Antimicrobial Activity of Lactones
Abstract
:1. Introduction
2. Isolation
2.1. Lactones Isolated from Plants
2.2. Lactones Isolated from Other Sources
3. Synergistic Antimicrobial Activity
4. Quorum Sensing
5. Design and Synthesis
6. Biotransformations as a Method for Obtaining New Lactone Derivatives
7. Nafithromycin—New Promising Antibiotic
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Pan, R.; Chen, H.; Zhao, C.; Han, R.; Li, M.; Xue, G.; Chen, H.; Du, K.; Wang, J.; et al. Cytotoxic Polyhydroxylated Oleanane Triterpenoids from Cissampelos Pareira Var. Hirsuta. Molecules 2022, 27, 1183. [Google Scholar] [CrossRef] [PubMed]
- Bassey, K.; Mamabolo, P.; Cosa, S. An Andrographolide from Helichrysum Caespitium (Dc.) Sond. Ex Harv., (Asteraceae) and Its Antimicrobial, Antiquorum Sensing, and Antibiofilm Potentials. Biology 2021, 10, 1224. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Shaik, H.A.; Sinha, R.K.; Shah, B.R. Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health. Molecules 2021, 26, 7036. [Google Scholar] [CrossRef] [PubMed]
- Surowiak, A.K.; Balcerzak, L.; Lochyński, S.; Strub, D.J. Biological Activity of Selected Natural and Synthetic Terpenoid Lactones. Int. J. Mol. Sci. 2021, 22, 5036. [Google Scholar] [CrossRef] [PubMed]
- Sartori, S.K.; Diaz, M.A.N.; Diaz-Muñoz, G. Lactones: Classification, Synthesis, Biological Activities, and Industrial Applications. Tetrahedron 2021, 84, 132001. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Yin, Y.; Rao, M.; Liang, Y.; Ge, M. Three Novel Polyene Macrolides Isolated from Cultures of Streptomyces Lavenduligriseus. J. Antibiot. 2016, 69, 62–65. [Google Scholar] [CrossRef]
- Fan, B.Z.; Hiasa, H.; Lv, W.; Brody, S.; Yang, Z.Y.; Aldrich, C.; Cushman, M.; Liang, J.H. Design, Synthesis and Structure-Activity Relationships of Novel 15-Membered Macrolides: Quinolone/Quinoline-Containing Sidechains Tethered to the C-6 Position of Azithromycin Acylides. Eur. J. Med. Chem. 2020, 193, 112222. [Google Scholar] [CrossRef]
- Moujir, L.; Callies, O.; Sousa, P.M.C.; Sharopov, F.; Seca, A.M.L. Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. Appl. Sci. 2020, 10, 3001. [Google Scholar] [CrossRef]
- Padilla-Gonzalez, G.F.; dos Santos, F.A.; Da Costa, F.B. Sesquiterpene Lactones: More Than Protective Plant Compounds With High Toxicity. CRC. Crit. Rev. Plant Sci. 2016, 35, 18–37. [Google Scholar] [CrossRef]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef]
- Jastrzebska, I. Synthesis and Application of Steroidal 22,16β-Carbolactones: A Review. J. Steroid Biochem. Mol. Biol. 2020, 199, 105592. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, A.; Gładkowski, W.; Mazur, M.; Henklewska, M.; Obmińska-Mrukowicz, B.; Rapak, A. Optically Active Stereoisomers of 5-(1-Iodoethyl)-4-(4′-Isopropylphenyl)Dihydrofuran-2-One: The Effect of the Configuration of Stereocenters on Apoptosis Induction in Canine Cancer Cell Lines. Chem. Biol. Interact. 2017, 261, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Choi, B.Y. Costunolide—A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential. Int. J. Mol. Sci. 2019, 20, 2926. [Google Scholar] [CrossRef] [PubMed]
- Włoch, A.; Stygar, D.; Bahri, F.; Bażanów, B.; Kuropka, P.; Chełmecka, E.; Pruchnik, H.; Gładkowski, W. Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-Iodo-γ-Lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules 2020, 10, 1594. [Google Scholar] [CrossRef]
- Matos, M.S.; Anastácio, J.D.; Dos Santos, C.N. Sesquiterpene Lactones: Promising Natural Compounds to Fight Inflammation. Pharmaceutics 2021, 13, 991. [Google Scholar] [CrossRef]
- Drogosz, J.; Janecka, A. Helenalin—A Sesquiterpene Lactone with Multidirectional Activity. Curr. Drug Targets 2018, 20, 444–452. [Google Scholar] [CrossRef]
- Bordignon, A.; Frédérich, M.; Ledoux, A.; Campos, P.E.; Clerc, P.; Hermann, T.; Quetin-Leclercq, J.; Cieckiewicz, E. In Vitro Antiplasmodial and Cytotoxic Activities of Sesquiterpene Lactones from Vernonia Fimbrillifera Less. (Asteraceae). Nat. Prod. Res. 2018, 32, 1463–1466. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Luo, J.; Hou, D.; Tan, Y.; Gu, Z.; Ge, Y.; Mao, L.; Liu, L.; Liu, H.; et al. Antiviral Activity of 3D, a Butene Lactone Derivative against Influenza a Virus in Vitro and in Vivo. Viruses 2021, 13, 278. [Google Scholar] [CrossRef]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids Lactones: Benefits to Plants and People. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 9 July 2022).
- Bush, K.; Page, M.G.P. What We May Expect from Novel Antibacterial Agents in the Pipeline with Respect to Resistance and Pharmacodynamic Principles. J. Pharmacokinet. Pharmacodyn. 2017, 44, 113–132. [Google Scholar] [CrossRef]
- O’Connell, K.M.G.; Hodgkinson, J.T.; Sore, H.F.; Welch, M.; Salmond, G.P.C.; Spring, D.R. Combating Multidrug-Resistant Bacteria: Current Strategies for the Discovery of Novel Antibacterials. Angew. Chemie. Int. Ed. 2013, 52, 10706–10733. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yuan, G.; Li, P.; Cao, S. Guanidine-Containing Polyhydroxyl Macrolides: Chemistry, Biology, and Structure-Activity Relationship. Molecules 2019, 24, 3913. [Google Scholar] [CrossRef] [PubMed]
- Sile, I.; Romane, E.; Reinsone, S.; Maurina, B.; Tirzite, D.; Dambrova, M. Medicinal Plants and Their Uses Recorded in the Archives of Latvian Folklore from the 19th Century. J. Ethnopharmacol. 2020, 249, 112378. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia Viscosa (L.) Greuter Phytochemical Diversity to Explain Its Antimicrobial, Nematicidal and Insecticidal Activity. Phytochem. Rev. 2020, 19, 659–689. [Google Scholar] [CrossRef]
- Häkkinen, S.T.; Soković, M.; Nohynek, L.; Ćirić, A.; Ivanov, M.; Stojković, D.; Tsitko, I.; Matos, M.; Baixinho, J.P.; Ivasiv, V.; et al. Chicory Extracts and Sesquiterpene Lactones Show Potent Activity against Bacterial and Fungal Pathogens. Pharmaceuticals 2021, 14, 941. [Google Scholar] [CrossRef]
- Kim, W.S.; Choi, W.J.; Lee, S.; Kim, W.J.; Lee, D.C.; Sohn, U.D.; Shin, H.S.; Kim, W. Anti-Inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L. Korean J. Physiol. Pharmacol. 2015, 19, 21–27. [Google Scholar] [CrossRef]
- Appalasamy, S.; Lo, K.Y.; Ch’Ng, S.J.; Nornadia, K.; Othman, A.S.; Chan, L.K. Antimicrobial Activity of Artemisinin and Precursor Derived from in Vitro Plantlets of Artemisia annua L. BioMed Res. Int. 2014, 2014, 215872. [Google Scholar] [CrossRef]
- Boulanger, D.; Brouillette, E.; Jaspar, F.; Malouin, F.; Mainil, J.; Bureau, F.; Lekeux, P. Helenalin Reduces Staphylococcus Aureus Infection in Vitro and in Vivo. Vet. Microbiol. 2007, 119, 330–338. [Google Scholar] [CrossRef]
- Koprowska, K.; Czyz, M. Molecular Mechanisms of Parthenolide’s Action: Old Drug with a New Face. Postepy Hig. Med. Dosw. 2010, 64, 100–114. Available online: https://publisherspan.
- Perveen, S.; Alqahtani, J.; Orfali, R.; Al-Taweel, A.M.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Taglialatela-Scafati, O. Antimicrobial Guaianolide Sesquiterpenoids from Leaves of the Saudi Arabian Plant Anvillea Garcinii. Fitoterapia 2019, 134, 129–134. [Google Scholar] [CrossRef]
- Kudumela, R.G.; Mazimba, O.; Masoko, P. Isolation and Characterisation of Sesquiterpene Lactones from Schkuhria Pinnata and Their Antibacterial and Anti-Inflammatory Activities. South African J. Bot. 2019, 126, 340–344. [Google Scholar] [CrossRef]
- Labed, F.; Masullo, M.; Mirra, V.; Nazzaro, F.; Benayache, F.; Benayache, S.; Piacente, S. Amino Acid-Sesquiterpene Lactone Conjugates from the Aerial Parts of Centaurea Pungens and Evaluation of Their Antimicrobial Activity. Fitoterapia 2019, 133, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.B.; Moodley, B.; Chenia, H.; Koorbanally, N.A. Sesquiterpene Lactones from the Aerial Parts of Vernonia Blumeoides Growing in Nigeria. Phytochemistry 2015, 111, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.V.G.; de Sá, N.; Araújo, D.L.O.; Cabral, M.R.P.; Costacurta, G.F.; de Freitas, B.C.; Vilegas, L.V.; Scodro, R.B.D.L.; Siqueira, V.L.D.; Cotica, E.S.K.; et al. The Chemistry of Vernonanthura Nudiflora (Less.) H. Rob. Flowers and Its Antimicrobial Activities. Nat. Prod. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Adekenov, S.M. Natural Sesquiterpene Lactones as Renewable Chemical Materials for New Medicinal Products. Eurasian Chem. J. 2013, 15, 163–174. [Google Scholar] [CrossRef]
- Calzada, F.; Bautista, E.; Hidalgo-figueroa, S.; García-hernández, N.; Velázquez, C.; Barbosa, E.; Valdes, M.; Solares-pascasio, J.I. Understanding the Anti-Diarrhoeal Properties of Incomptines A and B: Antibacterial Activity against Vibrio Cholerae and Its Enterotoxin Inhibition. Pharmaceuticals 2022, 15, 196. [Google Scholar] [CrossRef]
- Turner, B.L. A New Species of Decachaeta (Asteracae: Eupatorieae), from Oaxaca, Mexico. Phytologia 2011, 93, 346–350. Available online: http://www.phytologia.
- Corlay, N.; Lecsö-Bornet, M.; Leborgne, E.; Blanchard, F.; Cachet, X.; Bignon, J.; Roussi, F.; Butel, M.J.; Awang, K.; Litaudon, M. Antibacterial Labdane Diterpenoids from Vitex Vestita. J. Nat. Prod. 2015, 78, 1348–1356. [Google Scholar] [CrossRef]
- Farimani, M.M.; Taleghani, A.; Aliabadi, A.; Aliahmadi, A.; Esmaeili, M.A.; Sarvestani, N.N.; Khavasi, H.R.; Smieško, M.; Hamburger, M.; Ebrahimi, S.N. Labdane Diterpenoids from Salvia Leriifolia: Absolute Configuration, Antimicrobial and Cytotoxic Activities. Planta Med. 2016, 82, 1279–1285. [Google Scholar] [CrossRef]
- Calzadaa, F.; Yepez-Mulia, L.; Amparo Tapia-Contreras, A.O. Antiprotozoal and Antibacterial Properties Of. Rev. Latinoamer. Quím. 2009, 37, 97–103. [Google Scholar]
- Zeng, Q.; Chen, Y.; Wang, J.; Shi, X.; Che, Y.; Chen, X.; Zhong, W.; Zhang, W.; Wei, X.; Wang, F.; et al. Diverse Secondary Metabolites from the Coral-Derived Fungus Aspergillus Hiratsukae SCSIO 5Bn1003. Mar. Drugs 2022, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.D.; Huang, X.L.; Ma, Q.Y.; Xie, Q.Y.; Wang, P.; Chen, P.W.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Luo, D.Q.; et al. Helvolic Acid Derivatives with Antibacterial Activities against Streptococcus Agalactiae from the Marine-Derived Fungus Aspergillus Fumigatus HNMF0047. J. Nat. Prod. 2018, 81, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Huang, G.L.; Mei, R.Q.; Wang, B.; Luo, Y.P.; Nong, X.H.; Chen, G.Y.; Zheng, C.J. Bioactive Lactones from the Mangrove-Derived Fungus Penicillium Sp. TGM112. Mar. Drugs 2019, 17, 433. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhang, Y.X.; Zhang, J.P.; Yu, H.B.; Liu, X.Y.; Lu, X.L.; Jiao, B.H. A New Sesquiterpene Lactone from Fungus Eutypella sp. D-1. Nat. Prod. Res. 2017, 31, 1676–1681. [Google Scholar] [CrossRef] [PubMed]
- Liktor-Busa, E.; Kovács, B.; Urbán, E.; Hohmann, J.; Ványolós, A. Investigation of Hungarian Mushrooms for Antibacterial Activity and Synergistic Effects with Standard Antibiotics against Resistant Bacterial Strains. Lett. Appl. Microbiol. 2016, 62, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Béni, Z.; Dékány, M.; Kovács, B.; Csupor-Löffler, B.; Zomborszki, Z.P.; Kerekes, E.; Szekeres, A.; Urbán, E.; Hohmann, J.; Ványolós, A. Bioactivity-Guided Isolation of Antimicrobial and Antioxidant Metabolites from the Mushroom Tapinella Atrotomentosa. Molecules 2018, 23, 1082. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, L.; Fang, F.; He, S. Penicillilactone A, a Novel Antibacterial 7-Membered Lactone Derivative from the Sponge-Associated Fungus Penicillium Sp. LS54. Nat. Prod. Res. 2019, 33, 2466–2470. [Google Scholar] [CrossRef] [PubMed]
- Kluge, A.F.; Petter, R.C. Acylating Drugs: Redesigning Natural Covalent Inhibitors. Curr. Opin. Chem. Biol. 2010, 14, 421–427. [Google Scholar] [CrossRef]
- Scott, T.A.; Batey, S.F.D.; Wiencek, P.; Chandra, G.; Alt, S.; Francklyn, C.S.; Wilkinson, B. Immunity-Guided Identification of Threonyl-TRNA Synthetase as the Molecular Target of Obafluorin, a β-Lactone Antibiotic. ACS Chem. Biol. 2019, 14, 2663–2671. [Google Scholar] [CrossRef]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-Lactam Antibiotics: An Overview from a Medicinal Chemistry Perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-Resistant Staphylococcus Aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guo, Y.; Wen, Z.; Ci, X.; Xia, L.; Wang, Y.; Deng, X.; Wang, J. Isoalantolactone Enhances the Antimicrobial Activity of Penicillin g against Staphylococcus Aureus by Inactivating β-Lactamase during Protein Translation. Pathogens 2020, 9, 161. [Google Scholar] [CrossRef]
- Chukwujekwu, J.C.; Van Heerden, F.R.; Van Staden, J. Synergistic Properties of Sesquiterpene Lactones Isolated from Centratherum Punctatum Cass. in Combination with Ampicillin against Beta-Lactam-Resistant Gram-Negative Bacteria. South Afr. J. Bot. 2018, 117, 79–82. [Google Scholar] [CrossRef]
- Reuk-Ngam, N.; Chimnoi, N.; Khunnawutmanotham, N.; Techasakul, S. Antimicrobial Activity of Coronarin D and Its Synergistic Potential with Antibiotics. BioMed Res. Int. 2014, 2014, 581985. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.E.; Cartagena, E.; Gobbato, N.; Baigori, M.; Valdez, J.C.; Bardon, A. In Vivo and in Vitro Antibacterial Activity of Acanthospermal B, a Sesquiterpene Lactone Isolated from Acanthospermum Hispidum. Phyther. Res. 2011, 25, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Cartagena, E.; Montanaro, S.; Bardon, A. Improvement of the Antibacterial Activity of Sesquiterpene Lactones. Rev. Latinoam. Química 2008, 36, 43–51. [Google Scholar]
- Cartagena, E.; Alva, M.; Montanaro, S.; Bardõn, A. Natural Sesquiterpene Lactones Enhance Oxacillin and Gentamicin Effectiveness against Pathogenic Bacteria without Antibacterial Effects on Beneficial Lactobacilli. Phyther. Res. 2015, 29, 695–700. [Google Scholar] [CrossRef]
- Global Tuberculosis Repor. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (accessed on 7 September 2022).
- Lehmann, J.; Cheng, T.Y.; Aggarwal, A.; Park, A.S.; Zeiler, E.; Raju, R.M.; Akopian, T.; Kandror, O.; Sacchettini, J.C.; Moody, D.B.; et al. An Antibacterial β-Lactone Kills Mycobacterium Tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angew. Chem. Int. Ed. 2018, 57, 348–353. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Ali, D.M.I. Antimicrobial Properties of 6-Pentyl-α-Pyrone Produced by Endophytic Strains of Trichoderma Koningii and Its Effect on Aflatoxin B1 Production. Biologia 2017, 72, 1403–1415. [Google Scholar] [CrossRef]
- Kotb, A.M.E.; Abd El-Aziz, N.K.; Elariny, E.Y.T.; Yahya, R.; Alkhalifah, D.H.M.; Ahmed, R.M. Synergistic Antibacterial Potential of 6-Pentyl-α-Pyrone Lactone and Zinc Oxide Nanoparticles against Multidrug-Resistant Enterobacterales Isolated from Urinary Tract Infections in Humans. Antibiotics 2022, 11, 440. [Google Scholar] [CrossRef]
- Majik, M.S.; Gawas, U.B.; Mandrekar, V.K. Next Generation Quorum Sensing Inhibitors: Accounts on Structure Activity Relationship Studies and Biological Activities. Bioorganic Med. Chem. 2020, 28, 115728. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, M.; Elgaml, A.; Habib, E.S.E. Biotechnological Applications of Quorum Sensing Inhibition as Novel Therapeutic Strategies for Multidrug Resistant Pathogens. Microb. Pathog. 2019, 127, 138–143. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Lakemeyer, M.; Zhao, W.; Mandl, F.A.; Hammann, P.; Sieber, S.A. Thinking Outside the Box—Novel Antibacterials To Tackle the Resistance Crisis. Angew. Chem. Int. Ed. 2018, 57, 14440–14475. [Google Scholar] [CrossRef]
- Venturi, V. Regulation of Quorum Sensing in Pseudomonas. FEMS Microbiol. Rev. 2006, 30, 274–291. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, D.; Mao, Y.; Zhang, M.; Ding, M.; Zhang, J.; Wu, S.; Qiu, J.; Yin, J. Identification and Characterization of a LuxI/R-Type Quorum Sensing System in Pseudoalteromonas. Res. Microbiol. 2019, 170, 243–255. [Google Scholar] [CrossRef]
- De Kievit, T.R.; Kakai, Y.; Register, J.K.; Pesci, E.C.; Iglewski, B.H. Role of the Pseudomonas Aeruginosa Las and Rhl Quorum-Sensing Systems in RhlI Regulation. FEMS Microbiol. Lett. 2002, 212, 101–106. [Google Scholar] [CrossRef]
- Kalaiarasan, E.; Thirumalaswamy, K.; Harish, B.N.; Gnanasambandam, V.; Sali, V.K.; John, J. Inhibition of Quorum Sensing-Controlled Biofilm Formation in Pseudomonas Aeruginosa by Quorum-Sensing Inhibitors. Microb. Pathog. 2017, 111, 99–107. [Google Scholar] [CrossRef]
- Shin, D.; Gorgulla, C.; Boursier, M.E.; Rexrode, N.; Brown, E.C.; Arthanari, H.; Blackwell, H.E.; Nagarajan, R. N-Acyl Homoserine Lactone Analog Modulators of the Pseudomonas Aeruginosa Rhll Quorum Sensing Signal Synthase. ACS Chem. Biol. 2019, 14, 2305–2314. [Google Scholar] [CrossRef]
- Rezzoagli, C.; Archetti, M.; Mignot, I.; Baumgartner, M.; Kümmerli, R. Combining Antibiotics with Antivirulence Compounds Can Have Synergistic Effects and Reverse Selection for Antibiotic Resistance in Pseudomonas Aeruginosa. PLoS Biol. 2020, 18, e3000805. [Google Scholar] [CrossRef]
- Zhang, Q.; Queneau, Y.; Soulère, L. Biological Evaluation and Docking Studies of New Carbamate, Thiocarbamate, and Hydrazide Analogues of ACYL Homoserine Lactones as Vibrio Fischeri-Quorum Sensing Modulators. Biomolecules 2020, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.B.; Koorbanally, N.A.; Moodley, B.; Singh, P.; Chenia, H.Y. Quorum Sensing Inhibitory Potential and Molecular Docking Studies of Sesquiterpene Lactones from Vernonia Blumeoides. Phytochemistry 2016, 126, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Barranquero, J.A.; Reen, F.J.; McCarthy, R.R.; O’Gara, F. Deciphering the Role of Coumarin as a Novel Quorum Sensing Inhibitor Suppressing Virulence Phenotypes in Bacterial Pathogens. Appl. Microbiol. Biotechnol. 2015, 99, 3303–3316. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Abboud, M.I.; Markoulides, M.S.; Brem, J.; Schofield, C.J. The Road to Avibactam: The First Clinically Useful Non-β-Lactam Working Somewhat like a β-Lactam. Future Med. Chem. 2016, 8, 1061–1082. [Google Scholar] [CrossRef] [Green Version]
- Sato, J.; Kusano, H.; Aoki, T.; Shibuya, S.; Yokoo, K.; Komano, K.; Oguma, T.; Matsumoto, S.; Sato, T.; Yasuo, K.; et al. A Novel Tricyclic β-Lactam Exhibiting Potent Antibacterial Activities against Carbapenem-Resistant Enterobacterales: Synthesis and Structure-Activity-Relationships. Bioorganic Med. Chem. 2021, 46, 116343. [Google Scholar] [CrossRef]
- Calvopiña, K.; Umland, K.D.; Rydzik, A.M.; Hinchliffe, P.; Brem, J.; Spencer, J.; Schofield, C.J.; Avison, M.B. Sideromimic Modification of Lactivicin Dramatically Increases Potency against Extensively Drug-Resistant Stenotrophomonas Maltophilia Clinical Isolates. Antimicrob. Agents Chemother. 2016, 60, 4170–4175. [Google Scholar] [CrossRef]
- Santucci, P.; Dedaki, C.; Athanasoulis, A.; Gallorini, L.; Munoz, A.; Canaan, S.; Cavalier, J.F.; Magrioti, V. Synthesis of Long-Chain β-Lactones and Their Antibacterial Activities against Pathogenic Mycobacteria. ChemMedChem 2019, 14, 349–358. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Zhang, S.; Shao, X.; Zhou, Z. Antibacterial Activity of the Structurally Novel Ocotillol-Type Lactone and Its Analogues. Fitoterapia 2020, 144, 104597. [Google Scholar] [CrossRef]
- Hamann, H.J.; Abutaleb, N.S.; Pal, R.; Seleem, M.N.; Ramachandran, P.V. β,γ-Diaryl α-Methylene-γ-Butyrolactones as Potent Antibacterials against Methicillin-Resistant Staphylococcus Aureus. Bioorg. Chem. 2020, 104, 104183. [Google Scholar] [CrossRef]
- Laurentiz, R.S.; Gomes, W.P.; Pissurno, A.P.R.; Santos, F.A.; Santos, V.C.O.; Martins, C.H.G. Synthesis and Antibacterial Activity of New Lactone 1,4-Dihydroquinoline Derivatives. Med. Chem. Res. 2018, 27, 1074–1084. [Google Scholar] [CrossRef]
- Kamizela, A.; Gawdzik, B.; Urbaniak, M.; Lechowicz, Ł.; Białońska, A.; Gonciarz, W.; Chmiela, M. Synthesis, Characterization, Cytotoxicity, and Antibacterial Properties of Trans-γ-Halo-δ-Lactones. ChemistryOpen 2018, 7, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Gawdzik, B.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Raj, S.; Kramkowski, K.; Lizut, R.; Ostaszewski, R. δ-Lactones—A New Class of Compounds That Are Toxic to E. Coli K12 and R2–R4 Strains. Materials 2021, 14, 2956. [Google Scholar] [CrossRef] [PubMed]
- Gładkowski, W.; Siepka, M.; Janeczko, T.; Kostrzewa-susłow, E.; Mazur, M.; Zarowska, B.; Łaba, W. Synthesis and Antimicrobial Activity of Methoxy- Substituted γ-Oxa-ε-Lactones Derived from Flavanones. Molecules 2019, 24, 4151. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wińska, K.; Mączka, W.; Żołnierczyk, A.K.; Żarowska, B.; Anioł, M. Lactones with Methylcyclohexane Systems Obtained by Chemical and Microbiological Methods and Their Antimicrobial Activity. Molecules 2015, 20, 3335–3353. [Google Scholar] [CrossRef] [Green Version]
- Mazur, M.; Gładkowski, W.; Podkowik, M.; Bania, J.; Nawrot, J.; Białońska, A.; Wawrzeńczyk, C. Lactones 43. New Biologically Active Lactones: β-Cyclocitral Derivatives. Pest Manag. Sci. 2014, 70, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Grudniewska, A.; Kłobucki, M.; Dancewicz, K.; Szczepanik, M.; Gabryś, B.; Wawrzeńczyk, C. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the P-Menthane System. PLoS ONE 2015, 10, e0131028. [Google Scholar] [CrossRef]
- Wińska, K.; Grabarczyk, M.; Mączka, W.; Zarowska, B.; Maciejewska, G.; Dancewicz, K.; Gabryś, B.; Aniol, M. Biotransformation of Lactones with Methylcyclohexane Ring and Their Biological Activity. Appl. Sci. 2017, 7, 12. [Google Scholar] [CrossRef]
- Wińska, K.; Grabarczyk, M.; Mączka, W.; Żarowska, B.; Maciejewska, G.; Dancewicz, K.; Gabryś, B.; Szumny, A.; Anioł, M. Biotransformation of Bicyclic Halolactones with a Methyl Group in the Cyclohexane Ring into Hydroxylactones and Their Biological Activity. Molecules 2016, 21, 1453. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Maczka, W.; Wińska, K.; Kondas, A.; Żarowska, B.; Maciejewska, G.; Gębarowska, E.; Pietr, S.J. Pleurotus Ostreatus as a Biocatalyst to Obtain Bicyclic Hydroxylactones with Three or Four Methyl Groups. Catalysts 2019, 9, 643. [Google Scholar] [CrossRef]
- Flamm, R.K.; Rhomberg, P.R.; Sader, H.S. In Vitro Activity of the Novel Lactone Ketolide Nafithromycin (WCK 4873) against Contemporary Clinical Bacteria from a Global Surveillance Program. Antimicrob. Agents Chemother. 2017, 61, e01230-17. [Google Scholar] [CrossRef]
- Trivedi, J.; Shaikh, J.; Chavan, N.; Thorve, D.; Chaudhary, B.; Karade, A.; Gupta, S.; Patel, A.; Bhagwat, S. Pretreatment of Nafithromycin Attenuates Inflammatory Response in Murine Lipopolysaccharide Induced Acute Lung Injury. Cytokine 2020, 129, 155049. [Google Scholar] [CrossRef] [PubMed]
- Hackel, M.A.; Karlowsky, J.A.; Dressel, D.; Sahm, D.F. Determination of Disk Diffusion and MIC Quality Control Ranges for Nafithromycin (WCK 4873), a New Lactone-Ketolide. J. Clin. Microbiol. 2017, 55, 3021–3027. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, B.; Varghese, R.; Saigal, K.; Balasubramanian, S.; Bai, P.S.P.; Lal Y, B.; Neeravi, A.; Baskar, P.; Anandhan, K.; Kumar, C.P.G.; et al. Activity of Novel Lactone Ketolide Nafithromycin against Multicentric Invasive and Non-Invasive Pneumococcal Isolates Collected in India. JAC-Antimicrobial Resist. 2021, 3, 3–6. [Google Scholar] [CrossRef]
- Iwanowski, P.; Bhatia, A.; Gupta, M.; Patel, A.; Chavan, R.; Yeole, R. Crossm Safety, Tolerability, and Pharmacokinetics of Oral Nafithromycin (WCK 4873) after Single or Multiple Doses and Effects of Food on Single-Dose Bioavailability in Healthy Adult Subjects. Antimicrob. Agents Chemother. 2019, 63, e01253-19. [Google Scholar] [CrossRef] [PubMed]
No. | Chemical Structure | Tested Microorganism | MIC | Source | Ref. |
---|---|---|---|---|---|
3 | Artemisinin | A. actinomycetemcomitans F. nucleatum subsp. animalis F. nucleatum subsp. polymorphum P. intermedia B. subtilis S. aureus Salmonella sp. | 14 mg/mL 14 mg/mL 14 mg/mL 14 mg/mL 14 mg/mL 14 mg/mL 14 mg/mL | Artemisia annua L. | [27,28] |
6 | Helenalin | S. aureus ATCC 29740 | NI | Arnica montana | [29] |
7 | Costunolide | M. tuberculosis M. avium H. pylori P. aeruginosa IBRS P001 | 12.5 mg/L 128 μg/mL 100–200 μg/mL 0.5 mg/mL | Saussurea lappa | [13,26] |
8 | Lactucopicrin | S. aureus ATCC 11632 P. aeruginosa ATCC 27853 P. aeruginosa IBRS P001 | 0.16 mg/mL 0.31 mg/mL 0.50 mg/mL | Lactuca virosa | [26] |
9 | Partenolide | S. aureus (oral isolate) S. aureus ATCC 11632 P. aeruginosa ATCC 27853 | 0.08 mg/mL 0.16 mg/mL 0.31 mg/mL | Tanacetum parthenium | [26] |
10 | S. aureus E. fergusonii | 0.32 μg /mL 1.7 μg /mL | Anvillea garcinii | [31] | |
11 | S. aureus E. fergusonii | 1.4 μg/mL 3.5 μg/mL | Anvillea garcinii | [31] | |
12 | P. aeruginosa S. aureus E. coli | 46.88 μg/mL 62.5 μg/mL 125 μg/mL | Schkuhria pinnata | [32] | |
13 | mixture | ||||
14 | P. aeruginosa P. fragi L. innocua | 100 μg/mL 400 μg/mL 400 μg/mL | Centaurea pungens | [33] | |
15 | P. aeruginosa | 100 μg/mL | Centaurea pungens | [33] | |
16 | Blumeoidolide A | S. aureus ATCC 29213 S. aureus ATCC 43300 B. subtilis ATCC 6633 | 2.15 mM 4.30 mM 2.15 mM | Vernonia blumeoides | [34] |
17, 18 | Piptocarphin A, Piptocarphin B | M. tuberculosis E. faecalis A. hydrophila | 15.6 μg/mL 125 μg/mL 125 μg/mL | Vernonanthura nudiflora | [35] |
19 | Incoptine A | V. cholerae | 0.15 mg/mL | Decachaeta incompta | [37] |
20 | Incoptine B | V. cholerae E. coli S. sonnei S. flexneri | 0.05 mg/mL 0.4 mg/mL 0.6 mg/mL 0.5 mg/mL | Decachaeta incompta | [37,41] |
21 | B. cereus CIP 6624 B. cereus N190 B. cereus N258 B. cereus N349 B. subtilis ATCC 66.33 S. aureus CIP 4.83 S. aureus CIP 53156 S. aureus CRBIP 21.21 S. hemolyticus CIP 81.56 | 12 mg/mL 6 mg/mL 6 mg/mL 6 mg/mL 6 mg/mL 12 mg/mL 24 mg/mL 12 mg/mL 6 mg/mL | Vitex vestita | [39] | |
22 | E. coli ATCC 25922 S. aureus ATCC25923 MRSA strains (clinically isolated) | 314 μM 314 μM 213 μM | Salvia leriifolia | [40] |
No. | Chemical Structure | Tested Microorganism | MIC | Source | Ref. |
---|---|---|---|---|---|
23 | Dimethylincisterol A2 | B. subtilis | 10.26 ± 0.76 μg/mL | Aspergillus hiratsukae SCSIO 5Bn1003 | [42] |
24 | S. aureus B. subtilis | 59.54 ± 0.50 μg/mL 5.30 ± 0.29 μg/mL | Aspergillus hiratsukae SCSIO 5Bn1003 | [42] | |
25 | S. agalactiae | 64 μg/mL | Aspergillus fumigatus HNMF0047 | [43] | |
26 | S. aureus | 6.25 μg/mL | Penicillium sp. TGM112 | [44] | |
27 | E. coli B. subtilis S. aureus | NI Inhibition diameter (Ø mm) 21 mm 22 mm 21 mm | Eutypella sp. | [45] | |
28 | A. baumannii E. coli | 10 μg/mL 10 μg/mL | Tapinella atrotomentosa | [47] | |
29 | A. baumannii E. coli | 6 μg/mL 10 μg/mL | Tapinella atrotomentosa | [47] | |
30 | Penicillilactone A | V. harveyi | 8 μg/mL | Penicillium sp. LS54 | [48] |
31 | Abyssomicin C | S. aureus | 4–13 g/mL | actinomycete | [22] |
32 | Obafluorin | B. subtilis E. coli ATCC 25922 E. coli ATCC 25922 pJH10TS E. coli NR698 E. coli NR698 pJH10TS | 4 μg/mL 256 μg/mL 256 μg/mL 4 μg/mL 8 μg/mL | Pseudomonas fluorescens ATCC 39502 | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, M.; Masłowiec, D. Antimicrobial Activity of Lactones. Antibiotics 2022, 11, 1327. https://doi.org/10.3390/antibiotics11101327
Mazur M, Masłowiec D. Antimicrobial Activity of Lactones. Antibiotics. 2022; 11(10):1327. https://doi.org/10.3390/antibiotics11101327
Chicago/Turabian StyleMazur, Marcelina, and Dorota Masłowiec. 2022. "Antimicrobial Activity of Lactones" Antibiotics 11, no. 10: 1327. https://doi.org/10.3390/antibiotics11101327
APA StyleMazur, M., & Masłowiec, D. (2022). Antimicrobial Activity of Lactones. Antibiotics, 11(10), 1327. https://doi.org/10.3390/antibiotics11101327