Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-Based Feed Additives in Reducing Salmonella-Associated Health and Performance Effects in Commercial Beef Calves
Abstract
:1. Introduction
2. Results
2.1. Performance Outcomes
2.1.1. Body Weight Gain
2.1.2. Average Daily Gain (ADG)
2.2. Diagnostic Outcomes
Presence of at Least One CFU of Bacteria in Feces
2.3. Clinical Outcomes
2.3.1. General Impression (Dichotomous)
2.3.2. Appearance (Dichotomous)
2.3.3. Skin Tent (Dichotomous)
2.3.4. Dehydration (Dichotomous)
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Study Design and Testing of a Probiotic Product
4.3. Experimental Challenge of Calves with Salmonella Typhimurium
4.4. Health Monitoring
4.5. Fecal Sample Collection
4.6. Fecal Salmonella Count and Concentration
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, J.K.; Mishra, D.; Ray, P.; Tripathy, P.; Beuria, T.K.; Singh, N.; Suar, M. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis. Gut Pathog. 2013, 5, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.G.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Huston, C.L.; Wittum, T.E.; Love, B.C. Prevalence of fecal shedding of Salmonella spp. in dairy herds. J. Am. Vet. Med. Assoc. 2002, 220, 645–649. [Google Scholar] [CrossRef] [PubMed]
- McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; et al. Complete genome sequence of Salmonella enteria serovar Typhimurium LT2. Nature 2001, 413, 852–856. [Google Scholar] [CrossRef]
- Hammad, A.M.; Shimamoto, T. Towards a compatible probiotic-antibiotic combination therapy: Assessment of antimicrobial resistance in the Japanese probiotics. J. Appl. Microbiol. 2010, 109, 1349–1360. [Google Scholar] [CrossRef]
- Santos, R.L.; Zhang, S.; Tsolis, R.M.; Kingsley, R.A.; Adams, L.G.; Baumler, A.J. Animal models of Salmonella infections: Enterics versus typhoid fever. Microbes Infect. 2001, 3, 1335–1344. [Google Scholar] [CrossRef]
- Tsolis, R.M.; Young, G.M.; Solnick, J.V.; Baumler, A.J. From the bench to beside: Stealth of enteroinvasive pathogens. Nat. Rev. Microbiol. 2008, 6, 883–892. [Google Scholar] [CrossRef]
- FAO/WHO. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001. In Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Jacobsen, C.N.; Nielsen, V.R.; Hayford, A.E.; Moller, P.L.; Michaelsen, K.F.; Paerregaard, A.; Sandstrom, B.; Tvede, M.; Jakobsen, M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. By in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 1999, 65, 4949–4956. [Google Scholar] [CrossRef]
- Kumar, A.; Henderson, A.; Forster, G.M.; Goodyear, A.W.; Weir, T.L.; Leach, J.E.; Dow, S.W.; Ryan, E.P. Dietary rice bran promotes resistance to Salmonella enteric serovar Typhimurium colonization in mice. BMC Microbiol. 2012, 12, 71. [Google Scholar] [CrossRef]
- Kim, T.S.; Hur, J.W.; Yu, M.A.; Cheigh, C.I.; Kim, K.N.; Hwang, J.K.; Pyun, Y.R. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food Prot. 2003, 66, 3–12. [Google Scholar] [CrossRef]
- Moal, V.L.-L.; Amsellem, R.; Servin, A.L.; Coconnier, M.H. Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut 2002, 50, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; Gismondo, M.R.; Lombardi, A.; de Haen, C.; Gozzini, L. Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin. FEMS Microbiol. Lett. 1997, 153, 455–463. [Google Scholar] [CrossRef]
- Fernandez, M.F.; Boris, S.; Barbes, C. Probiotic properties of human lactobacilli strains to be use in the gastrointestinal tract. J. Appl. Microbiol. 2003, 94, 449–455. [Google Scholar] [CrossRef]
- Ogawa, M.; Shimizu, K.; Nomoto, K.; Takahashi, M.; Tanaka, R.; Tanaka, T.; Hamabata, T.; Yamasaki, S.; Takeda, Y. Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection infant rabbits. Infect. Immun. 2002, 69, 1101–1108. [Google Scholar] [CrossRef]
- Johnson-Henry, K.C.; Mitchell, D.; Avitzur, Y.; Galindo-Mata, E.; Jones, N.L.; Sherman, P.M. Probiotics reduce bacterial colonization and bastric inflammation in H. pylori-infected mice. Dig. Dis. Sci. 2004, 49, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.; Hugas, M.; Badiola, J.I.; Monfort, J.M.; Garriga, M. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 1999, 65, 4981–4986. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, D.J.; Tellez, G.I.; Lowry, V.K.; Anderson, R.C.; Garcia, G.; Nava, G.; Kogut, M.H.; Corrier, D.E.; Stanker, L.H. Effect of a commercial competitive exclusion culture (PreemptTM) on mortality and horizontal transmission of Salmonella gallinarum in broiler chickens. Avian Dis. 1998, 42, 651–656. [Google Scholar] [CrossRef]
- Bakshi, N.; Ghorbani, G.R.; Rahmani, H.R.; Samie, A. Effect of Probiotic and Milk Feeding Frequency on Performance Dairy Holstein Calves. Int. J. Dairy Sci. 2006, 1, 113–119. [Google Scholar] [CrossRef]
- Timmerman, H.M.; Mulder, L.; Everts, H.; van Espen, D.C.; van der Wal, E.; Klaassen, G.; Rouwers, S.M.G.; Hartemink, R.; Rombouts, F.M.; Beynen, A.C. Health and Growth of Veal Calves Fed Milk Replacers with or without Probiotics. J. Dairy Sci. 2010, 88, 2154–2165. [Google Scholar] [CrossRef]
- Meng, Q.W.; Yan, L.; Ao, W.; Zhou, T.X.; Wang, J.P.; Lee, J.H.; Kim, I.H. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 2010, 88, 3320–3326. [Google Scholar] [CrossRef] [Green Version]
- Roodposhti, P.M.; Dabiri, N. Effects of Probiotic and Prebiotic on Average Daily Gain, Fecal Shedding of Escherichia Coli and Immune System Status in Newborn Female Calves. Asian-Australas. J. Anim. Sci. 2012, 25, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Holschbach, C.L.; Peek, S.F. Salmonella in Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 133–154. [Google Scholar] [CrossRef]
- Tabe, E.S.; Oloya, J.; Doetkott, D.K.; Bauer, M.L.; Gibbs, P.S.; Khaitsa, M.L. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. J. Food Prot. 2008, 71, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Vipham, J.L.; Loneragan, G.H.; Guillen, L.M.; Brooks, J.C.; Johnson, B.J.; Pond, A.; Pond, N.; Brashears, M.M. Reduced Burden of Salmonella enterica in Bovine Subiliac Lymph Nodes Associated with Administration of a Direct-Fed Microbial. Zoonoses Public Health 2015, 62, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.R.; Edrington, T.S.; Genovese, K.J.; He, H.L.; Anderson, R.C.; Nisbet, J.D. Evaluation of the Efficacy of Three Direct Fed Microbial Cocktails to Reduce Fecal Shedding of Escherichia coli O157:H7 in Naturally Colonized Cattle and Fecal Shedding and Peripheral Lymph Node Carriage of Salmonella in Experimentally Infected Cattle. J. Food Prot. 2020, 83, 28–36. [Google Scholar] [CrossRef]
- Liang, Y.; Hudson, R.E.; Ballou, M.A. Supplementing neonatal Jersey calves with a blend of probiotic bacteria improves the pathophysiological response to an oral Salmonella enterica serotype Typhimurium challenge. J. Dairy Sci. 2020, 103, 7351–7363. [Google Scholar] [CrossRef] [PubMed]
- Feye, K.M.; Anderson, K.L.; Scott, M.F.; Henry, D.L.; Dorton, K.L.; Depenbusch, B.E.; Carlson, S.A. Abrogation of Salmonella and E. coli O157:H7 in Feedlot Cattle Fed a Proprietary Saccharomyces cerevisiae Fermentation Prototype. J. Vet. Sci. Technol. 2016, 7, 4. [Google Scholar] [CrossRef]
- Genovese, K.J.; Anderson, R.C.; Harvey, R.B.; Callaway, T.R.; Poole, T.L.; Edrington, T.S.; Fedorka-Cray, P.J.; Nisbet, D.J. Competitive exclusion of Salmonella from the gut of neonatal and weaned pigs. J. Food Prot. 2003, 66, 1353–1359. [Google Scholar] [CrossRef]
- Fedorka-Cray, P.J.; Bailey, J.S.; Stern, N.J.; Cox, N.A.; Ladely, S.R.; Musgrove, M. Mucosal competitive exclusion to reduce Salmonella in swine. J. Food Prot. 1999, 62, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Lema, M.; Williams, L.; Rao, D.R. Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157:H7 in lambs by feedin microbial feed supplement. Small Rumin. Res. 2001, 39, 31–39. [Google Scholar] [CrossRef]
- Genovese, K.J.; Anderson, R.C.; Harvey, R.B.; Nisbet, D.J. Competitive exclusion treatment reduces the mortality and fecal shedding associated with enterotoxigenic Escherichia coli infection in nursery-raised neonatal pigs. Can. J. Vet. Res. 2000, 64, 204–207. [Google Scholar] [PubMed]
- Adhikari, P.; Lee, C.H.; Cosby, D.E.; Cox, N.A.; Kim, W.K. Effect of probiotics on fecal excretion, colonization in internal organs and immune gene expression in the ileum of laying hens challenged with Salmonella Enteritidis. Poult. Sci. 2019, 98, 1235–1242. [Google Scholar] [CrossRef]
- Price, P.T.; Gaydos, T.A.; Berghaus, R.D.; Baxter, V.; Hofacre, C.L.; Sims, M.D. Salmonella Enteritidis reduction in layer ceca with a Bacillus probiotic. Vet. World. 2020, 13, 184–187. [Google Scholar] [CrossRef]
- Peeters, L.; Mostin, L.; Wattiau, P.; Boyden, F.; Dewulf, J.; Maes, D. Efficacy of Clostridium butyricum as probiotic feed additive against experimental Salmonella Typhimurium infection in pigs. Livest. Sci. 2019, 221, 82–85. [Google Scholar] [CrossRef]
- Casey, P.G.; Gardiner, G.E.; Casey, G.; Bradshaw, B.; Lawlor, P.G.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; et al. A Five-Strain Probiotic Combination Reduces Pathogen Shedding and Alleviates Disease Signs in Pigs Challenged with Salmonella enterica Serovar Typhimurium. Am. Soc. Microbiol. 2007, 73, 1858–1863. [Google Scholar] [CrossRef] [PubMed]
- Karamzadeh-Dehaghani, A.; Towhidi, A.; Zhandi, M.; Mojgani, N.; Fouladi-Nashta, A. Combined effect of probiotic and specific immunoglobulin Y directed against Escherichia coli on growth performance, diarrhea incidence and immune system in calves. Animal 2021, 15, 100124. [Google Scholar] [CrossRef]
- Smulski, S.; Turlewicz-Podbielska, H.; Wylandowska, A.; Wlodarek, J. Non-antibiotic Possibilities in Prevention and Treatment of Calf Diarrhea. J. Vet. Res. 2020, 64, 119–126. [Google Scholar] [CrossRef]
- Szabo, I.; Wieler, L.H.; Tedin, K.; Scharek-Tedin, L.; Taras, D.; Hensel, A.; Appel, B.; Nockler, K. Influence of a Probiotic Strain of Enterococcus faecium on Salmonella enterica Serovar Typhimurium DT104 Infection in a Porcine Animal Infection Model. Am. Soc. Microbiol. 2009, 75, 2621–2628. [Google Scholar] [CrossRef] [Green Version]
Body Weight Gain (kg) | Average Daily Gain (kg) | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Mean | SEM | 95% CI | p-Value | Mean | SEM | 95% CI | p-Value |
Treatment | 0.923 | 0.975 | ||||||
Probiotics | 254.6 | 10.7 | 232.2–277.1 | 0.54 | 0.08 | 0.38–0.70 | ||
Control | 253.2 | 10.7 | 230.7–275.6 | 0.55 | 0.08 | 0.39–0.71 | ||
Study Day | <0.001 | |||||||
0 | 242.2 | 7.6 | 226.2–258.2 | |||||
43 | 265.6 | 7.6 | 249.6–281.6 |
Concentration of Salmonella in Feces (CFU/g) | Presence of at Least One CFU of Bacteria in Feces | |||
---|---|---|---|---|
n | Mean | Pos (≥1 CFU/g) | Neg (0 CFU/g) | |
Treatment | ||||
Probiotics | 70 | 92,227.9 | 17 | 53 |
Control | 70 | 296,317.1 | 43 | 27 |
Study Day | ||||
0 | 20 | 0.0 | 0 | 20 |
3 | 20 | 1,100,675.0 | 18 | 2 |
5 | 20 | 188,200.0 | 17 | 3 |
7 | 20 | 23,847.5 | 12 | 8 |
9 | 20 | 47,105.0 | 10 | 10 |
14 | 20 | 80.0 | 3 | 17 |
28 | 20 | 0.0 | 0 | 20 |
Presence of at Least One CFU in Feces (d 0–14) | Presence of at Least One CFU in Feces (d 0–28) | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Mean % | SEM | 95% CI | p-Value | Mean % | SEM | 95% CI | p-Value |
Treatment | <0.001 | <0.001 | ||||||
Probiotics | 22.0 | 5.9 | 12.2–36.2 | 0.2 | 25.4 | 0–100 | ||
Control | 66.8 | 6.9 | 51.6–79.1 | 1.2 | 91.0 | 0–100 | ||
Study Day | 0.009 | 0.016 | ||||||
d 0–7 | 58.8 | 6.5 | 45.3–71.1 | 61.1 | 6.2 | 48.5–72.4 | ||
d 8–14 | 28.4 | 8.0 | 15.3–46.6 | 28.5 | 7.8 | 15.7–45.9 | ||
d 15–28 | 0.0 | 0.0 | 0–100 |
Clinical Scores | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Diarrhea Scores (≥1 vs. 0) | General Impression Scores (≥1 vs. 0) | Appearance Scores (≥1 vs. 0) | ||||||||||
Variable | Mean % | SEM | 95% CI | p-Value | Mean % | SEM | 95% CI | p-Value | Mean % | SEM | 95% CI | p-Value |
Treatment (d 0–14) | 0.054 | <0.001 | 0.002 | |||||||||
Probiotics | 15.4 | 6.3 | 6.3–32.8 | 3.5 | 2.3 | 0.9–12.4 | 6.3 | 3.4 | 2.0–17.6 | |||
Control | 37.9 | 8.6 | 22.6–55.9 | 36.1 | 6.3 | 24.8–49.2 | 35.8 | 6.8 | 23.6–50.1 | |||
Treatment (d 0–28) | 0.147 | <0.001 | <0.001 | |||||||||
Probiotics | 0.09 | 11.4 | 0–100 | 1.3 | 0.7 | 0.5–3.9 | 0.03 | 4.0 | 0–100 | |||
Control | 0.30 | 36.6 | 0–100 | 15.7 | 3.4 | 10.0–23.7 | 0.30 | 32.5 | 0–100 | |||
Study Day | 0.997 | <0.001 | 0.232 | |||||||||
d 0–7 | 31.2 | 3.8 | 24.2–39.1 | 9.1 | 2.9 | 4.7–16.7 | 14.8 | 3.0 | 9.8–21.7 | |||
d 8–14 | 30.8 | 4.0 | 23.5–39.3 | 15.1 | 4.1 | 8.6–25.2 | 22.4 | 3.9 | 15.6–31.0 | |||
d 15–28 | 0.0 | 0.0 | 0–100 | 0.7 | 0.5 | 0.2–2.6 | 0.0 | 0.0 | 0.0–100 |
Variable | Clinical Scores | |||||||
---|---|---|---|---|---|---|---|---|
Dehydration Scores (≥1 vs. 0) | Skin Tent Scores (≥1 vs. 0) | |||||||
Mean % | SEM | 95% CI | p-Value | Mean % | SEM | 95% CI | p-Value | |
Treatment (d 0–14) | 0.003 | 0.003 | ||||||
Probiotics | 10.3 | 3.9 | 4.5–21.5 | 10.3 | 3.9 | 4.5–21.5 | ||
Control | 43.8 | 8.8 | 26.3–63.0 | 43.8 | 8.8 | 26.3–63.0 | ||
Treatment (d 0–28) | 0.001 | <0.001 | ||||||
Probiotics | 3.3 | 1.4 | 1.4–7.7 | 4.3 | 1.2 | 2.5–7.2 | ||
Control | 21.6 | 6.0 | 11.3–37.3 | 22.9 | 3.3 | 17.1–29.9 | ||
Study Day | <0.001 | <0.001 | ||||||
d 0–7 | 12.2 | 3.5 | 6.7–21.3 | 14.3 | 2.9 | 9.6–20.9 | ||
d 8–14 | 36.1 | 6.9 | 23.4–51.1 | 37.7 | 4.6 | 29.3–47.0 | ||
d 15–28 | 1.1 | 0.6 | 0.4–2.9 | 1.5 | 0.6 | 0.6–3.4 | ||
Treatment × Study Day | 0.055 | 0.055 | ||||||
Probiotics × d 0–7 | 8.0 | 3.7 | 3.0–19.5 | 8.0 | 3.7 | 3.0–19.5 | ||
Control × d 0–7 | 24.2 | 7.5 | 12.0–42.8 | 24.2 | 7.5 | 12.0–42.8 | ||
Probiotics × d 8–14 | 13.1 | 5.4 | 5.4–28.4 | 13.1 | 5.4 | 5.4–28.4 | ||
Control × d 8–14 | 65.6 | 9.1 | 45.0–81.6 | 65.6 | 9.1 | 45.0–81.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cull, C.; Singu, V.K.; Cull, B.J.; Lechtenberg, K.F.; Amachawadi, R.G.; Schutz, J.S.; Bryan, K.A. Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-Based Feed Additives in Reducing Salmonella-Associated Health and Performance Effects in Commercial Beef Calves. Antibiotics 2022, 11, 1328. https://doi.org/10.3390/antibiotics11101328
Cull C, Singu VK, Cull BJ, Lechtenberg KF, Amachawadi RG, Schutz JS, Bryan KA. Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-Based Feed Additives in Reducing Salmonella-Associated Health and Performance Effects in Commercial Beef Calves. Antibiotics. 2022; 11(10):1328. https://doi.org/10.3390/antibiotics11101328
Chicago/Turabian StyleCull, Charley, Vijay K. Singu, Brooke J. Cull, Kelly F. Lechtenberg, Raghavendra G. Amachawadi, Jennifer S. Schutz, and Keith A. Bryan. 2022. "Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-Based Feed Additives in Reducing Salmonella-Associated Health and Performance Effects in Commercial Beef Calves" Antibiotics 11, no. 10: 1328. https://doi.org/10.3390/antibiotics11101328
APA StyleCull, C., Singu, V. K., Cull, B. J., Lechtenberg, K. F., Amachawadi, R. G., Schutz, J. S., & Bryan, K. A. (2022). Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-Based Feed Additives in Reducing Salmonella-Associated Health and Performance Effects in Commercial Beef Calves. Antibiotics, 11(10), 1328. https://doi.org/10.3390/antibiotics11101328