Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer
Abstract
:1. Introduction
2. Incidence, Risk Factors and Epidemiology
3. Rationale for Fungal Infection Prophylaxis and Treatment in Acute Leukemia and Hematopoietic Stem Cell Transplantation Recipients
4. Breakthrough Invasive Fungal Infections
5. Feasibility of Hematopoietic Stem Cell Transplantation in Patients with Invasive Fungal Disease
6. Granulocyte Transfusion and Invasive Fungal Disease
7. Fungal Infections in Children Receiving CAR-T Cell Therapy
8. Fungal Infections and Immunotherapy
9. Novel Drugs for Contrasting Invasive Fungal Diseases
9.1. Isavuconazole
9.2. Rezafungin
9.3. Antimicrobial Peptides
10. Antifungal Stewardship
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, B.T.; Robinson, P.D.; Lehrnbecher, T.; Steinbach, W.J.; Zaoutis, T.E.; Phillips, B.; Sung, L. Risk Factors for Invasive Fungal Disease in Pediatric Cancer and Hematopoietic Stem Cell Transplantation: A Systematic Review. J. Pediatric Infect. Dis. Soc. 2018, 7, 191–198. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Robinson, P.; Fisher, B.; Alexander, S.; Ammann, R.A.; Beauchemin, M.; Carlesse, F.; Groll, A.H.; Haeusler, G.M.; Santolaya, M.; et al. Guideline for the Management of Fever and Neutropenia in Children with Cancer and Hematopoietic Stem-Cell Transplantation Recipients: 2017 Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2082–2094. [Google Scholar] [CrossRef] [PubMed]
- Lehrnbecher, T.; Robinson, P.D.; Fisher, B.T.; Castagnola, E.; Groll, A.H.; Steinbach, W.J.; Zaoutis, T.E.; Negeri, Z.F.; Beyene, J.; Phillips, B.; et al. Galactomannan, β-D-Glucan, and Polymerase Chain Reaction-Based Assays for the Diagnosis of Invasive Fungal Disease in Pediatric Cancer and Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 1340–1348. [Google Scholar] [CrossRef]
- Pana, Z.D.; Vikelouda, K.; Roilides, E. Diagnosis of invasive fungal diseases in pediatric patients. Expert Rev. Anti-Infect. Ther. 2016, 14, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.C.; Liu, H.C.; Wang, L.Y.; Chen, S.H.; Liang, D.C. Invasive fungal infection in children undergoing chemotherapy for cancer. Ann. Trop. Paediatr. 2007, 27, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Alcalde, P.; Garcia-Vidal, C. Changing epidemiology of invasive fungal disease in allogeneic hematopoietic stem cell transplantation. J. Fungi 2021, 7, 848. [Google Scholar] [CrossRef] [PubMed]
- Lehrnbecher, T.; Averbuch, D.; Castagnola, E.; Cesaro, S.; Ammann, R.A.; Garcia-Vidal, C.; Kanerva, J.; Lanternier, F.; Mesini, A.; Mikulska, M.; et al. 8th European Conference on Infections in Leukaemia: 2020 guidelines for the use of antibiotics in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol. 2021, 22, e270–e280. [Google Scholar] [CrossRef]
- Cecinati, V.; Principi, N.; Brescia, L.; Esposito, S. Antibiotic prophylaxis in children with cancer or who have undergone hematopoietic cell transplantation. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1–6. [Google Scholar] [CrossRef]
- Mor, M.; Gilad, G.; Kornreich, L.; Fisher, S.; Yaniv, I.; Levy, I. Invasive fungal infections in pediatric oncology. Pediatric Blood Cancer 2011, 56, 1092–1097. [Google Scholar] [CrossRef]
- Valdez, J.M.; Scheinberg, P.; Nunez, O.; Wu, C.O.; Young, N.S.; Walsh, T.J. Decreased infection-related mortality and improved survival in severe aplastic anemia in the past two decades. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2011, 52, 726–735. [Google Scholar] [CrossRef] [Green Version]
- Masetti, R.; Muratore, E.; Leardini, D.; Zama, D.; Turroni, S.; Brigidi, P.; Esposito, S.; Pession, A. Gut microbiome in pediatric acute leukemia: From predisposition to cure. Blood Adv. 2021, 5, 4619–4629.12. [Google Scholar] [CrossRef] [PubMed]
- Frange, P.; Bougnoux, M.E.; Lanternier, F.; Neven, B.; Moshous, D.; Angebault, C.; Lortholary, O.; Blanche, S. An update on pediatric invasive aspergillosis. Med. Et Mal. Infect. 2015, 45, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Pana, D.; Lanternier, F.; Mesini, A.; Ammann, R.A.; Averbuch, D.; Castagnola, E.; Cesaro, S.; Engelhard, D.; Garcia-Vidal, C.; et al. 8th European Conference on Infections in Leukaemia: 2020 guidelines for the diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol. 2021, 22, e254–e269. [Google Scholar] [CrossRef]
- Nicolato, A.; Nouér, S.A.; Garnica, M.; Portugal, R.; Maiolino, A.; Nucci, M. Invasive fungal diseases in patients with acute lymphoid leukemia. Leuk. Lymphoma 2016, 57, 2084–2089. [Google Scholar] [CrossRef]
- Pagano, L.; Akova, M.; Dimopoulos, G.; Herbrecht, R.; Drgona, L.; Blijlevens, N. Risk assessment and prognostic factors for mould-related diseases in immunocompromised patients. J. Antimicrob. Chemother. 2011, 66 (Suppl. 1), i5–i14. [Google Scholar] [CrossRef]
- Zaoutis, T.E.; Heydon, K.; Chu, J.H.; Walsh, T.J.; Steinbach, W.J. Epidemiology, outcomes, and costs of invasive aspergillosis in immunocompromised children in the United States, 2000. Pediatrics 2006, 117, e711–e716. [Google Scholar] [CrossRef]
- McCarthy, M.W.; Walsh, T.J. Drugs currently under investigation for the treatment of invasive candidiasis. Expert Opin. Investig. Drugs 2017, 26, 825–831. [Google Scholar] [CrossRef]
- Nami, S.; Aghebati-Maleki, A.; Morovati, H.; Aghebati-Maleki, L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharmacother. 2019, 110, 857–868. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216 (Suppl. 3), S445–S451. [Google Scholar] [CrossRef]
- Westbrook, S.D.; Kirkpatrick, W.R.; Freytes, C.O.; Toro, J.J.; Bernardo, S.; Patterson, T.F.; Redding, S.W.; Lee, S.A. Candida krusei sepsis secondary to oral colonization in a hemopoietic stem cell transplant recipient. Med. Mycol. 2007, 45, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Beyda, N.D.; John, J.; Kilic, A.; Alam, M.J.; Lasco, T.M.; Garey, K.W. FKS Mutant Candida glabrata: Risk Factors and Outcomes in Patients with Candidemia. Clin. Infect. Dis. 2014, 59, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Emergence of Candida auris: An International Call to Arms. Clin. Infect. Dis. 2017, 64, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Vallabhaneni, S.; Kallen, A.; Tsay, S.; Chow, N.; Welsh, R.; Kerins, J.; Kemble, S.K.; Pacilli, M.; Black, S.R.; Landon, E.; et al. Investigation of the First Seven Reported Cases of Candida auris, a Globally Emerging Invasive, Multidrug-Resistant Fungus—United States, May 2013–August 2016. Am. J. Transplant. 2017, 17, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Warris, A. The biology of pulmonary aspergillus infections. J. Infect. 2014, 69 (Suppl. 1), S36–S41. [Google Scholar] [CrossRef]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W.J. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Cuenca-Estrella, M. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia 2014, 178, 427–433. [Google Scholar] [CrossRef]
- Pana, Z.D.; Roilides, E.; Warris, A.; Groll, A.H.; Zaoutis, T. Epidemiology of Invasive Fungal Disease in Children. J. Pediatric Infect. Dis. Soc. 2017, 6 (Suppl. 1), S3–S11. [Google Scholar] [CrossRef]
- Bupha-Intr, O.; Butters, C.; Reynolds, G.; Kennedy, K.; Meyer, W.; Patil, S.; Bryant, P.; Morrissey, C.O. Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive fungal disease due to moulds other than Aspergillus in the haematology/oncology setting, 2021. Intern. Med. J. 2021, 51, 177–219. [Google Scholar] [CrossRef]
- Pomorska, A.; Malecka, A.; Jaworski, R.; Radon-Proskura, J.; Hare, R.K.; Nielsen, H.V.; Andersen, L.O.; Jensen, H.E.; Arendrup, M.C.; Irga-Jaworska, N. Isavuconazole in a Successful Combination Treatment of Disseminated Mucormycosis in a Child with Acute Lymphoblastic Leukaemia and Generalized Haemochromatosis: A Case Report and Review of the Literature. Mycopathologia 2019, 184, 81–88. [Google Scholar] [CrossRef]
- Seidel, D.; Hassler, A.; Salmanton-García, J.; Koehler, P.; Mellinghoff, S.C.; Carlesse, F.; Cheng, M.P.; Falces-Romero, I.; Herbrecht, R.; Jover Sáenz, A.; et al. Invasive Scedosporium spp. and Lomentospora prolificans infections in pediatric patients: Analysis of 55 cases from FungiScope® and the literature. Int. J. Infect. Dis. IJID: Off. Publ. Int. Soc. Infect. Dis. 2020, 92, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, A.W.; Cann, M.P.; Yeoh, D.K.; Bernard, A.; Ryan, A.L.; Blyth, C.C.; Kotecha, R.S.; McMullan, B.J.; Moore, A.S.; Haeusler, G.M.; et al. Epidemiology of invasive fungal infections in immunocompromised children; an Australian national 10-year review. Pediatric Blood Cancer 2019, 66, e27564. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Anaissie, E. Fusarium infections in immunocompromised patients. Clin. Microbiol. Rev. 2007, 20, 695–704. [Google Scholar] [CrossRef]
- Walsh, T.J.; Groll, A.; Hiemenz, J.; Fleming, R.; Roilides, E.; Anaissie, E. Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2004, 10 (Suppl. 1), 48–66. [Google Scholar] [CrossRef]
- Pastor, F.J.; Guarro, J. Clinical manifestations, treatment and outcome of Paecilomyces lilacinus infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2006, 12, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Paladini, F.; Cooper, I.R.; Pollini, M. Development of antibacterial and antifungal silver-coated polyurethane foams as air filtration units for the prevention of respiratory diseases. J. Appl. Microbiol. 2014, 116, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Kawakami, Y. Effectiveness of Airborne Fungi Removal by using a HEPA Air Purifier Fan in Houses. Biocontrol Sci. 2018, 23, 215–221. [Google Scholar] [CrossRef]
- Fisher, B.T.; Zaoutis, T.; Dvorak, C.C.; Nieder, M.; Zerr, D.; Wingard, J.R.; Callahan, C.; Villaluna, D.; Chen, L.; Dang, H.; et al. Effect of Caspofungin vs Fluconazole Prophylaxis on Invasive Fungal Disease Among Children and Young Adults with Acute Myeloid Leukemia: A Randomized Clinical Trial. JAMA 2019, 322, 1673. [Google Scholar] [CrossRef]
- Dvorak, C.C.; Fisher, B.T.; Esbenshade, A.J.; Nieder, M.L.; Alexander, S.; Steinbach, W.J.; Dang, H.; Villaluna, D.; Chen, L.; Skeens, M.; et al. A Randomized Trial of Caspofungin vs. Triazoles Prophylaxis for Invasive Fungal Disease in Pediatric Allogeneic Hematopoietic Cell Transplant. J. Pediatric Infect. Dis. Soc. 2021, 10, 417–425. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Fisher, B.T.; Phillips, B.; Beauchemin, M.; Carlesse, F.; Castagnola, E.; Duong, N.; Dupuis, L.L.; Fioravantti, V.; Groll, A.H.; et al. Clinical Practice Guideline for Systemic Antifungal Prophylaxis in Pediatric Patients With Cancer and Hematopoietic Stem-Cell Transplantation Recipients. J. Clin. Oncol. 2020, 38, 3205–3216. [Google Scholar] [CrossRef]
- Tissot, F.; Agrawal, S.; Pagano, L.; Petrikkos, G.; Groll, A.H.; Skiada, A.; Lass-Flörl, C.; Calandra, T.; Viscoli, C.; Herbrecht, R. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica 2017, 102, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Warris, A.; Lehrnbecher, T.; Roilides, E.; Castagnola, E.; Brüggemann, R.J.M.; Groll, A.H. ESCMID-ECMM guideline: Diagnosis and management of invasive aspergillosis in neonates and children. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, 1096–1113. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Castagnola, E.; Cesaro, S.; Dalle, J.H.; Engelhard, D.; Hope, W.; Roilides, E.; Styczynski, J.; Warris, A.; Lehrnbecher, T. Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol. 2014, 15, e327–e340. [Google Scholar] [CrossRef]
- Ferdjallah, A.; Nelson, K.M.; Meyer, K.; Jennissen, C.A.; Ebens, C.L. Isavuconazonium Sulfate Use in Multi-Modal Management of Invasive Mucormycosis in Four Pediatric Allogeneic Hematopoietic Cell Transplant Patients. J. Pediatric Pharmacol. Ther. JPPT Off. J. PPAG 2021, 26, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Prentice, H.G.; Hann, I.M.; Herbrecht, R.; Aoun, M.; Kvaloy, S.; Catovsky, D.; Pinkerton, C.R.; Schey, S.A.; Jacobs, F.; Oakhill, A. A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br. J. Haematol. 1997, 98, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.A.; Madero, L.; Reilly, A.F.; Lehrnbecher, T.; Groll, A.H.; Jafri, H.S.; Green, M.; Nania, J.J.; Bourque, M.R.; Wise, B.A.; et al. A randomized, double-blind, multicenter study of caspofungin versus liposomal amphotericin B for empiric antifungal therapy in pediatric patients with persistent fever and neutropenia. Pediatric Infect. Dis. J. 2010, 29, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Caselli, D.; Cesaro, S.; Ziino, O.; Ragusa, P.; Pontillo, A.; Pegoraro, A.; Santoro, N.; Zanazzo, G.; Poggi, V.; Giacchino, M.; et al. A prospective, randomized study of empirical antifungal therapy for the treatment of chemotherapy-induced febrile neutropenia in children. Br. J. Haematol. 2012, 158, 249–255. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.; Berezin, E.; Leverger, G.; Freire, A.; van der Vyver, A.; Chotpitayasunondh, T.; Konja, J.; Diekmann-Berndt, H.; Koblinger, S.; Groll, A.H.; et al. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: Substudy of a randomized double-blind trial. Pediatric Infect. Dis. J. 2008, 27, 820–826. [Google Scholar] [CrossRef]
- Pappas, P.G.; Rotstein, C.M.; Betts, R.F.; Nucci, M.; Talwar, D.; De Waele, J.J.; Vazquez, J.A.; Dupont, B.F.; Horn, D.L.; Ostrosky-Zeichner, L.; et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2007, 45, 883–893. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Viscoli, C.; Pappas, P.G.; Vazquez, J.; Ostrosky-Zeichner, L.; Rotstein, C.; Sobel, J.D.; Herbrecht, R.; Rahav, G.; Jaruratanasirikul, S.; et al. Isavuconazole Versus Caspofungin in the Treatment of Candidemia and Other Invasive Candida Infections: The ACTIVE Trial. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 1981–1989. [Google Scholar] [CrossRef]
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M.; et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Cornely, O.A.; Maertens, J.; Bresnik, M.; Ebrahimi, R.; Ullmann, A.J.; Bouza, E.; Heussel, C.P.; Lortholary, O.; Rieger, C.; Boehme, A.; et al. Liposomal amphotericin B as initial therapy for invasive mold infection: A randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2007, 44, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Poiree, S.; Elie, C.; Garcia-Hermoso, D.; Bakouboula, P.; Sitbon, K.; Herbrecht, R.; Wolff, M.; Ribaud, P.; Lortholary, O.; et al. Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin B (L-AMB) for the initial treatment of mucormycosis. J. Antimicrob. Chemother. 2015, 70, 3116–3123. [Google Scholar] [CrossRef] [PubMed]
- Skiada, A.; Pagano, L.; Groll, A.; Zimmerli, S.; Dupont, B.; Lagrou, K.; Lass-Florl, C.; Bouza, E.; Klimko, N.; Gaustad, P.; et al. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, G.; Garcia-Vidal, C.; Nucci, M.; Puchades, F.; Fernández-Ruiz, M.; Obed, M.; Manzur, A.; Gudiol, C.; Pemán, J.; Aguado, J.; et al. Breakthrough candidaemia in the era of broad-spectrum antifungal therapies. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2016, 22, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Hoenigl, M.; Lass-Flörl, C.; Chen, S.C.; Kontoyiannis, D.P.; Morrissey, C.O.; Thompson, G.R., 3rd. Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM)Defining Breakthrough Invasive Fungal Infection– Position Paper of the Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM). Mycoses 2019, 62, 716. [Google Scholar] [CrossRef]
- Lerolle, N.; Raffoux, E.; Socie, G.; Touratier, S.; Sauvageon, H.; Porcher, R.; Bretagne, S.; Bergeron, A.; Azoulay, E.; Molina, J.M.; et al. Breakthrough invasive fungal disease in patients receiving posaconazole primary prophylaxis: A 4-year study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, O952–O959. [Google Scholar] [CrossRef]
- Ferreras-Antolin, L.; Bielicki, J.; Warris, A.; Sharland, M.; Hsia, Y. GARPEC Network. Global Divergence of Antifungal Prescribing Patterns: Data from the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children Surveys. Pediatr. Infect. Dis. J. 2021, 40, 327–332. [Google Scholar] [CrossRef]
- Funaki, T.; Miyairi, I. Breakthrough Candidemia In Children on Micafungin. Pediatric Infect. Dis. J. 2018, 37, 1258–1260. [Google Scholar] [CrossRef]
- Morris, S.K.; Allen, U.D.; Gupta, S.; Richardson, S.E. Breakthrough filamentous fungal infections in pediatric hematopoetic stem cell transplant and oncology patients receiving caspofungin. Can. J. Infect. Dis. Med. Microbiol. J. Can. Des Mal. Infect. Microbiol. Med. 2012, 23, 179–182. [Google Scholar] [CrossRef]
- Kontoyiannis, D.P.; Marr, K.A.; Park, B.J.; Alexander, B.D.; Anaissie, E.J.; Walsh, T.J.; Ito, J.; Andes, D.R.; Baddley, J.W.; Brown, J.; et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: Overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50, 1091–1100. [Google Scholar] [CrossRef]
- Thursky, K.; Byrnes, G.; Grigg, A.; Szer, J.; Slavin, M. Risk factors for post-engraftment invasive aspergillosis in allogeneic stem cell transplantation. Bone Marrow Transplant. 2004, 34, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Martino, R.; Subirá, M.; Rovira, M.; Solano, C.; Vázquez, L.; Sanz, G.F.; Urbano-Ispizua, A.; Brunet, S.; De la Cámara, R.; alloPBSCT Infectious/Non-infectious Complications Subcommittees of the Grupo Español de Trasplante Hematopoyético (GETH). Invasive fungal infections after allogeneic peripheral blood stem cell transplantation: Incidence and risk factors in 395 patients. Br. J. Haematol. 2002, 116, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Girmenia, C.; Raiola, A.M.; Piciocchi, A.; Algarotti, A.; Stanzani, M.; Cudillo, L.; Pecoraro, C.; Guidi, S.; Iori, A.P.; Montante, B.; et al. Incidence and outcome of invasive fungal diseases after allogeneic stem cell transplantation: A prospective study of the Gruppo Italiano Trapianto Midollo Osseo (GITMO). Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2014, 20, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Cordonnier, C.; Ribaud, P.; Herbrecht, R.; Milpied, N.; Valteau-Couanet, D.; Morgan, C.; Wade, A.; Société Française de Greffe de Moelle et de Thérapie Cellulaire. Prognostic factors for death due to invasive aspergillosis after hematopoietic stem cell transplantation: A 1-year retrospective study of consecutive patients at French transplantation centers. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2006, 42, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.T.; Kondapalli, L.; Artz, A.; Smith, S.; Rich, E.; Godley, L.; Odenike, O.; Pursell, K.J.; Larson, R.A.; Stock, W.; et al. Successful allogeneic transplantation of patients with suspected prior invasive mold infection. Leuk. Lymphoma 2007, 48, 1799–1805. [Google Scholar] [CrossRef]
- Fukuda, T.; Boeckh, M.; Guthrie, K.A.; Mattson, D.K.; Owens, S.; Wald, A.; Sandmaier, B.M.; Corey, L.; Storb, R.F.; Marr, K.A. Invasive aspergillosis before allogeneic hematopoietic stem cell transplantation: 10-year experience at a single transplant center. Biol. Blood Marrow Transplant. 2004, 10, 494–503. [Google Scholar] [CrossRef]
- Maziarz, R.T.; Brazauskas, R.; Chen, M.; McLeod, A.A.; Martino, R.; Wingard, J.R.; Aljurf, M.; Battiwalla, M.; Dvorak, C.C.; Geroge, B.; et al. Pre-existing invasive fungal infection is not a contraindication for allogeneic HSCT for patients with hematologic malignancies: A CIBMTR study. Bone Marrow Transplant. 2016, 52, 270–278. [Google Scholar] [CrossRef]
- Rotte, L.G.Y.; Loeffen, Y.G.T.; Bierings, M.B.; Wolfs, T.F.W.; Lindemans, C.A. Allogenic Hematopoietic Stem Cell Transplantation Is Feasible in Pediatric Patients with an Active or Recently Diagnosed Invasive Fungal Infection. Transplant. Cell. Ther. 2021, 27, 781.e1–781.e5. [Google Scholar] [CrossRef]
- Puerta-Alcalde, P.; Champlin, R.E.; Kontoyiannis, D.P. How I perform hematopoietic stem cell transplantation on patients with a history of invasive fungal disease. Blood 2020, 136, 2741–2753. [Google Scholar] [CrossRef]
- West, K.A.; Gea-Banacloche, J.; Stroncek, D.; Kadri, S.S. Granulocyte transfusions in the management of invasive fungal infections. Br. J. Haematol. 2017, 177, 357–374. [Google Scholar] [CrossRef]
- Gurlek Gokcebay, D.; Akpinar Tekgunduz, S. Granulocyte transfusions in the management of neutropenic fever: A pediatric perspective. Transfus. Apher. Sci. Off. J. World Apher. Assoc. Off. J. Eur. Soc. Haemapheresis 2018, 57, 16–19. [Google Scholar] [CrossRef] [PubMed]
- DRKS–Deutsches Register Klinischer Studien. Available online: https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00000218 (accessed on 7 June 2022).
- Johann, P.D.; Wuchter, P.; Trojanova, L.; Sturm, D.; Lu, K.H.; Kulozik, A.E.; Kunz, J.B. Cui bono? identifying patient groups that may benefit from granulocyte transfusions in pediatric hematology and oncology. J. Pediatric Hematol./Oncol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Knapp, S.; Brosig, A.; Troeger, A.; Kleinschmidt, K.; Offner, R.; Corbacioglu, S.; Burkhardt, R.; Foell, J.; Ahrens, N. Granulocyte transfusions made with modified fluid gelatin in pediatric and adolescent patients with prolonged neutropenia. Transfusion 2022, 62, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Nanya, M.; Yurugi, K.; Kato, I.; Hiramatsu, H.; Kawabata, H.; Kondo, T.; Iemura, T.; Hishida, R.; Shibutani, E.; Matsui, K.; et al. Successful granulocyte apheresis using medium molecular weight hydroxyethyl starch. Int. J. Hematol. 2019, 110, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Busca, A.; Cesaro, S.; Teofili, L.; Delia, M.; Cattaneo, C.; Criscuolo, M.; Marchesi, F.; Fracchiolla, N.S.; Valentini, C.G.; Farina, F.; et al. SEIFEM 2017: From real life to an agreement on the use of granulocyte transfusions and colony-stimulating factors for prophylaxis and treatment of infectious complications in patients with hematologic malignant disorders. Expert Rev. Hematol. 2018, 11, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Sachs, U.J.H.; Reiter, A.; Walter, T.; Bein, G.; Woessmann, W. Safety and efficacy of therapeutic early onset granulocyte transfusions in pediatric patients with neutropenia and severe infections. Transfusion 2006, 46, 1909–1914. [Google Scholar] [CrossRef]
- Pham, H.P.; Rogoza, K.; Stotler, B.; Duffy, D.; Parker-Jones, S.; Ginzburg, Y.; Bhatia, M.; Cairo, M.; Schwartz, J. Granulocyte transfusion therapy in pediatric patients after hematopoietic stem cell transplantation: A 5-year single tertiary care center experience. J. Pediatric Hematol. /Oncol. 2012, 34, e332–e336. [Google Scholar] [CrossRef]
- Díaz, R.; Soundar, E.; Hartman, S.K.; Dreyer, Z.; Teruya, J.; Hui, S.K.R. Granulocyte transfusions for children with infection and neutropenia or granulocyte dysfunction. Pediatric Hematol. Oncol. 2014, 31, 425–434. [Google Scholar] [CrossRef]
- Nikolajeva, O.; Mijovic, A.; Hess, D.; Tatam, E.; Amrolia, P.; Chiesa, R.; Rao, K.; Silva, J.; Veys, P. Single-donor granulocyte transfusions for improving the outcome of high-risk pediatric patients with known bacterial and fungal infections undergoing stem cell transplantation: A 10-year single-center experience. Bone Marrow Transplant. 2015, 50, 846–849. [Google Scholar] [CrossRef]
- Koc, B.S.; Tekkesin, F.; Yıldırım, U.M.; Kılıc, S.C. Use of granulocyte transfusion in early period in life-threatening infections of pediatric hematology and oncology patients: A single-center experience. Transfus. Apher. Sci. Off. J. World Apher. Assoc. Off. J. Eur. Soc. Haemapheresis 2021, 60, 103134. [Google Scholar] [CrossRef]
- Li, Y.; Hwang, W.T.; Maude, S.L.; Teachey, D.T.; Frey, N.V.; Myers, R.M.; Barz Leahy, A.; Liu, H.; Porter, D.L.; Grupp, S.A.; et al. Statistical considerations for analyses of time-to-event endpoints in oncology clinical trials: Illustrations with CAR-T immunotherapy studies. Clin. Cancer Res. 2022, 28, 3940–3949. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Kjeken, R.; Niederlaender, C.; Markey, G.; Saunders, T.S.; Opsata, M.; Moltu, K.; Bremnes, B.; Grønevik, E.; Muusse, M. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the Treatment of Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma. Oncol. 2020, 25, e321–e327. [Google Scholar] [CrossRef] [PubMed]
- Nastoupil, L.J.; Jain, M.D.; Feng, L.; Spiegel, J.Y.; Ghobadi, A.; Lin, Y.; Dahiya, S.; Lunning, M.; Lekakis, L.; Reagan, P.; et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results from the US Lymphoma CAR T Consortium. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3119–3128. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2020, 26, 26–33. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New Engl. J. Med. 2018, 378, 439. [Google Scholar] [CrossRef]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Budde, L.E.; Zaia, J.A. CD19 CAR-T therapy and sepsis: Dancing with the devil. Blood 2018, 131, 7–8. [Google Scholar] [CrossRef]
- Hill, J.A.; Li, D.; Hay, K.A.; Green, M.L.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Boeckh, M.; Turtle, C.J. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 2018, 131, 121–130. [Google Scholar] [CrossRef]
- Park, J.H.; Romero, F.A.; Taur, Y.; Sadelain, M.; Brentjens, R.J.; Hohl, T.M.; Seo, S.K. Cytokine Release Syndrome Grade as a Predictive Marker for Infections in Patients with Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia Treated with Chimeric Antigen Receptor T Cells. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 67, 533–540. [Google Scholar] [CrossRef]
- Vora, S.B.; Waghmare, A.; Englund, J.A.; Qu, P.; Gardner, R.A.; Hill, J.A. Infectious Complications Following CD19 Chimeric Antigen Receptor T-cell Therapy for Children, Adolescents, and Young Adults. Open Forum Infect. Dis. 2020, 7, ofaa121. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudjafari, Z.; Hawks, K.G.; Hsieh, A.A.; Plesca, D.; Gatwood, K.S.; Culos, K.A. American Society for Blood and Marrow Transplantation Pharmacy Special Interest Group Survey on Chimeric Antigen Receptor T Cell Therapy Administrative, Logistic, and Toxicity Management Practices in the United States. Biol. Blood Marrow Transplant. 2019, 25, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. Dec. 2021, 33, 259–275. [Google Scholar] [CrossRef]
- Locatelli, F.; Zugmaier, G.; Mergen, N.; Bader, P.; Jeha, S.; Schlegel, P.G.; Bourquin, J.P.; Handgretinger, R.; Brethon, B.; Rossig, C.; et al. Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: Results of the RIALTO trial, an expanded access study. Blood Cancer J. 2020, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2019, 33, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Brivio, E.; Locatelli, F.; Lopez-Yurda, M.; Malone, A.; Díaz-de-Heredia, C.; Bielorai, B.; Rossig, C.; van der Velden, V.; Ammerlaan, A.; Thano, A.; et al. A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood 2021, 137, 1582–1590. [Google Scholar] [CrossRef]
- Newman, M.J.; Benani, D.J. A review of blinatumomab, a novel immunotherapy. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2016, 22, 639–645. [Google Scholar] [CrossRef]
- Little, J.S.; Weiss, Z.F.; Hammond, S.P. Invasive Fungal Infections and Targeted Therapies in Hematological Malignancies. J Fungi. 2021, 7, 1058. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. medicine. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.E.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Bernhardt, M.B.; et al. Effect of Postreinduction Therapy Consolidation with Blinatumomab vs Chemotherapy on Disease-Free Survival in Children, Adolescents, and Young Adults with First Relapse of B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021, 325, 833–842. [Google Scholar] [CrossRef]
- Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J.D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. Effect of Blinatumomab vs. Chemotherapy on Event-Free Survival among Children with High-risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021, 325, 843. [Google Scholar] [CrossRef]
- Lindsay, J.; Teh, B.W.; Micklethwaite, K.; Slavin, M. Azole antifungals and new targeted therapies for hematological malignancy. Curr. Opin. Infect. Dis. 2019, 32, 538–545. [Google Scholar] [CrossRef] [PubMed]
- BESPONSA® (Inotuzumab Ozogamicin) Official HCP Website|Safety Info. Available online: https://besponsa.pfizerpro.com/ (accessed on 23 April 2022).
- Contreras, C.F.; Higham, C.S.; Behnert, A.; Kim, K.; Stieglitz, E.; Tasian, S.K. Clinical Utilization of Blinatumomab and Inotuzumab Immunotherapy in Children with Relapsed or Refractory B-Acute Lymphoblastic Leukemia. Pediatr Blood Cancer. 2021, 68, e28718. [Google Scholar] [CrossRef] [PubMed]
- Elitzur, S.; Arad-Cohen, N.; Barzilai-Birenboim, S.; Ben-Harush, M.; Bielorai, B.; Elhasid, R.; Feuerstein, T.; Gilad, G.; Gural, A.; Kharit, M.; et al. Blinatumomab as a bridge to further therapy in cases of overwhelming toxicity in pediatric B-cell precursor acute lymphoblastic leukemia: Report from the Israeli Study Group of Childhood Leukemia. Pediatric Blood Cancer 2019, 66. [Google Scholar] [CrossRef]
- Cresemba|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/cresemba (accessed on 24 April 2022).
- Arrieta, A.C.; Neely, M.; Day, J.C.; Rheingold, S.R.; Sue, P.K.; Muller, W.J.; Danziger-Isakov, L.A.; Chu, J.; Yildirim, I.; McComsey, G.A.; et al. Safety, Tolerability, and Population Pharmacokinetics of Intravenous and Oral Isavuconazonium Sulfate in Pediatric Patients. Antimicrob. Agents Chemother. 2021, 65, e0029021. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Campoli, C.; Belotti, T.; Cojutti, P.G.; Masetti, R.; Pession, A.; Viale, P.; Pea, F. Real-world comparison of isavuconazole and voriconazole in terms of the need for dosage adjustments guided by clinical pharmacological advice during primary prophylaxis of invasive fungal infections in pediatric patients with hemato-oncological malignanci. Ther. Drug Monit. 2022, 44, 641–650. [Google Scholar] [CrossRef]
- Ashkenazi-Hoffnung, L.; Bilavsky, E.; Levy, I.; Grisaru, G.; Sadot, E.; Ben-Ami, R.; Novikov, A.; Fischer, S.; Nahum, E.; Scheuerman, O. Isavuconazole as successful salvage therapy for mucormycosis in pediatric patients. Pediatric Infect. Dis. J. 2020, 39, 718–724. [Google Scholar] [CrossRef]
- Decembrino, N.; Perruccio, K.; Zecca, M.; Colombini, A.; Calore, E.; Muggeo, P.; Soncini, E.; Comelli, A.; Molinaro, M.; Goffredo, B.M.; et al. A Case Series and Literature Review of Isavuconazole Use in Pediatric Patients with Hemato-oncologic Diseases and Hematopoietic Stem Cell Transplantation. Antimicrob. Agents Chemother 2020, 64, e01783-19. [Google Scholar] [CrossRef]
- Zimmermann, P.; Brethon, B.; Roupret-Serzec, J.; Caseris, M.; Goldwirt, L.; Baruchel, A.; de Tersant, M. Isavuconazole Treatment for Invasive Fungal Infections in Pediatric Patients. Pharmaceuticals 2022, 15, 375. [Google Scholar] [CrossRef]
- Rezafungin–Cidara Therapeutics. Available online: https://www.cidara.com/rezafungin/ (accessed on 2 May 2022).
- Ong, V.; Bartizal, K.; Miesel, L. Efficacy of CD101, a Novel Echinocandin, in Mouse Models of Aspergillosis and Azole-Resistant Disseminated Candidiasis. Blood 2016, 128, 3400. [Google Scholar] [CrossRef]
- Hager, C.L.; Larkin, E.L.; Long, L.A.; Ghannoum, M.A. Evaluation of the efficacy of rezafungin, a novel echinocandin, in the treatment of disseminated Candida auris infection using an immunocompromised mouse model. J. Antimicrob. Chemother. 2018, 73, 2085–2088. [Google Scholar] [CrossRef] [Green Version]
- Sandison, T.; Ong, V.; Lee, J.; Thye, D. Safety and Pharmacokinetics of CD101 IV, a Novel Echinocandin, in Healthy Adults. Antimicrob. Agents Chemother. 2017, 61, e01627-16. [Google Scholar] [CrossRef] [PubMed]
- Cidara Therapeutics Reports Positive Topline Results from Phase 2 STRIVE Trial of Lead Antifungal Rezafungin–Cidara Therapeutics, Inc. Available online: http://ir.cidara.com/news-releases/news-release-details/cidara-therapeutics-reports-positive-topline-results-phase-2 (accessed on 2 May 2022).
- Mundipharma and Cidara Therapeutics Announce First Presentation of Results from Global Phase 3 ReSTORE Trial of Rezafungin for Treatment of Candidemia and/or Invasive Candidiasis Demonstrating its Positive Efficacy and Safety Profile–Cidara Therapeutics, Inc. Available online: https://ir.cidara.com/news-releases/news-release-details/mundipharma-and-cidara-therapeutics-announce-first-presentation (accessed on 2 May 2022).
- Study of Rezafungin Compared to Standard Antimicrobial Regimen for Prevention of Invasive Fungal Diseases in Adults Undergoing Allogeneic Blood and Marrow Transplantation–Full Text View–ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04368559 (accessed on 2 May 2022).
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol. 2017, 55, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Stenland, C.J.; Lis, L.G.; Schendel, F.J.; Hahn, N.J.; Smart, M.A.; Miller, A.L.; von Keitz, M.G.; Gurvich, V.J. A practical and scalable manufacturing process for an anti-fungal agent, Nikkomycin, Z. Org. Process Res. Dev. 2013, 17, 265–272. [Google Scholar] [CrossRef]
- Ganesan, L.T.; Manavathu, E.K.; Cutright, J.L.; Alangaden, G.J.; Chandrasekar, P.H. In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2004, 10, 961–966. [Google Scholar] [CrossRef]
- Li, R.K.; Rinaldi, M.G. In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob. Agents Chemother. 1999, 43, 1401–1405. [Google Scholar] [CrossRef]
- Nix, D.E.; Swezey, R.R.; Hector, R.; Galgiani, J.N. Pharmacokinetics of nikkomycin Z after single rising oral doses. Antimicrob. Agents Chemother. 2009, 53, 2517–2521. [Google Scholar] [CrossRef]
- Kovanda, L.L.; Sullivan, S.M.; Smith, L.R.; Desai, A.V.; Bonate, P.L.; Hope, W.W. Population Pharmacokinetic Modeling of VL-2397, a Novel Systemic Antifungal Agent: Analysis of a Single- and Multiple-Ascending-Dose Study in Healthy Subjects. Antimicrob. Agents Chemother. 2019, 63, e00163-19. [Google Scholar] [CrossRef]
- Nakamura, I.; Ohsumi, K.; Takeda, S.; Katsumata, K.; Matsumoto, S.; Akamatsu, S.; Mitori, H.; Nakai, T. (ASP2397 Is a Novel Natural Compound That Exhibits Rapid and Potent Fungicidal Activity against Aspergillus Species through a Specific Transporter. Antimicrob. Agents Chemother. 2019, 63, e02689-18. [Google Scholar] [CrossRef]
- Wiederhold, N.P. The antifungal arsenal: Alternative drugs and future targets. Int. J. Antimicrob. Agents 2018, 51, 333–339. [Google Scholar] [CrossRef]
- Mammen, M.P.; Armas, D.; Hughes, F.H.; Hopkins, A.M.; Fisher, C.L.; Resch, P.A.; Rusalov, D.; Sullivan, S.M.; Smith, L. R First-in-Human Phase 1 Study to Assess Safety, Tolerability, and Pharmacokinetics of a Novel Antifungal Drug, VL-2397, in Healthy Adults. Antimicrob. Agents Chemother. 2019, 63, e00969-19. [Google Scholar] [CrossRef] [PubMed]
- NCT03327727. Available online: clinicaltrials.gov (accessed on 22 April 2022).
- Cuddihy, G.; Wasan, E.K.; Di, Y.; Wasan, K.M. The Development of Oral Amphotericin B to Treat Systemic Fungal and Parasitic Infections: Has the Myth Been Finally Realized? Pharmaceutics 2019, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Biederdorf, F.; Breithaupt, I.; Mannino, R.; Blum, D. Oral Administration of Amphotericin B (CAmB) in Humans: A Phase I Study of Tolerability and Pharmacokinetics. Sci. Present. Publ. Matinas Biopharma 2016, 400, e01450-20. [Google Scholar]
- CAMB/MAT2203 in Patients with Mucocutaneous Candidiasis–Full Text View–ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02629419 (accessed on 25 April 2022).
- MAT2203: Matinas BioPharma Holdings, Inc. (MTNB). Available online: https://www.matinasbiopharma.com/lnc-technology/mat2203 (accessed on 25 April 2022).
- Bulet, P.; Cotter, P.D.; Fernández De Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E. Antifungal Peptides as Therapeutic Agents. Front. Cell. Infect. Microbiol. 2020, 1, 105. [Google Scholar] [CrossRef]
- Duncan, V.M.S.; O’Neil, D.A. Commercialization of antifungal peptides. Fungal Biol. Rev. 2013, 26, 156–165. [Google Scholar] [CrossRef]
- Rex, J.H.; Walsh, T.J.; Nettleman, M.; Anaissie, E.J.; Bennett, J.E.; Bow, E.J.; Carillo-Munoz, A.J.; Chavanet, P.; Cloud, G.A.; Denning, D.W.; et al. Need for Alternative Trial Designs and Evaluation Strategies for Therapeutic Studies of Invasive Mycoses This document summarizes a workshop entitled “Alternative Endpoints and Trial Designs for Studies. Clin. Infect. Dis. 2001, 33, 95–106. [Google Scholar] [CrossRef]
- Porto, W.F.; Irazazabal, L.; Alves, E.; Ribeiro, S.M.; Matos, C.O.; Pires, Á.S.; Fensterseifer, I.; Miranda, V.J.; Haney, E.F.; Humblot, V.; et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun. 2018, 9, 1490. [Google Scholar] [CrossRef]
- McGowan, J.E.; Finland, M. Usage of Antibiotics in a General Hospital: Effect of Requiring Justification. J. Infect. Dis. 1974, 130, 165–168. [Google Scholar] [CrossRef]
- Rice, L.B. Antimicrobial Stewardship and Antimicrobial Resistance. Med. Clin. North Am. 2018, 102, 805–818. [Google Scholar] [CrossRef]
- Donà, D.; Barbieri, E.; Daverio, M.; Lundin, R.; Giaquinto, C.; Zaoutis, T.; Sharland, M. Implementation and impact of pediatric antimicrobial stewardship programs: A systematic scoping review. Antimicrob. Resist. Infect. Control. 2020, 9, 3. [Google Scholar] [CrossRef]
- Science, M.; Timberlake, K. Antifungal stewardship: A budding branch of antimicrobial stewardship. Pediatric Blood Cancer 2020, 67, e28145. [Google Scholar] [CrossRef] [PubMed]
- Ananda-Rajah, M.R.; Slavin, M.A.; Thursky, K.T. The case for antifungal stewardship. Curr. Opin. Infect. Dis. 2012, 25, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ananda-Rajah, M.R.; Cheng, A.; Morrissey, C.O.; Spelman, T.; Dooley, M.; Neville, A.M.; Slavin, M. Attributable hospital cost and antifungal treatment of invasive fungal diseases in high-risk hematology patients: An economic modeling approach. Antimicrob. Agents Chemother. 2011, 55, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Dyar, O.J.; Beović, B.; Pulcini, C.; Tacconelli, E.; Hulscher, M.; Cookson, B. ESCMID generic competencies working group ESCMID generic competencies in antimicrobial prescribing and stewardship: Towards a European consensus. Clin. Microbiol. Infect. 2019, 25, 13–19. [Google Scholar] [CrossRef]
- Ferreras-Antolín, L.; Irwin, A.; Atra, A.; Chapelle, F.; Drysdale, S.B.; Emonts, M.; McMaster, P.; Paulus, S.; Patel, S.; Rompola, M.; et al. Pediatric Antifungal Prescribing Patterns Identify Significant Opportunities to Rationalize Antifungal Use in Children. Pediatric Infect. Dis. J. 2022, 41, E69–E74. [Google Scholar] [CrossRef]
- Santiago-García, B.; Rincón-López, E.M.; Ponce Salas, B.; Aguilar de la Red, Y.; Garrido Colino, C.; Martínez Fernández-Llamazares, C.; Saavedra-Lozano, J.; Hernández-Sampelayo Matos, T. POPA Study Group Effect of an intervention to improve the prescription of antifungals in pediatric hematology-oncology. Pediatric Blood Cancer 2020, 67, e27963. [Google Scholar] [CrossRef]
- Valerio, M.; Muñoz, P.; Rodríguez-González, C.; Sanjurjo, M.; Guinea, J.; Bouza, E. Training should be the first step toward an antifungal stewardship program. Enferm. Infecc. Y Microbiol. Clin. 2015, 33, 221–227. [Google Scholar] [CrossRef]
- Lachenmayr, S.J.; Berking, S.; Horns, H.; Strobach, D.; Ostermann, H.; Berger, K. Antifungal treatment in haematological and oncological patients: Need for quality assessment in routine care. Mycoses 2018, 61, 464–471. [Google Scholar] [CrossRef]
- Scardina, T.; Oikonomopoulou, Z.; Sun, S.; Muller, W.J.; Patel, S.J. Opportunities for Antimicrobial Stewardship Among Pediatric Patients Prescribed Combination Antifungal Therapy. J. Pediatric Pharmacol. Ther. JPPT Off. J. PPAG 2021, 26, 624–631. [Google Scholar] [CrossRef]
Guidelines | Recommendation | Strength of Recommendation |
---|---|---|
ECIL-8 [13] | Primary antifungal prophylaxis is strongly recommended for pediatric patients at high risk of IFD (acute myeloid leukemia, recurrent leukemia, high-risk acute lymphoblastic leukemia, allogeneic HSCT in the pre-engraftment and in the post-engraftment phase, augmented immunosuppressive treatment. | Strong |
Local epidemiology should be considered for the choice of the agent. | Strong | |
COG [39] | Antifungal prophylaxis must be administered in patients receiving treatment of acute myeloid leukemia that it is expected to result in profound and prolonged neutropenia, preferring a mold active agent. | Strong High-quality evidence |
Antifungal prophylaxis should be not administered to patients with cancer at low risk for IFD (pediatric patients with lymphomas and solid tumors), while it is routinary in children undergoing allogeneic HSCT pre-engraftment and in those receiving systemic immunosuppression for the treatment of GvHD. | Strong Moderate-quality evidence | |
Do not administer antifungal prophylaxis to pediatric patients with acute lymphoblastic leukemia at low risk for IFD. | Strong Low-quality evidence | |
Consider antifungal prophylaxis for pediatric patients with newly diagnosed and relapsed leukemia at high risk for IFD. | Weak Low-quality evidence |
Author | Design of Study | Results and Conclusions |
---|---|---|
Prophylaxis | ||
Fisher et al. [37] | 517 children with AML randomly assigned to prophylaxis with caspofungin or fluconazole | 23 total IFD. The 5-month cumulative incidence of IFD was 3.1% in the caspofungin arm vs. 7.2% in the fluconazole arm (p = 0.03). The study suggested that caspofungin might be considered for prophylaxis but was terminated early due to futility. |
Dvorak et al. [38] | 290 pediatric patients undergoing HSCT were randomized in two arms: caspofungin and triazole (fluconazole or voriconazole) | IFD cumulative incidence at day 42 was 1.4% in both groups (with no significative difference between fluconazole or voriconazole). Caspofungin did not significantly reduce the rate of IFD. |
Empirical treatment | ||
Prentice et. al. [44] | 100 adults and 204 children randomized in two groups, receiving either conventional amphotericin B, liposomial amphotericin B or liposomial amphotericin B at higher dose if pyrexia of unknown origin occurred | Liposomial amphotericin B at either 1 or 3 mg/kg was safer and possibly superior to conventional amphotericin B. |
Maertens et al. [45] | Patients between 2 to 17 years of age with persistent fever and neutropenia were randomly assigned to receive caspofungin or liposomial amphotericin B. | Adverse drug related events were similar between the caspofungin and the amphotericin arms (clinical 48% [32.7–62] vs. 46.2% [26.6–66.6]). The two drugs resulted comparable in terms of tolerability, safety and efficacy. |
Caselli et al. [46] | 110 pediatric neutropenic patients with fever divided in two arms: high risk (receiving caspofungin or liposomial amphotericin B) and low risk (receiving caspofungin, liposomial amphotericin B or no drugs). | Complete response was achieved in 85.7% of high-risk patients (p = 0.72) and 87.5% of low-risk patients (with a rate of 87.5% alone in the no drug sub-arm, p = 0.41). Antifungal empirical therapy seemed unlikely to provide any benefit in low-risk patients. |
Candidiasis | ||
Queiroz—Telles et al. [47] | 106 pediatric patients treated for invasive candidiasis with micafungin or liposomial amphotericin B. | Treatment success observed for 35/48 (72.9%) patient cured with micafungin and 38/50 (76%) for the ones who received amphotericin B. The authors stated that the efficacy of the two drugs was similar. |
Pappas et al. [48] | 595 adult patients with candidemia or invasive candidemia were divided in three different groups: micafungin 100 mg/daily, micafungin 150 mg/daily, caspofungin 70 mg followed by 150 mg/daily. | Similar success rate (76.4, 71.4 and 72.3% respectively) were observed. Non-inferiority of micafungin to caspogfungin was proved. |
Kullberg et al. [49] | 450 adult patients affected by candidemia randomized to receive isovuconazole or caspofungin. | Successful overall response in the isovuconazole arm was 60.3% vs. 71.1% in the caspofungin arm. Non-inferiority of isovuconazole was not demonstrated. |
Aspergillosis | ||
Maertens et al. [50] | 527 adult patients with suspected mold disease randomized in two groups (isovuconazole vs. voriconazole) | All-cause mortality at day 42 from first drug dose was 19% with isovuconazole and 20% with voriconazole. Drug-related adverse events were fewer in the isovuconazole arm (42% vs. 60%, p < 0.001). Isovuconazole resulted in non-inferior to voriconazole. |
Cornely et al. [51] | 195 adult patients and 6 pediatric patients with confirmed mold infection received liposomial amphotericin B at 3 mg/kg/day or 10 mg/kg/day | Good response was achieved in 50% and of patients in the 3 and 10 mg/kg/day respectively (p > 0.05). A significant rate of nephrotoxicity and hypokalemia was observed in the higher-dose group. The 3 mg/kg/day dosage was effective and well tolerated as first-line therapy |
Mucormycosis | ||
Lanternier et al. [52] | 40 patients with proven or probable Mucormycosis (including two children) were scheduled to receive liposomial amphotericin B for one month before surgery. | Response rate at week 4 was 36% and increased to 45% at week 12, showing potential efficacy for a combined amphotericin/surgical treatment |
Skiada et al. [53] | Retrospective analysis of 230 cases of zygomycosis. | Factors associated with survivability were history of trauma (p = 0.019), treatment with amphotericin B (p = 0.006) and surgery (p < 0.001), meaning that association of amphotericin administration and surgical treatment (if feasible) can improve survival. |
Author | Design of Study | Results and Conclusions |
---|---|---|
Sachs et al. [77] | 27 children with hematologic disorder or malignancy and severe neutropenia with clinically and/or microbiologically documented severe infection (including 6 invasive aspergillosis and one disseminated candidemia) unresponsive to standard treatment received GTX. | 25 out 27 patients cleared the infection, including the 6 children with aspergillosis, a great success rate, probably influenced by the low number of IFD considered and earlier start of GTX. |
Pham et al. [78] | Retrospective observational analysis on GTX from stimulated and un-stimulated donors administered in pediatric HSCT patients in a single center from 2005 to 2010. In 19% of the cases, 153 GTXs were administered for IFD. | Most patients cleared the index infection, only one affected by candidemia did not. Survival between patients receiving GTX from stimulated and un-stimulated donors was not significantly different (p = 0.42). The retrospective nature of this study strongly limits its results. |
Diaz et al. [79] | Retrospective review of 18 children with neutropenia or granulocyte disfunction receiving GTX. | 13 patients had complete or partial response (two infections caused by Fusarium and Histoplasma spp. progressed). While the clinical benefit was evident, the retrospective nature and lack of a comparison group do not allow us to demonstrate the superiority of GTX alone against antimicrobials. |
Nikolajeva et al. [80] | Retrospective analysis on 28 pediatric patients undergoing HSCT and receiving GTX (14 of them affected by proven, probable or possible IFD). | 11 of the 14 patients with IFD survived, only one died for IFD progression. Interestingly, a low rate of GVHD was observed, but these results must be confirmed in larger cohorts. |
Koc et al. [81] | Retrospective review on 9 pediatric hematology and oncology patients receiving GTX. | Clinical response rates after GTX was 90.9%, while mortality rate was 9%. The large limitations of this study are the small cohort considered and the absence of IFD. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossù, G.; Di Sario, R.; Muratore, E.; Leardini, D.; Pession, A.; Esposito, S.; Masetti, R. Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer. Antibiotics 2022, 11, 1316. https://doi.org/10.3390/antibiotics11101316
Bossù G, Di Sario R, Muratore E, Leardini D, Pession A, Esposito S, Masetti R. Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer. Antibiotics. 2022; 11(10):1316. https://doi.org/10.3390/antibiotics11101316
Chicago/Turabian StyleBossù, Gianluca, Riccardo Di Sario, Edoardo Muratore, Davide Leardini, Andrea Pession, Susanna Esposito, and Riccardo Masetti. 2022. "Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer" Antibiotics 11, no. 10: 1316. https://doi.org/10.3390/antibiotics11101316
APA StyleBossù, G., Di Sario, R., Muratore, E., Leardini, D., Pession, A., Esposito, S., & Masetti, R. (2022). Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer. Antibiotics, 11(10), 1316. https://doi.org/10.3390/antibiotics11101316