A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients
Abstract
:1. Introduction
2. Epidemiology of Secondary Peritonitis Caused by Carbapenemase-Producing Enterobacterales
3. Resistance Patterns of Enterobacterales Causing Secondary Peritonitis
4. The Emerging Problem of Carbapenem-Resistant Enterobacterales Causing Secondary Peritonitis
5. Current Strategies of Antimicrobial Treatment of Secondary Peritonitis due to CRE
6. Future Perspectives
7. Search Strategy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calandra, T.; Cohen, J. International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit. Care Med. 2005, 33, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, C.L.; Töpper, C.; Adam, T.; Kees, M.G. Spectrum adequacy of antibiotic regimens for secondary peritonitis: A retrospective analysis in intermediate and intensive care unit patients. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 48. [Google Scholar] [CrossRef] [Green Version]
- Lambden, S.; Laterre, P.F.; Levy, M.M.; Francois, B. The SOFA score—Development, utility and challenges of accurate assessment in clinical trials. Crit. Care 2019, 23, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.T.; Matthay, M.A.; Harris, H.W. Secondary peritonitis: Principles of diagnosis and intervention. BMJ 2018, 361, k1407. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Gauzit, R.; Péan, Y.; Barth, X.; Mistretta, F.; Lalaude, O. Top Study Team. Epidemiology, management, and prognosis of secondary non-postoperative peritonitis: A French prospective observational multicenter study. Surg. Infect. 2009, 10, 119–127. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.; Lipman, J.; Sakr, Y.; Marshall, J.C.; Vanhems, P.; Barrera Groba, C.; Leone, M.; Vincent, J.L. EPIC II Investigators. Abdominal infections in the intensive care unit: Characteristics, treatment and determinants of outcome. BMC Infect. Dis. 2014, 14, 420. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.Y.; Lee, S.H.; Shim, H.; Choi, J.Y.; Yong, D.; Lee, J.G. Epidemiology and Microbiology of Secondary Peritonitis Caused by Viscus Perforation: A Single-Center Retrospective Study. Surg. Infect. 2015, 16, 436–442. [Google Scholar] [CrossRef]
- Schlabe, S.; Lutz, P. How does one decide the best pharmacotherapeutic strategy for bacterial peritonitis? Expert Opin. Pharmacother. 2018, 19, 1977–1979. [Google Scholar] [CrossRef]
- Günther, F.; Kaiser, S.J.; Fries, T.; Frank, U.; Mutters, N.T. Susceptibility of multidrug resistant clin-ical pathogens to a chlorhexidine formulation. Prev. Med. Hyg. 2015, 56, E176–E179. [Google Scholar] [CrossRef]
- Fiore, M.; Di Franco, S.; Alfieri, A.; Passavanti, M.B.; Pace, M.C.; Petrou, S.; Martora, F.; Leone, S. Spontaneous bacterial peritonitis due to carbapenemase-producing Enterobacterales: Etiology and antibiotic treatment. World J. Hepatol. 2020, 12, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birgy, A.; Bidet, P.; Genel, N.; Doit, C.; Decré, D.; Arlet, G.; Bingen, E. Phenotypic Screening of Carbapenemases and Associated β-Lactamases in Carbapenem-Resistant Enterobacterales. J. Clin. Microbiol. 2012, 50, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, N.T.; Fisher, J.F. Acquired Class D β-Lactamases. Antibiotics 2014, 3, 398–434. [Google Scholar] [CrossRef] [PubMed]
- Maveyraud, L.; Golemi-Kotra, D.; Ishiwata, A.; Meroueh, O.; Mobashery, S.; Samama, P.J. High-resolution X-ray structure of an acyl-enzyme species for the class D OXA-10 -lactamase. J. Am. Chem. Soc. 2002, 124, 2461–2465. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacterales: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215 (Suppl. S1), S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Maseda, E.; Gimenez, M.J.; Gilsanz, F.; Aguilar, L. Basis for selecting optimum antibiotic regimens for secondary peritonitis. Expert Rev. Anti-Infect. Ther. 2016, 14, 109–124. [Google Scholar] [CrossRef]
- Michelle, K.; Paczosa; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, M.P. Comparative Evaluation of Penicillin, Ampicillin, and Imipenem MICs and Susceptibility Breakpoints for Vancomycin-Susceptible and Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium. J. Clin. Microbiol. 2001, 39, 2729–2731. [Google Scholar] [CrossRef] [Green Version]
- Perez, F.; El Chakhtoura, N.G.; Papp-Wallace, K.M.; Wilson, B.M.; Bonomo, R.A. Treatment options for infections caused by carbapenem resistant Enterobacterales: Can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin. Pharmacother. 2016, 17, 761–781. [Google Scholar] [CrossRef]
- Giurazza, R.; Mazza, M.C.; Andini, R.; Sansone, P.; Pace, M.C.; Durante-Mangoni, E. Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life 2021, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Leone, S.; Stefani, S.; Venditti, M.; Grossi, P.; Colizza, S.; De Gasperi, A.; Scaglione, F.; Sganga, G.; Esposito, S. Italian Intra-abdominal Infections Working Group. Intra-abdominal Infections: Model of Antibiotic Stewardship in an Era with Limited Antimicrobial Options. Int. J. Antimicrob. Agents 2011, 38, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, E.; Bax, H.; Verkaik, N.; van Westreenen, M. An update on eight “new” antibiotics against multidrug-resistant gramnegative bacteria. J. Clin. Med. 2021, 10, 1068. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E.; Nordmann, P. Therapeutic options for infections with Enterobacterales producing carbapenem hydrolyzing enzymes. Future Microbiol. 2011, 6, 653–666. [Google Scholar] [CrossRef]
- Mezzatesta, M.L.; Gona, F.; Caio, C.; Petrolito, V.; Sciortino, D.; Sciacca, A.; Santangelo, C.; Stefani, S. Outbreak of KPC-3-producing, and colistin-resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clin. Microbiol. Infect. 2011, 17, 1444–1447. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Lourida, P.; Poulikakos, P.; Rafailidis, P.I.; Tansarli, G.S. Antibiotic treatment of infections due to carbapenem-resistant Enterobacterales: Systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 2014, 58, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Payen, D.M.; Guilhot, J.; Launey, Y.; Lukaszewicz, A.C.; Kaaki, M.; Veber, B.; Pottecher, J.; Joannes-Boyau, O.; Martin-Lefevre, L.; Jabaudon, M.; et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: A multicenter randomized control trial. Intensive Care Med. 2015, 41, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Vardakas, K.Z.; Legakis, N.J.; Triarides, N.; Falagas, M.E. Susceptibility of contemporary isolates to fosfomycin: A systematic review of the literature. Int. J. Antimicrob. Agents 2016, 47, 269–285. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.E.; Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S.; Krause, K.M.; Keepers, T.R.; Connolly, L.E.; Miller, L.G.; Friedland, I.; Dwyer, J.P. Once-daily plazomicin for complicated urinary tract infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef]
- McKinnell, J.A.; Dwyer, J.P.; Talbot, G.H.; Connolly, L.E.; Friedland, I.; Smith, A.; Jubb, A.M.; Serio, A.W.; Krause, K.M.; Daikos, G.L. Plazomicin for infections caused by carbapenem-resistant Enterobacterales. N. Engl. J. Med. 2019, 380, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Bano, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of infections caused by extended-spectrum-betalactamase-,ampc-, and carbapenemase-producing Enterobacterales. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.R.; Burton, C.E. Eravacycline, a newly approved fluorocycline. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1787–1794. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Skalweit, M. Profile of ceftolozane/tazobactam and its potential in the treatment of complicated intra-abdominal infections. Drug Des. Dev. Ther. 2015, 9, 2919–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temkin, E.; Torre-Cisneros, J.; Beovic, B.; Benito, N.; Giannella, M.; Gilarranz, R.; Jeremiah, C.; Loeches, B.; Machuca, I.; Jiménez-Martín, M.J. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob. Agents Chemother. 2017, 61, e01964-16. [Google Scholar] [CrossRef] [Green Version]
- Emeraud, C.; Escaut, L.; Boucly, A.; Fortineau, N.; Bonnin, R.A.; Naas, T.; Dortet, L. Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-beta-lactamase-producing gram-negative bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Carvalhaes, C.G.; Arends, S.J.R.; Castanheira, M.; Mendes, R.E. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J. Antimicrob. Chemother. 2021, 76, 659–666. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacterales infections: The TANGO II randomized clinical trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Motsch, J.; De Oliveira, C.M.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I. RESTORE-IMI 1: A multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs. colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef]
- Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother. 2016, 60, 6234–6243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, S.C.; Oxlade, C. Innovate to secure the future: The future of modern medicine. Future Healthc. J. 2021, 8, e251–e256. [Google Scholar] [CrossRef] [PubMed]
- Merker, M.; Tueffers, L.; Vallier, M.; Groth, E.E.; Sonnenkalb, L.; Unterweger, D.; Baines, J.F.; Niemann, S.; Schulenburg, H. Evolutionary Approaches to Combat Antibiotic Resistance: Opportunities and Challenges for Precision Medicine. Front. Immunol. 2020, 11, 1938. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodriguez, J.C.; Plata-Menchaca, E.P.; Chiscano-Camón, L.; Ruiz-Sanmartin, A.; Pérez-Carrasco, M.; Palmada, C.; Ribas, V.; Martínez-Gallo, M.; Hernández-González, M.; Gonzalez-Lopez, J.J.; et al. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J. Crit. Care Med. 2022, 11, 1–21. [Google Scholar] [CrossRef]
- Marik, P.E.; Khangoora, V.; Rivera, R.; Hooper, M.H.; Catravas, J. Hydrocortisone, Vitamin C and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest 2017, 151, 1229–1238. [Google Scholar] [CrossRef]
- Patnaik, R.; Azim, A.; Mishra, P. Should serial monitoring of procalcitonin be done routinely in critically ill patients of ICU: A systematic review and metaanalysis. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 458–464. [Google Scholar] [CrossRef]
- Önal, U.; Valenzuela-Sánchez, F.; Vandana, K.E.; Rello, J. Mid-Regional Pro-Adrenomedullin (MRproADM) as a Biomarker for Sepsis and Septic Shock: Narrative Review. Healthcare 2018, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of machine learning to the problem of antimicrobial resistance: An emerging model for translational research. J. Clin. Microbiol. 2021, 59, e01260-20. [Google Scholar] [CrossRef]
Predictive Factors of Failure in Source Control for Secondary Peritonitis |
---|
Delay in the initial intervention (>24 h) |
High severity of illness (APACHE II * score ≥ 15; SOFA ** > 2) |
Advanced age, Degree of peritoneal involvement (>2 abdominal quadrants), or diffuse peritonitis |
Inability to achieve adequate debridement or control by surgical toilette/drainage |
Advanced age (>56 y.o.) and gender (males > females) |
Poor nutritional status |
Low albumin level |
Comorbidities and organ dysfunction |
Presence of malignancy |
European Centre for Disease Prevention and Control | |||||||
---|---|---|---|---|---|---|---|
percentage of isolates resistant to carbapenems in europe 2020 (all diseases) | |||||||
Klebsiella pneumoniae | Acinetobacter spp. | Escherichia coli | Pseudomonas aeruginosa | ||||
Greece | 66.25% | Croatia | 96.44% | Bulgaria | 76.63% | Slovakia | 48.92% |
Romania | 48.31% | Greece | 94.59% | Romania | 66.08% | Romania | 43.92% |
Italy | 29.51% | Romania | 93.27% | Greece | 53.00% | Bulgaria | 42.86% |
Bulgaria | 28.11% | Lithuania | 91.08% | Italy | 47.22% | Greece | 35.71% |
Cyprus | 19.77% | Bulgaria | 82.95% | Spain | 37.19% | Hungary | 33.76% |
Croatia | 19.10% | Latvia | 82.69% | Portugal | 15.43% | Croatia | 30.30% |
Portugal | 11.58% | Cyprus | 81.03% | Denmark | 15.41% | Poland | 28.48% |
Poland | 8.19% | Italy | 80.80% | Slovakia | 14.18% | Lithuania | 25.62% |
Slovakia | 8.16% | Poland | 78.23% | Czechia | 13.33% | Latvia | 25.58% |
Malta | 7.58% | Hungary | 73.03% | Austria | 9.73% | Cyprus | 20.63% |
Spain | 4.72% | Spain | 61.54% | Ireland | 9.50% | Spain | 16.60% |
Lithuania | 2.91% | Czechia | 32.93% | Poland | 4.81% | Italy | 15.95% |
Luxembourg | 1.15% | Slovakia | 30.77% | Netherlands | 4.01% | Czechia | 15.74% |
Belgium | 1.14% | Slovenia | 19.44% | France | 3.92% | Austria | 15.08% |
Latvia | 1.06% | Estonia | 18.18% | Norway | 2.74% | Germany | 13.80% |
Austria | 0.95% | Portugal | 15.38% | Belgium | 2.42% | Slovenia | 13.44% |
Denmark | 0.78% | Austria | 7.25% | Finland | 1.86% | Portugal | 13.43% |
Hungary | 0.69% | Sweden | 7.14% | Germany | 1.82% | Estonia | 12.66% |
France | 0.54% | Finland | 5.41% | Sweden | 1.02% | France | 12.64% |
Czechia | 0.49% | Denmark | 4.69% | Cyprus | 0.00% | Belgium | 12.45% |
Germany | 0.45% | Germany | 3.46% | Estonia | 0.00% | Iceland | 12.00% |
Sweden | 0.27% | France | 3.32% | Croatia | 0.00% | Luxembourg | 8.51% |
Ireland | 0.27% | Belgium | 1.25% | Hungary | 0.00% | Malta | 8.16% |
Norway | 0.15% | Netherlands | 0.67% | Iceland | 0.00% | Ireland | 7.77% |
Finland | 0.11% | Ireland | 0.00% | Lithuania | 0.00% | Norway | 6.38% |
Netherlands | 0.07% | Norway | 0.00% | Luxembourg | 0.00% | Denmark | 4.37% |
Estonia | 0.00% | Iceland | 0.00% | Latvia | 0.00% | Sweden | 4.23% |
Iceland | 0.00% | Luxembourg | 0.00% | Malta | 0.00% | Finland | 3.70% |
Slovenia | 0.00% | Malta | 0.00% | Slovenia | 0.00% | Netherlands | 3.62% |
Mean | 9.04% | Mean | 36.74% | Mean | 13.11% | Mean | 18.49% |
Min | 0.00% | Min | 0.00% | Min | 0.00% | Min | 3.62% |
Max | 66.25% | Max | 96.44% | Max | 76.63% | Max | 48.92% |
Activity of antimicrobial agents tested against 82 Acinetobacter isolates from intra-abdominal infections in the SENTRY program collected during 2019, 2020, and 2021 | |||||||||||
Organisms include: Acinetobacter baumannii-calcoaceticus species complex (70), A. haemolyticus (1), A. johnsonii (1), A. proteolyticus (2), A. radioresistens (1), A. schindleri (2), A. soli (2), A. ursingii (3) | |||||||||||
Antimicrobial Agent | Continent | Count | MIC50 | MIC90 | Range | CLSI | EUCAST | ||||
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | ||||||
Imipenem | All | 82 | 0.25 | >8 | ≤0.12 to >8 | 50.0 | 0.0 | 50.0 | 50.0 | 0.0 | 50.0 |
Asia-W. Pacific | 24 | 0.25 | >8 | ≤0.12 to >8 | 50.0 | 0.0 | 50.0 | 50.0 | 0.0 | 50.0 | |
Europe | 26 | 0.25 | >8 | ≤0.12 to >8 | 50.0 | 0.0 | 50.0 | 50.0 | 0.0 | 50.0 | |
Latin America | 17 | >8 | >8 | ≤0.12 to >8 | 17.6 | 0.0 | 82.4 | 17.6 | 0.0 | 82.4 | |
North America | 15 | 0.25 | >8 | ≤0.12 to >8 | 86.7 | 0.0 | 13.3 | 86.7 | 0.0 | 13.3 | |
Meropenem | All | 82 | 2 | >32 | 0.12 to >32 | 50.0 | 0.0 | 50.0 | 50.0 | 0.0 | 50.0 |
Asia-W. Pacific | 24 | 0.5 | >32 | 0.12 to >32 | 50.0 | 0.0 | 50.0 | 50.0 | 0.0 | 50.0 | |
Europe | 26 | 1 | >32 | 0.12 to >32 | 50.0 | 0.0 | 50.0 | 50.0 | 0.0 | 50.0 | |
Latin America | 17 | >32 | >32 | 0.12 to >32 | 17.6 | 0.0 | 82.4 | 17.6 | 0.0 | 82.4 | |
North America | 15 | 0.5 | >32 | 0.12 to >32 | 86.7 | 0.0 | 13.3 | 86.7 | 0.0 | 13.3 |
Activity of antimicrobial agents tested against 944 Klebsiella isolates from intra-abdominal infections in the SENTRY program collected during 2019, 2020, and 2021 | |||||||||||
Organisms include: Klebsiella aerogenes (69), K. oxytoca (153), K. pneumoniae (693), K. variicola (29) | |||||||||||
Antimicrobial Agent | Continent | Count | MIC50 | MIC90 | Range | CLSI | EUCAST | ||||
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | ||||||
Ertapenem | All | 709 | 0.015 | 0.5 | ≤0.008 to >2 | 90.6 | 0.8 | 8.6 | 90.6 | 0 | 9.4 |
Asia-W. Pacific | 150 | ≤0.008 | >2 | ≤0.008 to >2 | 88.0 | 1.3 | 10.7 | 88.0 | 0 | 12.0 | |
Europe | 208 | 0.015 | >2 | ≤0.008 to >2 | 83.2 | 0.5 | 16.3 | 83.2 | 0 | 16.8 | |
Latin America | 56 | 0.015 | 1 | ≤0.008 to >2 | 89.3 | 1.8 | 8.9 | 89.3 | 0 | 10.7 | |
North America | 295 | 0.015 | 0.12 | ≤0.008 to >2 | 97.3 | 0.7 | 2.0 | 97.3 | 0 | 2.7 | |
Imipenem | All | 944 | ≤0.12 | 1 | ≤0.12 to >8 | 93.0 | 0.5 | 6.5 | 93.5 | 0.7 | 5.7 |
Asia-W. Pacific | 213 | ≤0.12 | 1 | ≤0.12 to >8 | 92.5 | 0.5 | 7.0 | 93.0 | 0.0 | 7.0 | |
Europe | 324 | ≤0.12 | 2 | ≤0.12 to >8 | 88.9 | 1.2 | 9.9 | 90.1 | 1.5 | 8.3 | |
Latin America | 79 | ≤0.12 | 8 | ≤0.12 to >8 | 88.6 | 0.0 | 11.4 | 88.6 | 1.3 | 10.1 | |
North America | 328 | ≤0.12 | 0.5 | ≤0.12 to >8 | 98.5 | 0.0 | 1.5 | 98.5 | 0.3 | 1.2 | |
Meropenem | All | 944 | 0.03 | 0.12 | ≤0.015 to >32 | 93.1 | 0.4 | 6.5 | 93.5 | 1.6 | 4.9 |
Asia-W. Pacific | 213 | 0.03 | 0.12 | ≤0.015 to >32 | 92.5 | 0.0 | 7.5 | 92.5 | 1.9 | 5.6 | |
Europe | 324 | 0.03 | 4 | ≤0.015 to >32 | 89.2 | 0.6 | 10.2 | 89.8 | 2.8 | 7.4 | |
Latin America | 79 | 0.03 | 4 | ≤0.015 to >32 | 88.6 | 1.3 | 10.1 | 89.9 | 1.3 | 8.9 | |
North America | 328 | 0.03 | 0.03 | ≤0.015 to >32 | 98.5 | 0.3 | 1.2 | 98.8 | 0.3 | 0.9 |
Activity of antimicrobial agents tested against 1922 Escherichia isolates from intra-abdominal infections in the SENTRY program collected during 2019, 2020, and 2021 | |||||||||||
Organisms include: Escherichia coli (1921), E. marmotae (1) | |||||||||||
Antimicrobial Agent | Continent | Count | MIC50 | MIC90 | Range | CLSI | EUCAST | ||||
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | ||||||
Ertapenem | All | 1459 | ≤0.008 | 0.03 | ≤0.008 to >2 | 98.5 | 0.5 | 1.0 | 98.5 | 0 | 1.5 |
Asia-W. Pacific | 209 | ≤0.008 | 0.06 | ≤0.008 to >2 | 96.7 | 1.0 | 2.4 | 96.7 | 0 | 3.3 | |
Europe | 510 | ≤0.008 | 0.03 | ≤0.008 to >2 | 99.0 | 0.8 | 0.2 | 99.0 | 0 | 1.0 | |
Latin America | 178 | ≤0.008 | 0.06 | ≤0.008 to >2 | 99.4 | 0.0 | 0.6 | 99.4 | 0 | 0.6 | |
North America | 562 | ≤0.008 | 0.03 | ≤0.008 to >2 | 98.4 | 0.4 | 1.2 | 98.4 | 0 | 1.6 | |
Imipenem | All | 1922 | ≤0.12 | ≤0.12 | ≤0.12 to >8 | 99.2 | 0.2 | 0.7 | 99.3 | 0.2 | 0.5 |
Asia-W. Pacific | 336 | ≤0.12 | 0.25 | ≤0.12 to >8 | 98.2 | 0.0 | 1.8 | 98.2 | 0.0 | 1.8 | |
Europe | 775 | ≤0.12 | ≤0.12 | ≤0.12 to 4 | 99.6 | 0.3 | 0.1 | 99.9 | 0.1 | 0.0 | |
Latin America | 249 | ≤0.12 | 0.25 | ≤0.12 to 8 | 98.4 | 0.0 | 1.6 | 98.4 | 0.8 | 0.8 | |
North America | 562 | ≤0.12 | ≤0.12 | ≤0.12 to >8 | 99.5 | 0.2 | 0.4 | 99.6 | 0.0 | 0.4 | |
Meropenem | All | 1922 | ≤0.015 | 0.03 | ≤0.015 to >32 | 99.3 | 0.2 | 0.6 | 99.4 | 0.2 | 0.4 |
Asia-W. Pacific | 336 | ≤0.015 | 0.03 | ≤0.015 to >32 | 98.2 | 0.0 | 1.8 | 98.2 | 0.6 | 1.2 | |
Europe | 775 | ≤0.015 | 0.03 | ≤0.015 to 16 | 99.9 | 0.0 | 0.1 | 99.9 | 0.0 | 0.1 | |
Latin America | 249 | ≤0.015 | 0.03 | ≤0.015 to 32 | 98.4 | 0.8 | 0.8 | 99.2 | 0.0 | 0.8 | |
North America | 562 | ≤0.015 | 0.03 | ≤0.015 to >32 | 99.5 | 0.2 | 0.4 | 99.6 | 0.2 | 0.2 |
Activity of antimicrobial agents tested against 545 Pseudomonas isolates from intra-abdominal infections in the SENTRY program collected during 2019, 2020, and 2021 | |||||||||||
Organisms include: Pseudomonas aeruginosa (529), P. citronellolis (1), P. fluorescens group (1), P. koreensis (1), P. oryzihabitans (1), P. plecoglossicida (1), P. protegens (2), P. putida group (4), P. stutzeri (3), unspeciated Pseudomonas (2) | |||||||||||
Antimicrobial Agent | Continent | Count | MIC50 | MIC90 | Range | CLSI | EUCAST | ||||
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | ||||||
Imipenem | All | 544 | 1 | 8 | ≤0.12 to >8 | 80.5 | 4.4 | 15.1 | 0 | 0 | 0 |
Asia-W. Pacific | 138 | 1 | 8 | ≤0.12 to >8 | 86.2 | 2.2 | 11.6 | 0 | 0 | 0 | |
Europe | 184 | 1 | 8 | ≤0.12 to >8 | 76.1 | 7.6 | 16.3 | 0 | 0 | 0 | |
Latin America | 52 | 1 | >8 | ≤0.12 to >8 | 76.9 | 1.9 | 21.2 | 0 | 0 | 0 | |
North America | 170 | 1 | 8 | ≤0.12 to >8 | 81.8 | 3.5 | 14.7 | 0 | 0 | 0 | |
Meropenem | All | 541 | 0.5 | 8 | ≤0.015 to >32 | 83.9 | 4.3 | 11.8 | 83.4 | 9.4 | 7.2 |
Asia-W. Pacific | 138 | 0.25 | 8 | ≤0.015 to >32 | 88.4 | 0.7 | 10.9 | 88.4 | 5.1 | 6.5 | |
Europe | 182 | 0.5 | 8 | ≤0.015 to 32 | 81.3 | 6.6 | 12.1 | 81.3 | 12.6 | 6.0 | |
Latin America | 50 | 0.5 | 16 | 0.03 to >32 | 78.0 | 6.0 | 16.0 | 78.0 | 10.0 | 12.0 | |
North America | 171 | 0.5 | 8 | 0.03 to >32 | 84.8 | 4.1 | 11.1 | 83.0 | 9.4 | 7.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Franco, S.; Alfieri, A.; Fiore, M.; Fittipaldi, C.; Pota, V.; Coppolino, F.; Sansone, P.; Pace, M.C.; Passavanti, M.B. A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics 2022, 11, 1347. https://doi.org/10.3390/antibiotics11101347
Di Franco S, Alfieri A, Fiore M, Fittipaldi C, Pota V, Coppolino F, Sansone P, Pace MC, Passavanti MB. A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics. 2022; 11(10):1347. https://doi.org/10.3390/antibiotics11101347
Chicago/Turabian StyleDi Franco, Sveva, Aniello Alfieri, Marco Fiore, Ciro Fittipaldi, Vincenzo Pota, Francesco Coppolino, Pasquale Sansone, Maria Caterina Pace, and Maria Beatrice Passavanti. 2022. "A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients" Antibiotics 11, no. 10: 1347. https://doi.org/10.3390/antibiotics11101347
APA StyleDi Franco, S., Alfieri, A., Fiore, M., Fittipaldi, C., Pota, V., Coppolino, F., Sansone, P., Pace, M. C., & Passavanti, M. B. (2022). A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics, 11(10), 1347. https://doi.org/10.3390/antibiotics11101347