D.G.; et al. Perforated and bleeding peptic ulcer: WSES guidelines. World J. Emerg. Surg. 2020, 15, 3. [Google Scholar] [CrossRef]
- Sartelli, M.; Weber, D.G.; Kluger, Y.; Ansaloni, L.; Coccolini, F.; Abu-Zidan, F.; Augustin, G.; Ben-Ishay, O.; Biffl, W.L.; Bouliaris, K.; et al. 2020 update of the WSES guidelines for the management of acute colonic diverticulitis in the emergency setting. World J. Emerg. Surg. 2020, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Cirocchi, R.; Sapienza, P.; Anania, G.; Binda, G.A.; Avenia, S.; di Saverio, S.; Tebala, G.D.; Zago, M.; Donini, A.; Mingoli, A.; et al. State-of-the-art surgery for sigmoid diverticulitis. Langenbecks Arch. Surg. 2022, 407, 1–14. [Google Scholar] [CrossRef]
- Nascimbeni, R.; Amato, A.; Cirocchi, R.; Serventi, A.; Laghi, A.; Bellini, M.; Tellan, G.; Zago, M.; Scarpignato, C.; Binda, G.A. Management of perforated diverticulitis with generalized peritonitis. A multidisciplinary review and position paper. Tech. Coloproctology 2021, 25, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Chirica, M.; Kelly, M.D.; Siboni, S.; Aiolfi, A.; Riva, C.G.; Asti, E.; Ferrari, D.; Leppäniemi, A.; Ten Broek, R.P.; Brichon, P.Y.; et al. Esophageal emergencies: WSES guidelines. World J. Emerg. Surg. 2019, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Christou, N.V.; Turgeon, P.; Wassef, R.; Rotstein, O.; Bohnen, J.; Potvin, M. Management of intra-abdominal infections. The case for intraoperative cultures and comprehensive broad-spectrum antibiotic coverage. The Canadian Intra-abdominal Infection Study Group. Arch. Surg. 1996, 131, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Labricciosa, F.M.; Sartelli, M.; Abbo, L.M.; Barbadoro, P.; Ansaloni, L.; Coccolini, F.; Catena, F. Epidemiology and Risk Factors for Isolation of Multi-Drug-Resistant Organisms in Patients with Complicated Intra-Abdominal Infections. Surg. Infect. 2018, 19, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Seguin, P.; Fedun, Y.; Laviolle, B.; Nesseler, N.; Donnio, P.Y.; Malledant, Y. Risk factors for multidrug-resistant bacteria in patients with post-operative peritonitis requiring intensive care. J. Antimicrob. Chemother. 2010, 65, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Catena, F.; Ansaloni, L.; Coccolini, F.; di Saverio, S.; Griffiths, E.A. Duration of Antimicrobial Therapy in Treating Complicated Intra-Abdominal Infections: A Comprehensive Review. Surg. Infect. 2016, 17, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Tubach, F.; Lescot, T.; Veber, B.; Esposito-Farèse, M.; Seguin, P.; Paugam, C.; Lepape, A.; Meistelman, C.; Cousson, J.; et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomised clinical trial. Intensive Care Med. 2018, 44, 300–310. [Google Scholar] [CrossRef]
- Lee, R.A.; Stripling, J.T.; Spellberg, B.; Centor, R.M. Short course antibiotics for common infections: What do we Know and where do we Go from Here? Clin. Microbiol. Infect. 2022. [Google Scholar] [CrossRef]
- Sartelli, M.; Catena, F.; Coccolini, F.; Pinna, A.D. Antimicrobial Management of Intra-Abdominal Infections: Literature’s Guidelines. World J. Gastroenterol. 2012, 18, 865–871. [Google Scholar] [CrossRef]
- Hawser, S.P.; Bouchillon, S.K.; Hoban, D.J.; Badal, R.E.; Canton, R.; Baquero, F. Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: Results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob. Agents Chemother. 2010, 54, 3043–3046. [Google Scholar] [CrossRef]
- Morrissey, I.; Hackel, M.; Badal, R.; Bouchillon, S.; Hawser, S.; Biedenbach, D. A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals 2013, 6, 1335–1346. [Google Scholar] [CrossRef]
- Veeraraghavan, B.; Bakthavatchalam, Y.D.; Sahni, R.D. Orally Administered Amoxicillin/Clavulanate: Current Role in Outpatient Therapy. Infect. Dis. Ther. 2021, 10, 15–25. [Google Scholar] [CrossRef]
- Harris, P.N.; Tambyah, P.A.; Paterson, D.L. beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: Time for a reappraisal in the era of few antibiotic options? Lancet Infect. Dis. 2015, 15, 475–485. [Google Scholar] [CrossRef]
- Sartelli, M.; Weber, D.G.; Ruppé, E.; Bassetti, M.; Wright, B.J.; Ansaloni, L.; Catena, F.; Coccolini, F.; Abu-Zidan, F.M.; Coimbra, R.; et al. Antimicrobials: A global alliance for optimizing their rational use in intra-abdominal infections (AGORA). World J. Emerg. Surg. 2016, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Surat, G.; Meyer-Sautter, P.; Rusch, J.; Braun-Feldweg, J.; Germer, C.T.; Lock, J.F. Comparison of Duration and Empiric Antibiotic Choice of Post-Operative Treatment in Abdominal Sepsis. Surg. Infect 2022, 23, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.M.; Markham, A. Piperacillin/tazobactam: An updated review of its use in the treatment of bacterial infections. Drugs 1999, 57, 805–843. [Google Scholar] [CrossRef] [PubMed]
- Belley, A.; Morrissey, I.; Hawser, S.; Kothari, N.; Knechtle, P. Third-generation cephalosporin resistance in clinical isolates of Enterobacterales collected between 2016-2018 from USA and Europe: Genotypic analysis of beta-lactamases and comparative in vitro activity of cefepime/enmetazobactam. J. Glob. Antimicrob. Resist. 2021, 25, 93–101. [Google Scholar] [CrossRef]
- Van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation beta-Lactam/beta-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagacé-Wiens, P.R.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/tazobactam: A novel cephalosporin/beta-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef]
- Paterson, D.L.; Isler, B.; Harris, P.N.A. PRO: Carbapenems should be used for ALL infections caused by ceftriaxone-resistant Enterobacterales. JAC Antimicrob. Resist. 2021, 3, dlab013. [Google Scholar] [CrossRef]
- Rodriguez-Bano, J.; Gutierrez-Gutierrez, B.; Pascual, A. CON: Carbapenems are NOT necessary for all infections caused by ceftriaxone-resistant Enterobacterales. JAC Antimicrob. Resist. 2021, 3, dlaa112. [Google Scholar] [CrossRef]
- Vidal, L.; Gafter-Gvili, A.; Borok, S.; Fraser, A.; Leibovici, L.; Paul, M. Efficacy and safety of aminoglycoside monotherapy: Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2007, 60, 247–257. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Global Alliance for Infections in Surgery Working Group. A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway. Surg. Infect. 2017, 18, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.; Sabbagh, C.; Denost, Q.; Regimbeau, J.M.; Laurent, C.; Rullier, E.; Cunha, A.S.; Mariette, C. Is there still a need for prophylactic intra-abdominal drainage in elective major gastro-intestinal surgery? J. Visc. Surg. 2015, 152, 305–313. [Google Scholar] [CrossRef]
- He, S.; Xia, J.; Zhang, W.; Lai, M.; Cheng, N.; Liu, Z.; Cheng, Y. Prophylactic abdominal drainage for pancreatic surgery. Cochrane Database Syst. Rev. 2021, 12, CD010583. [Google Scholar] [CrossRef]
- EuroSurg Collaborative. Intraperitoneal drain placement and outcomes after elective colorectal surgery: International matched, prospective, cohort study. Br. J. Surg. 2022, 109, 520–529. [Google Scholar] [CrossRef]
- Mujagic, E.; Zeindler, J.; Coslovsky, M.; Hoffmann, H.; Soysal, S.D.; Mechera, R.; von Strauss, M.; Delko, T.; Saxer, F.; Glaab, R.; et al. The association of surgical drains with surgical site infections—A prospective observational study. Am. J. Surg. 2019, 217, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, L.; Cheng, Y.; Cheng, N.; Deng, Y. Abdominal drainage to prevent intra-peritoneal abscess after open appendectomy for complicated appendicitis. Cochrane Database Syst. Rev. 2018, 5, CD010168. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, K.S.; Koti, R.; Davidson, B.R. Routine abdominal drainage versus no abdominal drainage for uncomplicated laparoscopic cholecystectomy. Cochrane Database Syst. Rev. 2013, 9, CD006004. [Google Scholar] [CrossRef]
- De Waele, J.J.; Boelens, J.; van de Putte, D.; Veld, D.H.I.; Coenye, T. The Role of Abdominal Drain Cultures in Managing Abdominal Infections. Antibiotics 2022, 11, 697. [Google Scholar] [CrossRef]
- De’Angelis, N.; Khan, J.; Marchegiani, F.; Bianchi, G.; Aisoni, F.; Alberti, D.; Ansaloni, L.; Biffl, W.; Chiara, O.; Ceccarelli, G.; et al. Robotic surgery in emergency setting: 2021 WSES position paper. World J. Emerg. Surg. 2022, 17, 4. [Google Scholar] [CrossRef]
- Sauerland, S.; Agresta, F.; Bergamaschi, R.; Borzellino, G.; Budzynski, A.; Champault, G.; Fingerhut, A.; Isla, A.; Johansson, M.; Lundorff, P.; et al. Laparoscopy for abdominal emergencies: Evidence-based guidelines of the European Association for Endoscopic Surgery. Surg. Endosc. 2006, 20, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, M.; Inaba, K.; Piccinini, A.; Biscardi, A.; Sartelli, M.; Agresta, F.; Catena, F.; Cirocchi, R.; Jovine, E.; Tugnoli, G.; et al. Advances in laparoscopy for acute care surgery and trauma. World J. Gastroenterol. 2016, 22, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.M.J.; Segura-Sampedro, J.J.; Flores-Cortés, M.; López-Bernal, F.; Martín, C.; Diaz, V.P.; Ciuro, F.P.; Ruiz, J.P. Laparoscopic approach in gastrointestinal emergencies. World J. Gastroenterol. 2016, 22, 2701–2710. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Minimum Requirements for Infection Prevention and Control Programmes; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization. Strengthening Infection Prevention and Control in Primary Care: A Collection of Existing Standards, Measurement and IMPLEMENTATION REsources; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Zingg, W.; Holmes, A.; Dettenkofer, M.; Goetting, T.; Secci, F.; Clack, L.; Allegranzi, B.; Magiorakos, A.P.; Pittet, D. Hospital organisation, management, and structure for prevention of health-care-associated infection: A systematic review and expert consensus. Lancet Infect. Dis. 2015, 15, 212–224. [Google Scholar] [CrossRef]
- Sartelli, M.; Labricciosa, F.M.; Coccolini, F.; Coimbra, R.; Abu-Zidan, F.M.; Ansaloni, L.; Al-Hasan, M.N.; Ansari, S.; Barie, P.S.; Caínzos, M.A.; et al. It is time to define an organizational model for the prevention and management of infections along the surgical pathway: A worldwide cross-sectional survey. World J. Emerg. Surg. 2022, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Echanove, J.; Edwards, J.R.; Richards, M.J.; Brennan, P.; Venezia, R.A.; Keen, J.; Ashline, V.; Kirkland, K.; Chou, E.; Hupert, M. Effect of nurse staffing and antimicrobial-impregnated central venous catheters on the risk for bloodstream infections in intensive care units. Infect. Control Hosp. Epidemiol. 2003, 24, 916–925. [Google Scholar] [CrossRef]
- Borg, M.A.; Suda, D.; Scicluna, E. Time-series analysis of the impact of bed occupancy rates on the incidence of methicillin-resistant Staphylococcus aureus infection in overcrowded general wards. Infect. Control Hosp. Epidemiol. 2008, 29, 496–502. [Google Scholar] [CrossRef]
- Cunningham, J.B.; Kernohan, W.G.; Rush, T. Bed occupancy, turnover intervals and MRSA rates in English hospitals. Br. J. Nurs. 2006, 15, 656–660. [Google Scholar] [CrossRef]
- Howie, A.J.; Ridley, S.A. Bed occupancy and incidence of Methicillin-resistant Staphylococcus aureus infection in an intensive care unit. Anaesthesia 2008, 63, 1070–1073. [Google Scholar] [CrossRef]
- Hugonnet, S.; Chevrolet, J.C.; Pittet, D. The effect of workload on infection risk in critically ill patients. Crit. Care Med. 2007, 35, 76–81. [Google Scholar] [CrossRef]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Allegranzi, B.; Bischoff, P.; de Jonge, S.; Kubilay, N.Z.; Zayed, B.; Gomes, S.M.; Abbas, M.; Atema, J.J.; Gans, S.; van Rijen, M.; et al. New WHO recommendations on preoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e276–e287. [Google Scholar] [CrossRef]
- Sway, A.; Solomkin, J.S.; Pittet, D.; Kilpatrick, C. Methodology and Background for the World Health Organization Global Guidelines on the Prevention of Surgical Site Infection. Surg. Infect. 2018, 19, 33–39. [Google Scholar] [CrossRef]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Surgical Site Infections: Prevention and Treatment; National Institute for Health and Care Excellence: Great Britain, UK, 2019. [Google Scholar]
- Brożek, J.L.; Akl, E.A.; Compalati, E.; Kreis, J.; Terracciano, L.; Fiocchi, A.; Ueffing, E.; Andrews, J.; Alonso-Coello, P.; Meerpohl, J.J.; et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations. Allergy 2011, 66, 588–595. [Google Scholar] [CrossRef] [PubMed]
- CDC. Standard Precautions for All Patient Care. Available online: https://www.cdc.gov/infectioncontrol/basics/standard-precautions.html (accessed on 16 September 2022).
- CDC. Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings (Last Update: May 2022). Available online: https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html (accessed on 16 September 2022).
- Dellit, T.H.; Owens, R.C.; McGowan, J.E.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.; Baggs, J.; Fagan, R.; Magill, S.; Pollack, L.A.; Malpiedi, P.; Slayton, R.; Khader, K.; Rubin, M.A.; Jones, M.; et al. Vital signs: Improving antibiotic use among hospitalized patients. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 194–200. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24598596 (accessed on 28 May 2022).
- Tamma, P.D.; Avdic, E.; Li, D.X.; Dzintars, K.; Cosgrove, S.E. Association of Adverse Events with Antibiotic Use in Hospitalized Patients. JAMA Intern. Med. 2017, 177, 1308–1315. [Google Scholar] [CrossRef]
- Dortch, M.J.; Fleming, S.B.; Kauffmann, R.M.; Dossett, L.A.; Talbot, T.R.; May, A.K. Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg. Infect. 2011, 12, 15–25. [Google Scholar] [CrossRef]
- Sartelli, M.; Labricciosa, F.M.; Scoccia, L.; Bellesi, J.; Mazzoccanti, M.R.; Scaloni, G.; Gentilozzi, B.; Chiodera, A. Non-Restrictive Antimicrobial Stewardship Program in a General and Emergency Surgery Unit. Surg. Infect. 2016, 17, 485–490. [Google Scholar] [CrossRef]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Davey, P.; Brown, E.; Charani, E.; Fenelon, L.; Gould, I.M.; Holmes, A.; Ramsay, C.R.; Wiffen, P.J.; Wilcox, M. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 2, CD003543. [Google Scholar] [CrossRef] [PubMed]
- Karanika, S.; Paudel, S.; Grigoras, C.; Kalbasi, A.; Mylonakis, E. Systematic Review and Meta-analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs. Antimicrob. Agents Chemother. 2016, 60, 4840–4852. [Google Scholar] [CrossRef] [PubMed]
- CDC. Core Elements of Hospital Antibiotic Stewardship Programs; US Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html (accessed on 3 June 2022).
- World Health Organization. Antimicrobial Stewardship Interventions: A Practical Guide; World Health Organization. Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Leeds, I.L.; Fabrizio, A.; Cosgrove, S.E.; Wick, E.C. Treating Wisely: The Surgeon’s Role in Antibiotic Stewardship. Ann. Surg. 2017, 265, 871–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Infective | Non-Infective |
---|---|
Pneumonia | Trauma |
Endocarditis | Surgery |
Skin and soft tissue infections | Burns |
Urinary tract infections | Malignancies |
Intra-abdominal infections | Autoimmune disorders |
Cirrhosis | |
Hemorrhage | |
Adrenal insufficiency | |
Acute pancreatitis | |
Acute ischemia | |
Acute aspiration |
Primary Intervention | Alternative Intervention |
---|---|
Acute appendicitis [115,123,124,125] | |
Appendectomy via laparoscopy is the preferred approach for both uncomplicated and complicated (perforation and peri-appendiceal abscess) acute appendicitis |
|
Acute cholecystitis [126,127,128] | |
|
|
Gastroduodenal perforation [129] | |
| Non-operative management could be considered in extremely selected cases with sealed perforation confirmed on water-soluble contrast imaging. It consists of the association of absolute fasting + antibiotics + decompression via nasogastric tube + proton pump inhibitor therapy and requires a follow-up endoscopy at 4–6 weeks. |
Postoperative peritonitis [113] | |
Prompt surgical management is mandatory in case of diffuse peritonitis | Antibiotics + percutaneous drainage should be considered for localized intra-abdominal abscesses in stable patients with no signs of generalized peritonitis |
Small bowel perforation [113] | |
| In case of small bowel ischemia, resection and delayed anastomoses should be considered as alternative |
Diverticulitis [130,131,132] | |
|
|
Esophageal perforation [133] | |
Antibiotics + absolute fasting + proton pump inhibitor therapy can be indicated in stable patients with early onset, minimal esophageal damage, and contained contamination, if highly specialized surveillance is guaranteed | Surgery should be advised in absence of non-operative management criteria (e.g., hemodynamic instability) |
Acute cholangitis [113] | |
Antibiotics + biliary drainage via endoscopic retrograde cholangiopancreatography (treatment of choice) or percutaneous biliary drainage (in case of ERCP * failure) are the first-line approach | Open drainage should be considered only in case of failure or contraindication to endoscopic or percutaneous interventions |
Core Topics |
---|
Perioperative intranasal applications of mupirocin 2% ointment with or without a combination of chlorhexidine gluconate body wash is indicated in patients undergoing cardiothoracic and orthopedic surgery with known nasal carriage of Staphylococcus aureus |
Surgical antibiotic prophylaxis should be administered within 120 minutes before surgical incision, even though considering antibiotic half-life |
Mechanical bowel preparation should not be used for the prevention of SSI in elective colorectal surgery if not associated with preoperative oral antibiotics |
Hair removal and shaving is strongly discouraged in any surgical procedure. If inevitable, hair should be removed only with a clipper |
Alcohol-based antiseptic solutions based on chlorhexidine gluconate are recommended for surgical site skin preparation before surgery |
Surgical hand preparation should be performed by scrubbing with either a suitable antimicrobial soap and water or using appropriate alcohol-based solutions before wearing sterile gloves |
Prolongation of surgical antibiotic prophylaxis after the surgical procedure is not indicated for the purpose of preventing SSI |
Statements | GoR |
---|---|
Continuous and interrupted skin suture present no significant difference in terms of SSI incidence, but superficial wound dehiscence is lower in continuous suture | 1B |
Triclosan-coated suture significantly reduce SSI prevalence | 1B |
The efficacy of intraperitoneal or topic wound irrigation with antibiotics in preventing SSI is not supported by sufficient data | 2B |
The efficacy of incisional wound irrigation with saline or povidone solution before skin closure in preventing SSI is not supported by sufficient data | 2B |
The use of wound protectors reduces incisional SSI 1, in particular the effectiveness of dual-ring devices is superior to single-ring ones 2 | 1 1A 2 1B |
The role of plastic adhesive drapes with or without antimicrobial properties in preventing SSI is not supported by sufficient data | 2C |
The role of subcutaneous drainage of incisional wounds before closure in preventing SSI is not supported by sufficient data | 2B |
The role of double gloving in preventing SSI is not supported by sufficient data 1. Change of gloves at time intervals during surgery may be beneficial 2 | 1 2B 2 2C |
Negative-pressure wound therapy may be a valid option for SSI prevention, especially in SSI high-risk patients (e.g., contaminated, and dirty, surgical wounds) | 2C |
Intraoperative normothermia prevents SSI 1 and active warming devices are useful in achieving normothermia and reducing SSI 2 | 1 1A 2 1B |
Perioperative hyperoxygenation does not reduce SSI | 2B |
Delayed primary skin closure may reduce SSI incidence 1 and it should be considered in high-risk patients underwent contaminated abdominal surgery 2 | 1 2B 2 2C |
Additional intraoperative antibiotics may be administered in case of emergency surgery for IAI always considering drug pharmacokinetic and pharmacodynamic | 1C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schena, C.A.; de’Angelis, G.L.; Carra, M.C.; Bianchi, G.; de’Angelis, N. Antimicrobial Challenge in Acute Care Surgery. Antibiotics 2022, 11, 1315. https://doi.org/10.3390/antibiotics11101315
Schena CA, de’Angelis GL, Carra MC, Bianchi G, de’Angelis N. Antimicrobial Challenge in Acute Care Surgery. Antibiotics. 2022; 11(10):1315. https://doi.org/10.3390/antibiotics11101315
Chicago/Turabian StyleSchena, Carlo Alberto, Gian Luigi de’Angelis, Maria Clotilde Carra, Giorgio Bianchi, and Nicola de’Angelis. 2022. "Antimicrobial Challenge in Acute Care Surgery" Antibiotics 11, no. 10: 1315. https://doi.org/10.3390/antibiotics11101315
APA StyleSchena, C. A., de’Angelis, G. L., Carra, M. C., Bianchi, G., & de’Angelis, N. (2022). Antimicrobial Challenge in Acute Care Surgery. Antibiotics, 11(10), 1315. https://doi.org/10.3390/antibiotics11101315