Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions
2.3. Analysed Variables
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; DiGaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated With Mortality in Consecutive Patients With Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef] [PubMed]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1800516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lat, I.; Daley, M.J.; Shewale, A.; Pangrazzi, M.H.; Hammond, D.; Olsen, K.M.; DEFINE Study Group and the Discovery Research Network. A Multicenter, Prospective, Observational Study to Determine Predictive Factors for Multidrug-Resistant Pneumonia in Critically Ill Adults: The DEFINE Study. Pharmacotherapy 2019, 39, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Koulenti, D.; Laupland, K.; Misset, B.; Valles, J.; Bruzzi de Carvalho, F.; Paiva, J.A.; Çakar, N.; Ma, X.; Eggimann, P.; et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: The EUROBACT International Cohort Study. Intensive Care Med. 2012, 38, 1930–1945. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Rello, J.; Marshall, J.K.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [Green Version]
- Tosi, M.; Roat, E.; De Biasi, S.; Munari, E.; Venturelli, S.; Coloretti, I.; Biagioni, E.; Cossarizza, A.; Girardis, M. Multidrug resistant bacteria in critically ill patients: A step further antibiotic therapy. J. Emerg. Crit. Care Med. 2018, 2, 103. [Google Scholar] [CrossRef]
- Wang, M.; Wei, H.; Zhao, Y.; Shang, L.; Di, L.; Lyu, C.; Liu, J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. BOSN J. Basic Med. Sci. 2019, 19, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Reunes, S.; Rombaut, V.; Vogelaers, D.; Brusselaers, N.; Lizy, C.; Cankurtaran, M.; Labeau, S.; Petrovic, M.; Blot, S. Risk factors and mortality for nosocomial bloodstream infections in elderly patients. Eur. J. Intern. Med. 2011, 22, e39–e44. [Google Scholar] [CrossRef]
- Sopena, N.; Heras, E.; Casas, I.; Bechini, J.; Guasch, I.; Pedro-Botet, M.L.; Roure, S.; Sabrià, M. Risk factors for hospital-acquired pneumonia outside the intensive care unit: A case-control study. Am. J. Infect. Control 2014, 42, 38–42. [Google Scholar] [CrossRef]
- Safdar, N.; Maki, D.G. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann. Intern. Med. 2002, 136, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Saint, S.; Greene, M.T.; Kowalski, C.P.; Watson, S.R.; Hofer, T.P.; Krein, S.L. Preventing catheter-associated urinary tract infection in the United States: A national comparative study. JAMA Intern. Med. 2013, 173, 874–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, R.S. Respiratory failure because of neuromuscular disease. Curr. Opin. Neurol. 2016, 29, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, C.; Glielmo, L.; Corless, M. Equilibrium and stability analysis of X-chromosome linked recessive diseases model. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 4936–4941. [Google Scholar] [CrossRef]
- Perrin, C.; Unterborn, J.N.; Ambrosio, C.D.; Hill, N.S. Pulmonary complications of chronic neuromuscular diseases and their management. Muscle Nerve 2004, 29, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.K. An overview of respiratory muscle function. Clin. Chest Med. 1994, 15, 619–639. [Google Scholar] [CrossRef]
- Bourke, S.C. Respiratory involvement in neuromuscular disease. Clin. Med. 2014, 14, 72–75. [Google Scholar] [CrossRef]
- Pfeffer, G.; Povitz, M. Respiratory management of patients with neuromuscular disease: Current perspectives. Degener. Neurol. Neuromuscul. Dis. 2016, 6, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Pisa, F.E.; Logroscino, G.; Giacomelli Battiston, P.; Barbone, F. Hospitalizations due to respiratory failure in patients with Amyotrophic Lateral Sclerosis and their impact on survival: A population-based cohort study. BMC Pulm. Med. 2016, 16, 136. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 11.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 8 September 2022).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Cherchi, C.; Testa, M.B.C.; Deriu, D.; Schiavino, A.; Petreschi, F.; Ullmann, N.; Paglietti, M.G.; Cutrera, R. All You Need Is Evidence: What We Know About Pneumonia in Children With Neuromuscular Diseases. Front. Pediatr. 2021, 9, 625751. [Google Scholar] [CrossRef]
- Carannante, N.; Annunziata, A.; Coppola, A.; Simioli, F.; Marotta, A.; Bernardo, M.; Piscitelli, E.; Imitazione, P.; Fiorentino, G. Diagnosis and treatment of pneumonia, a common cause of respiratory failure in patients with neuromuscular disorders. Acta Myol. 2021, 40, 124–131. [Google Scholar] [PubMed]
- Lechtzin, N.; Wiener, C.M.; Clawson, L.; Chaudhry, V.; Diette, G.B. Hospitalization in amyotrophic lateral sclerosis: Causes, costs, and outcomes. Neurology 2001, 56, 753–757. [Google Scholar] [CrossRef] [PubMed]
- de Die-Smulders, C.E.; Höweler, C.J.; Thijs, C.; Mirandolle, J.F.; Anten, H.B.; Smeets, H.J.; Chandler, K.E.; Geraedts, J.P. Age and cause of death in adult-onset myotonic dystrophy. Brain 1998, 121, 1557–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.-C.; Shen, C.-F.; Chen, S.-J.; Chen, H.-M.; Wang, Y.-C.; Chang, W.-S.; Chang, Y.-T.; Chen, W.-Y.; Huang, C.-Y.; Kuo, C.-C.; et al. Recommendations and guidelines for the treatment of pneumonia in Taiwan. J. Microbiol. Immunol. Infect. 2019, 52, 172–199. [Google Scholar] [CrossRef]
- Jones, R.N. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin. Infect. Dis. 2020, 51 (Suppl. S1), S81–S87. [Google Scholar] [CrossRef] [Green Version]
- McCombe, P.A.; Henderson, R.D. Effects of gender in amyotrophic lateral sclerosis. Gend. Med. 2010, 7, 557–570. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, B.S.; Lee, H.J.; Hwang, S.W.; Han, Z.A. Prevalence of and Risk Factors for Multidrug-Resistant Bacteria in Urine Cultures of Spinal Cord Injury Patients. Ann. Rehabil. Med. 2015, 39, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, H.; Fitzpatick, F.; Harvey, B.J. Gender differences in rates of carriage and bloodstream infection caused by methicillin-resistant Staphylococcus aureus: Are they real, do they matter and why? Clin. Infect. Dis. 2015, 61, 1708–1714. [Google Scholar]
- Al Hamdan, A.S.; Alghamdi, A.A.; Alyousif, G.F.; Hamza, F.A.; Shafey, M.M.; AlAmri, A.M.; Sunki, A.A. Evaluating the Prevalence and the Risk Factors of Gram-Negative Multi-Drug Resistant Bacteria in Eastern Saudi Arabia. Infect. Drug Resist. 2022, 15, 475–490. [Google Scholar] [CrossRef]
- Laudisio, A.; Marinosci, F.; Gemma, A.; Bartoli, I.R.; Montenegro, N.; Incalzi, R.A. The Burden of Comorbidity Is Associated with Antibiotic Resistance Among Institutionalized Elderly with Urinary Infection: A Retrospective Cohort Study in a Single Italian Nursing Home Between 2009 and 2014. Microb. Drug Resist. 2017, 23, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Karruli, A.; Boccia, F.; Gagliardi, M.; Patauner, F.; Ursi, M.P.; Sommese, P.; De Rosa, R.; Murino, P.; Ruocco, G.; Corcione, A.; et al. Multidrug-Resistant Infections and Outcome of Critically Ill Patients with Coronavirus Disease 2019: A Single Center Experience. Microb. Drug Resist. 2021, 27, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Karruli, A.; de Cristofaro, J.; Andini, R.; Iossa, D.; Bernardo, M.; Amarelli, C.; Mattucci, I.; Zampino, R.; Zarrilli, R.; Durante-Mangoni, E. Risk Factors and Outcome of Multidrug-Resistant Infections after Heart Transplant: A Contemporary Single Center Experience. Microorganisms 2021, 9, 1210. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.P.; Cervoni, M.; Bernardo, M.; Crivaro, V.; Cuccurullo, S.; Imperi, F.; Zarrilli, R. Molecular Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella pneumoniae Blood Isolates from the Hospital Agency “Ospedale dei Colli,” Naples, Italy. Front. Microbiol. 2018, 9, 1463. [Google Scholar] [CrossRef] [Green Version]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to ceftazidime-avibactam and underlying mechanisms. J. Glob. Antimicrob. Resist. 2020, 22, 18–27. [Google Scholar] [CrossRef]
- Fournier, D.; Carrière, R.; Bour, M.; Grisot, E.; Triponney, P.; Muller, C.; Lemoine, J.; Jeannot, K.; Plésiat, P.; the GERPA Study Group. Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob. Agents Chemother. 2021, 65, e01117-20. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Signoriello, S.; Cavezza, G.; Murino, P.; Buono, S.; De Cristofaro, M.; Taglialatela, C.; Bassetti, M.; Malacarne, P.; et al. Acute kidney injury during colistin therapy: A prospective study in patients with extensively-drug resistant Acinetobacter baumannii infections. Clin. Microbiol. Infect. 2016, 22, 984–989. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The Mortality Burden of Multidrug-resistant Pathogens in India: A Retrospective, Observational Study. Clin. Infect. Dis. 2019, 69, 563–570. [Google Scholar] [CrossRef]
- Prado, V.; Hernández-Tejero, M.; Mücke, M.M.; Marco, F.; Gu, W.; Amoros, A.; Toapanta, D.; Reverter, E.; de la Peña-Ramirez, C.; Altenpeter, L.; et al. Rectal colonization by resistant bacteria increases the risk of infection by the colonizing strain in critically ill patients with cirrhosis. J. Hepatol. 2022, 76, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Patients Studied N. 18 | MDRO/XDRO Infection | Colonisation without Infection |
---|---|---|---|
N. 10 | N. 6 | ||
Age, years | 54 [45–69] | 62 [43–70] | 51 [43–61] |
Sex M/F | 10 (55.6)/8 (44.4) | 3 (30)/7 (70) | 5 (83.3)/1 (16.7) |
Previous hospitalisation | 12 (75) | 7 (70) | 3 (50) |
Neuromuscular disorder | |||
Amyotrophic lateral sclerosis | 14 (77.8) | 8 (80) | 4 (66.7) |
Duchenne muscular dystrophy | 1 (5.55) | 1 (10) | - |
Steinert myotonic dystrophy | 1 (5.55) | 1 (10) | - |
Spinocerebellar ataxia type 2 | 1 (5.55) | - | 1 (16.7) |
Dysmetabolic axonal sensory-motor polyneuropathy | 1 (5.55) | - | 1 (16.7) |
Comorbidities | |||
Congestive heart failure | 2 (11.1) | 1 (10) | 0 |
Chronic kidney disease | 2 (11.1) | 1 (10) | 0 |
Diabetes mellitus | 2 (11.1) | 1 (10) | 1 (16.7) |
Chronic pulmonary disease | 1 (5.55) | 0 | 1 (16.7) |
Chronic liver disease | 1 (5.55) | 1 (10) | 0 |
Peripheral vascular disease | 1 (5.55) | 1 (10) | 0 |
Malignant neoplasia | 2 (11.1) | 2 (20) | 0 |
Cerebrovascular accident | 2 (11.1) | 1 (10) | 1 (16.7) |
Hemiplegia | 15 (83.3) | 8 (80) | 5 (83.3) |
Charlson comorbidity index | 3.5 [2–5.2] | 4.5 [2–6] | 3 [2–4.7] |
Invasive procedures/devices | 18 (100) | 10 (100) | 6 (100) |
Parenteral nutrition | 14 (77.8) | 8 (80) | 4 (66.7) |
Peripherally inserted central catheter | 9 (50) | 5 (50) | 2 (33.3) |
Midline | 1 (5.5) | 1 (10) | 0 |
Central venous catheter | 3 (16.7) | 2 (20) | 0 |
Peripheral venous catheter | 9 (50) | 6 (60) | 2 (33.3) |
Tracheostomy | 13 (72.2) | 7 (70) | 4 (66.7) |
Hematochemical data | |||
Creatinine baseline, mg/dl | 0.2 [0.15–0.45] | 0.2 [0.15–0.45] | 0.4 [0.4–0.4] |
Creatinine onset 1 *, mg/dl | 0.2 [0.2–0.5] | 0.2 [0.1–0.45] | 0.3 [0.2–1] |
Creatinine onset 2 **, mg/dl | 0.2 [0.1–0.3] | 0.15 [0.1–0.45] | |
Bilirubin baseline, mg/dl | 0.6 [0.5–1.8] | 0.67 [0.48–2.41] | 0.62 [0.62–0.62] |
Bilirubin onset 1 *, mg/dl | 0.5 [0.4–0.7] | 0.8 [0.3–2.1] | 0.57 [0.46–0.68] |
Bilirubin onset 2 **, mg/dl | 0.6 [0.4– -] | 0.49 [0.49–0.49] | |
WBC > 15.000/mmc during hospital stay | 6 (33.3) | 4 [40] | 0 |
PLT < 10.000/mmc during hospital stay | 0 | 0 | 0 |
Albumin < 3.5 g/dl during hospital stay | 6 (33.3) | 5 (50) | 0 |
Outcome | |||
Survived | 17 (94.4) | 10 (100) | 5 (83.3) |
Deceased | 1 (5.6) | 0 | 1 (16.7) |
Parameter | Number (%) or Median [IQR] |
---|---|
Patients with infectious syndromes | 10 |
Colonisation | 3 (30) |
Rectal swab positive | 2 (20) (K. pneumoniae) |
Nasal swab positive | 1 (10) (MRSA) |
Patients with colonisation who developed infection with the same pathogen | 1 (10) |
Patients with >1 pathogen | 4 (40) |
Total infectious syndromes | 18 |
Types of infectious syndromes | |
Pneumonia | 9 (50) |
Hospital-acquired pneumonia | 7 (77.8) |
Community-acquired pneumonia | 1 (11.1) |
Unknown | 1 (11.1) |
Complicated urinary tract infection | 4 (22.2) |
Bloodstream infection | 2 (11.1) |
Skin and soft tissue infection | 3 (16.7) |
Days from hospital entry to first isolation | 24 [1–40] |
Pathogens Acinetobacter baumannii Pseudomonas aeruginosa Klebsiella pneumoniae Proteus mirabilis Staphylococcus aureus | Total 14 pathogens 4 (28.6) 4 (28.6) 3 (21.4) 1 (7.1) 2 (14.3) |
Eradication of infectious syndromes Yes/No/Missing data | 7 (38.9)/8 (44.4)/3 (16.7) |
Antibiotic | |
Cefiderocol | 2 (20) |
Gentamicin | 2 (20) |
Ceftriaxone | 3 (30) |
Meropenem | 1 (10) |
Teicoplanin | 2 (20) |
Colisitin i.v | 1 (10) |
Colistin nebulised | 2 (20) |
Tigecycline | 2 (20) |
Ampicillin/Sulbactam | 1 (10) |
Piperacillin/Tazobactam | 1 (10) |
Linezolid | 1 (10) |
Ceftobiprole | 1 (10) |
Duration of therapy | 12 [7–21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karruli, A.; Massa, A.; Bertolino, L.; Andini, R.; Sansone, P.; Dongiovanni, S.; Pace, M.C.; Pota, V.; Durante-Mangoni, E. Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit. Antibiotics 2022, 11, 1411. https://doi.org/10.3390/antibiotics11101411
Karruli A, Massa A, Bertolino L, Andini R, Sansone P, Dongiovanni S, Pace MC, Pota V, Durante-Mangoni E. Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit. Antibiotics. 2022; 11(10):1411. https://doi.org/10.3390/antibiotics11101411
Chicago/Turabian StyleKarruli, Arta, Alessia Massa, Lorenzo Bertolino, Roberto Andini, Pasquale Sansone, Salvatore Dongiovanni, Maria Caterina Pace, Vincenzo Pota, and Emanuele Durante-Mangoni. 2022. "Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit" Antibiotics 11, no. 10: 1411. https://doi.org/10.3390/antibiotics11101411
APA StyleKarruli, A., Massa, A., Bertolino, L., Andini, R., Sansone, P., Dongiovanni, S., Pace, M. C., Pota, V., & Durante-Mangoni, E. (2022). Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit. Antibiotics, 11(10), 1411. https://doi.org/10.3390/antibiotics11101411