Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. DNA Affinity Capture Assay
2.2. Effect of sarA on Antibiotic Resistance and Virulence Factors
2.3. Alteration in Motility and Staphyloxanthin Production of ΔsarA
2.4. Effect of sarA on Proteomic Changes of MRSA
2.5. Analysis of SarA Sequence in Various Clinical Strains
3. Discussion
4. Materials and Methods
4.1. Strains, Media and Culture Conditions
4.2. Preparation of Protein Extracts
4.3. DNA-Affinity Capture Assay
4.4. Protein Precipitation Assay
4.5. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis
4.6. Antimicrobial Susceptibility and Biofilm Formation
4.7. Analysis of PSM and α-Hemolysin
4.8. Motility Assay in a Soft Agar Plate
4.9. Staphyloxanthin Extraction and Quantification
4.10. Preparation Samples for Proteomics Analysis
4.11. Bottom-up Proteomic Analysis by LC-MS/MS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The Role of the Panton-Valentine Leucocidin Toxin in Staphylococcal Disease: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, H.; Miller, L.G.; Razonable, R.R. Serious Infections Caused by Methicillin-Resistant Staphylococcus aureus. Clin. Infect. Dis. 2010, 51, S183-97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdács, M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, E.F.; Johnson, J.K.; Jabra-Rizk, M.A. Community-Associated Methicillin-Resistant Staphylococcus aureus: An Enemy amidst Us. PLoS Pathog. 2016, 12, e1005837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuchscherr, L.; Lffler, B.; Buzzola, F.R.; Sordelli, D.O. Staphylococcus aureus Adaptation to the Host and Persistence: Role of Loss of Capsular Polysaccharide Expression. Future Microbiol. 2010, 5, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Liu, F.; Zhu, K.; Shen, J.Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. J. Agric. Food Chem. 2019, 67, 13195–13211. [Google Scholar] [CrossRef]
- Kobayashi, S.D.; DeLeo, F.R. An Update on Community-Associated MRSA Virulence. Curr. Opin. Pharmacol. 2009, 9, 545–551. [Google Scholar] [CrossRef]
- Otto, M. Community-Associated MRSA: What Makes Them Special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Dai, M.; Wang, Y.; Huang, L.; Yuan, Z. Key Genetic Elements and Regulation Systems in Methicillin-Resistant Staphylococcus aureus. Future Microbiol. 2012, 7, 1315–1329. [Google Scholar] [CrossRef]
- Kavanaugh, J.S.; Horswill, A.R. Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development. J. Biol. Chem. 2016, 291, 12556–12564. [Google Scholar] [CrossRef]
- Haag, A.F.; Bagnoli, F. The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. In Current Topics in Microbiology and Immunology; Springer Verlag: Berlin/Heidelberg, Germany, 2017; Volume 409, pp. 145–198. [Google Scholar]
- Queck, S.Y.; Jameson-Lee, M.; Villaruz, A.E.; Bach, T.H.L.; Khan, B.A.; Sturdevant, D.E.; Ricklefs, S.M.; Li, M.; Otto, M. RNAIII-Independent Target Gene Control by the Agr Quorum-Sensing System: Insight into the Evolution of Virulence Regulation in Staphylococcus aureus. Mol. Cell 2008, 32, 150–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, R.; Ravikumar, R.; Santhosh, R.S.; Princy, S.A. SarA Based Novel Therapeutic Candidate against Staphylococcus aureus Associated with Vascular Graft Infections. Front. Microbiol. 2015, 6, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, A.; Saravia-Otten, P.; Tegmark, K.; Morfeldt, E.; Arvidson, S. Decreased Amounts of Cell Wall-Associated Protein A and Fibronectin-Binding Proteins in Staphylococcus aureus SarA Mutants Due to up-Regulation of Extracellular Proteases. Infect. Immun. 2001, 69, 4742–4748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, Y.T.; Manna, A.C.; Projan, S.J.; Cheung, A.L. SarA, a Global Regulator of Virulence Determinants in Staphylococcus aureus, Binds to a Conserved Motif Essential for Sar-Dependent Gene Regulation. J. Biol. Chem. 1999, 274, 37169–37176. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Cheung, A.; Bayer, A.S.; Chen, L.; Abdelhady, W.; Kreiswirth, B.N.; Yeaman, M.R.; Xiong, Y.Q. The Global Regulon SarA Regulates β-Lactam Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus in Vitro and in Endovascular Infections. J. Infect. Dis. 2016, 214, 1421–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenul, C.; Horswill, A.R. Regulation of Staphylococcus aureus Virulence. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Ballal, A.; Manna, A.C. Expression of the SarA Family of Genes Indifferent Strains of Staphylococcus aureus. Microbiology 2009, 155, 2342–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, R.; Princy, S.A. An Insight into Pleiotropic Regulators Agr and Sar: Molecular Probes Paving the New Way for Antivirulent Therapy. Future Microbiol. 2013, 8, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.L.; Nishina, K.; Manna, A.C. SarA of Staphylococcus aureus Binds to the SarA Promoter to Regulate Gene Expression. J. Bacteriol. 2008, 190, 2239–2243. [Google Scholar] [CrossRef] [Green Version]
- Manna, A.C.; Cheung, A.L. Transcriptional Regulation of the Agr Locus and the Identification of DNA Binding Residues of the Global Regulatory Protein SarR in Staphylococcus aureus. Mol. Microbiol. 2006, 60, 1289–1301. [Google Scholar] [CrossRef]
- Park, S.S.; Yang, Y.H.; Song, E.; Kim, E.J.; Kim, W.S.; Sohng, J.K.; Lee, H.C.; Liou, K.K.; Kim, B.G. Mass Spectrometric Screening of Transcriptional Regulators Involved in Antibiotic Biosynthesis in Streptomyces Coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 2009, 36, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Ko, B.J.; Kim, B.G. Mass Spectrometric Screening of Transcriptional Regulators Using DNA Affinity Capture Assay. Anal. Biochem. 2005, 344, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Basit, A.; Karim, A.M.; Lee, J.H.; Jeon, J.H.; Rehman, S.U.; Lee, S.H. Mutation-Based Antibiotic Resistance Mechanism in Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals 2021, 14, 420. [Google Scholar] [CrossRef]
- Gibert, L.; Didi, J.; Marlinghaus, L.; Lesouhaitier, O.; Legris, S.; Szabados, F.; Pons, J.L.; Pestel-Caron, M. The Major Autolysin of Staphylococcus Lugdunensis, AtlL, Is Involved in Cell Separation, Stress-Induced Autolysis and Contributes to Bacterial Pathogenesis. FEMS Microbiol. Lett. 2014, 352, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grilo, I.R.; Ludovice, A.M.; Tomasz, A.; de Lencastre, H.; Sobral, R.G. The Glucosaminidase Domain of Atl—The Major Staphylococcus aureus Autolysin—Has DNA-Binding Activity. Microbiologyopen 2014, 3, 247–256. [Google Scholar] [CrossRef]
- Dunman, P.M.; Murphy, E.; Haney, S.; Palacios, D.; Tucker-Kellogg, G.; Wu, S.; Brown, E.L.; Zagursky, R.J.; Shlaes, D.; Projan, S.J. Transcription Profiling-Based Identification of Staphylococcus aureus Genes Regulated by the Agr and/or SarA Loci. J. Bacteriol. 2001, 183, 7341–7353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, A.L.; Nishina, K.A.; Trotonda, M.P.; Tamber, S. The SarA Protein Family of Staphylococcus aureus. Int. J. Biochem. Cell Biol. 2008, 40, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Luong, T.; Sau, S.; Gomez, M.; Lee, J.C.; Lee, C.Y. Regulation of Staphylococcus aureus Capsular Polysaccharide Expression by Agr and SarA. Infect. Immun. 2002, 70, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Tsompanidou, E.; Denham, E.L.; Sibbald, M.J.J.B.; Yang, X.; Seinen, J.; Friedrich, A.W.; Buist, G.; van Dijl, J.M. The Sortase A Substrates FnbpA, FnbpB, ClfA and ClfB Antagonize Colony Spreading of Staphylococcus aureus. PLoS ONE 2012, 7, e44646. [Google Scholar] [CrossRef] [Green Version]
- Blevins, J.S.; Gillaspy, A.F.; Rechtin, T.M.; Hurlburt, B.K.; Smeltzer, M.S. The Staphylococcal Accessory Regulator (Sar) Represses Transcription of the Staphylococcus aureus Collagen Adhesin Gene (Cna) in an Agr-Independent Manner. Mol. Microbiol. 1999, 33, 317–326. [Google Scholar] [CrossRef]
- Ulrich, M.; Bastian, M.; Cramton, S.E.; Ziegler, K.; Pragman, A.A.; Bragonzi, A.; Memmi, G.; Wolz, C.; Schlievert, P.M.; Cheung, A.; et al. The Staphylococcal Respiratory Response Regulator SrrAB Induces Ica Gene Transcription and Polysaccharide Intercellular Adhesin Expression, Protecting Staphylococcus aureus from Neutrophil Killing under Anaerobic Growth Conditions. Mol. Microbiol. 2007, 65, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Ziebandt, A.-K.; Weber, H.; Rudolph, J.; Schmid, R.; Höper, D.; Engelmann, S.; Hecker, M. Extracellular Proteins of Staphylococcus aureus and the Role of SarA and ó B. Proteom. Int. Ed. 2001, 1, 480–493. [Google Scholar] [CrossRef]
- Chan, P.F.; Foster, S.J. Role of SarA in Virulence Determinant Production and Environmental Signal Transduction in Staphylococcus aureus. J. Bacteriol. 1998, 180, 6232–6241. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.; Arvidson, S. Variation in Extracellular Protease Production among Clinical Isolates of Staphylococcus aureus Due to Different Levels of Expression of the Protease Repressor SarA. Infect. Immun. 2002, 70, 4239–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrey, D.O.; Renzoni, A.; Monod, A.; Lew, D.P.; Cheung, A.L.; Kelley, W.L. Control of the Staphylococcus aureus Toxic Shock Tst Promoter by the Global Regulator SarA. J. Bacteriol. 2010, 192, 6077–6085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumitrescu, O.; Choudhury, P.; Boisset, S.; Badiou, C.; Bes, M.; Benito, Y.; Wolz, C.; Vandenesch, F.; Etienne, J.; Cheung, A.L.; et al. β-Lactams Interfering with PBP1 Induce Panton-Valentine Leukocidin Expression by Triggering SarA and Rot Global Regulators of Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 55, 3261–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, L.; Golonka, E.; Potempa, J.; Foster, S.J. The Role and Regulation of the Extracellular Proteases of Staphylococcus aureus. Microbiology 2004, 150, 217–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Li, L.; Wang, X.; Li, X.; Zhang, Y.; Yu, J.; Jiang, J.; You, X.; Xiong, Y.Q. Hypericin Enhances β-Lactam Antibiotics Activity by Inhibiting SarA Expression in Methicillin-Resistant Staphylococcus aureus. Acta Pharm. Sin. B 2019, 9, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Craft, K.M.; Nguyen, J.M.; Berg, L.J.; Townsend, S.D. Methicillin-Resistant: Staphylococcus aureus (MRSA): Antibiotic-Resistance and the Biofilm Phenotype. Medchemcomm 2019, 10, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Gierok, P.; Harms, M.; Richter, E.; Hildebrandt, J.P.; Lalk, M.; Mostertz, J.; Hochgräfe, F. Staphylococcus aureus Alpha-Toxin Mediates General and Cell Type-Specific Changes in Metabolite Concentrations of Immortalized Human Airway Epithelial Cells. PLoS ONE 2014, 9, e94818. [Google Scholar] [CrossRef] [PubMed]
- Ragle, B.E.; Karginov, V.A.; Wardenburg, J.B. Prevention and Treatment of Staphylococcus aureus Pneumonia with a β-Cyclodextrin Derivative. Antimicrob. Agents Chemother. 2010, 54, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Huang, H.; Rao, X.; Chen, W.; Wang, Z.; Hu, X. Phenol-Soluble Modulins: Novel Virulence-Associated Peptides of Staphylococci. Future Microbiol. 2014, 9, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Löffler, B.; Tuchscherr, L.; Niemann, S.; Peters, G. Staphylococcus aureus Persistence in Non-Professional Phagocytes. Int. J. Med. Microbiol. 2014, 304, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, D.; Gleske, A.K.; Rautenberg, M.; Wang, R.; Köberle, M.; Bohn, E.; Schöneberg, T.; Rabiet, M.J.; Boulay, F.; Klebanoff, S.J.; et al. Human Formyl Peptide Receptor 2 Senses Highly Pathogenic Staphylococcus aureus. Cell Host Microbe 2010, 7, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollitt, E.J.G.; Crusz, S.A.; Diggle, S.P. Staphylococcus aureus Forms Spreading Dendrites That Have Characteristics of Active Motility. Sci. Rep. 2015, 5, 17698. [Google Scholar] [CrossRef] [Green Version]
- Pollitt, E.J.G.; Diggle, S.P. Defining Motility in the Staphylococci. Cell. Mol. Life Sci. 2017, 74, 2943–2958. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.L.; Brun-Zinkernagel, A.-M.; Simecka, J.W.; Prüß, B.M.; Babitzke, P.; Romeo, T. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 2001, 40, 245–256. [Google Scholar] [CrossRef]
- Morrison, J.M.; Anderson, K.L.; Beenken, K.E.; Smeltzer, M.S.; Dunman, P.M. The Staphylococcal Accessory Regulator, SarA, Is an RNA-Binding Protein That Modulates the MRNA Turnover Properties of Late-Exponential and Stationary Phase Staphylococcus aureus Cells. Front. Cell. Infect. Microbiol. 2012, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Clauditz, A.; Resch, A.; Wieland, K.P.; Peschel, A.; Götz, F. Staphyloxanthin Plays a Role in the Fitness of Staphylococcus aureus and Its Ability to Cope with Oxidative Stress. Infect. Immun. 2006, 74, 4950–4953. [Google Scholar] [CrossRef] [Green Version]
- Reyes, D.; Andrey, D.O.; Monod, A.; Kelley, W.L.; Zhang, G.; Cheung, A.L. Coordinated Regulation by AgrA, SarA, and SarR to Control Agr Expression in Staphylococcus aureus. J. Bacteriol. 2011, 193, 6020–6031. [Google Scholar] [CrossRef]
- Tan, L.; Li, S.R.; Jiang, B.; Hu, X.M.; Li, S. Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator (Agr) System. Front. Microbiol. 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Loughran, A.J.; Atwood, D.N.; Anthony, A.C.; Harik, N.S.; Spencer, H.J.; Beenken, K.E.; Smeltzer, M.S. Impact of Individual Extracellular Proteases on Staphylococcus aureus Biofilm Formation in Diverse Clinical Isolates and Their Isogenic SarA Mutants. Microbiologyopen 2014, 3, 897–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, A.M.; Beenken, K.E.; Byrum, S.D.; Tackett, A.J.; Shaw, L.N.; Gimza, B.D.; Smeltzer, M.S. SarA Plays a Predominant Role in Controlling the Production of Extracellular Proteases in the Diverse Clinical Isolates of Staphylococcus aureus LAC and UAMS-1. Virulence 2020, 11, 1738–1762. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, A.K.; Beenken, K.E.; Mrak, L.N.; Spencer, H.J.; Post, G.R.; Skinner, R.A.; Tackett, A.J.; Horswill, A.R.; Smeltzer, M.S. SarA-Mediated Repression of Protease Production Plays a Key Role in the Pathogenesis of Staphylococcus aureus USA300 Isolates. Mol. Microbiol. 2012, 86, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The Penicillin-Binding Proteins: Structure and Role in Peptidoglycan Biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [Google Scholar] [CrossRef] [Green Version]
- Lagos, A.C.; Sundqvist, M.; Dyrkell, F.; Stegger, M.; Söderquist, B.; Mölling, P. Evaluation of Within-Host Evolution of Methicillin-Resistant Staphylococcus aureus (MRSA) by Comparing CgMLST and SNP Analysis Approaches. Sci. Rep. 2022, 12, 10541. [Google Scholar] [CrossRef]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.I.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and Virulence Determinants of High Virulence Community-Acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef]
- Sitbon, E.; Pietrokovski, S. Occurrence of Protein Structure Elements in Conserved Sequence Regions. BMC Struct. Biol. 2007, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Houston, P.; Rowe, S.E.; Pozzi, C.; Waters, E.M.; O’Gara, J.P. Essential Role for the Major Autolysin in the Fibronectin-Binding Protein-Mediated Staphylococcus aureus Biofilm Phenotype. Infect. Immun. 2011, 79, 1153–1165. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Song, H.S.; Lee, H.J.; Kim, S.H.; Suh, M.J.; Cho, J.Y.; Ham, S.; Kim, Y.G.; Joo, H.S.; Kim, W.; et al. Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA). J. Microbiol. Biotechnol. 2021, 31, 1060–1068. [Google Scholar] [CrossRef]
- Koontz, L. TCA Precipitation. In Methods in Enzymology; Academic Press Inc.: Washington, DC, USA, 2014; Volume 541, pp. 3–10. ISBN 9780124201194. [Google Scholar]
- Song, H.S.; Bhatia, S.K.; Choi, T.R.; Gurav, R.; Kim, H.J.; Lee, S.M.; Park, S.L.; Lee, H.S.; Joo, H.S.; Kim, W.; et al. Increased Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus USA300 Δpsm Mutants and a Complementation Study of Δpsm Mutants Using Synthetic Phenol-Soluble Modulins. J. Microbiol. Biotechnol. 2021, 31, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.R.; Lee, Y.; Kim, H.K.; Kim, W.; Kim, Y.G.; Yang, Y.H.; Kim, J.S.; Joo, H.S. Phenol-Soluble Modulin-Mediated Aggregation of Community-Associated Methicillin-Resistant Staphylococcus aureus in Human Cerebrospinal Fluid. Cells 2020, 9, 788. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.S.; Otto, M. The Isolation and Analysis of Phenol-Soluble Modulins of Staphylococcus Epidermidis. Methods Mol. Biol. 2014, 1106, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen Elimination by Probiotic Bacillus via Signalling Interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Tsompanidou, E.; Denham, E.L.; Becher, D.; de Jong, A.; Buist, G.; van Oosten, M.; Manson, W.L.; Back, J.W.; van Dijl, J.M.; Dreisbach, A. Distinct Roles of Phenol-Soluble Modulins in Spreading of Staphylococcus aureus on Wet Surfaces. Appl. Environ. Microbiol. 2013, 79, 886–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.C.; Kim, H.; Lee, H.S.; Kim, S.H.; Cho, D.-H.; Jung, H.J.; Bhatia, S.K.; Yune, P.S.; Joo, H.-S.; Kim, J.-S.; et al. 4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus. J. Microbiol. Biotechnol. 2022, 32, 730–739. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Park, J.H.; Song, W.S.; Lee, J.; Jo, S.H.; Lee, J.S.; Jeon, H.J.; Kwon, J.E.; Kim, Y.R.; Baek, J.H.; Kim, M.G.; et al. An Integrative Multiomics Approach to Characterize Prebiotic Inulin Effects on Faecalibacterium Prausnitzii. Front. Bioeng. Biotechnol. 2022, 10, 825399. [Google Scholar] [CrossRef]
- Jo, S.H.; Song, W.S.; Park, H.G.; Lee, J.S.; Jeon, H.J.; Lee, Y.H.; Kim, W.; Joo, H.S.; Yang, Y.H.; Kim, J.S.; et al. Multi-Omics Based Characterization of Antibiotic Response in Clinical Isogenic Isolates of Methicillin-Susceptible/-Resistant: Staphylococcus aureus. RSC Adv. 2020, 10, 27864–27873. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Rgen Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-Wide Label-Free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ* □ S Technological Innovation and Resources. Mol. Cell. Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
Gene | Regulation | Function | Ref. |
---|---|---|---|
cap | + | Improves staphylococcal toxicity by interfering with phagocytosis. | [29] |
clfB | + | Promotes adhesion to immobilized epidermal cytokeratin. | [30] |
cna | − | Bacterium-host adherence and in immune evasion. | [31] |
fnbA, B | + | Attachment to fibronectin | [15] |
spa | − | Ability to bind to the Fc region of IgG | [15] |
sdrC | + | Promotes adhesion of bacteria to surfaces and biofilm formation. | [27] |
femA | + | Cytoplasmic protein required for the expression of methicillin resistance and involved in the biosynthesis of the staphylococcal cell wall | [27] |
atl | − | Peptidoglycan hydrolase that breaks down peptidoglycan to release daughter cells | [27] |
icaADBC | + | Polysaccharide intracellular adhesion and poly-N-acetylglucosamine polysaccharide production and biofilm formation | [32] |
hla | + | Tissue invasion and form pores in host cell membrane | [15] |
hlb | + | Selectively cytotoxic to monocytes | [33] |
hld | + | Wide spectrum of cytolytic activity | [27] |
hlgABC | + | Causes toxic shock syndrome with toxin shock syndrome toxin 1 | [27] |
seb | + | Superantigens with severe toxic effects on the immune system | [34] |
geh | + | Glycerol ester hydrolase in S. aureus | [33] |
aur | − | Effectively inhibits phagocytosis and bacterial death by neutrophils. | [35] |
tst | + | Toxins act as superantigens, activating very large numbers of T cells and generating an overwhelming immune-mediated cytokine storm | [36] |
lukF, lukS | + | Causes leukocyte lysis and tissue necrosis | [37] |
sspA | − | Degrades the Fc region of immunoglobulins and leads to partial loss of antigenic determinants of the antibody. | [35] |
sspB | − | Causes imbalance in the homeostasis of host immune cells in the inflamed tissue | [35] |
scpA | − | Breaks down elastin and has broad specificity | [38] |
agr | + | Global regulator, which includes secreted virulence factors and surface proteins | [27] |
mecA | + | Involved in beta-lactam antibiotics activity | [39] |
Clinical Isolates | SCCmec | Spa Type | MLST | CC | Agr Type | AgrA Mutation | AgrA | SarA | NCBI Reg.No | PSMα1 | PSMα2 | PSMα3 | PSMα4 | PSMβ1 | PSMβ2 | δ-toxin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HL16278 | IVA | T324 | ST72 | CC8 | I | S202N | 238 aa | 124 aa | CP080564-CP080565 | − | − | − | − | − | − | − |
HL17064 | II | T2460 | ST5 | CC5 | II | I238K | 238 aa | 124 aa | CP080560-CP080561 | − | − | − | − | − | − | − |
HL17078 | IV | T008 | ST5863 | CC8 | I | 238 aa | 124 aa | CP080556-CP080559 | + | + | + | + | + | − | + | |
HL18380 | IV | T008 | ST8 | CC8 | I | 238 aa | 124 aa | CP080553-CP080555 | + | + | + | + | + | − | + | |
HL18807 | II | T2460 | ST5 | CC5 | II | I238NNNKIIKSVNGVFNCKSCWILTR | 260 aa | 124 aa | CP080552 | − | − | − | − | − | − | − |
HL18840 | IVA | T324 | ST72 | CC8 | I | 238 aa | 124 aa | CP080551 | + | + | + | + | + | + | + | |
HL18883 | II | T9353 | ST5 | CC5 | II | D137N, I238NNNKIIKSVNGVFNCKSCWILTR | 260 aa | 124 aa | CP080550 | + | + | + | + | − | − | + |
HL18888 | II | T002 | ST5 | CC5 | II | 238 aa | 124 aa | CP080548-CP080549 | + | + | + | + | − | − | + | |
HL20835 | II | T002 | ST5 | CC5 | II | 238 aa | 124 aa | CP080566-CP080567 | + | + | + | + | − | − | + | |
HL21008 | II | T9353 | ST5 | CC5 | II | D137N, I238NNNKIIKSVNGVFNCKSCWILTR | 260 aa | 124 aa | CP080562-CP080563 | − | − | − | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Lee, H.-J.; Jo, S.-H.; Kim, M.-G.; Lee, Y.; Lee, W.; Kim, W.; Joo, H.-S.; Kim, Y.-G.; Kim, J.-S.; et al. Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics 2022, 11, 1714. https://doi.org/10.3390/antibiotics11121714
Kim B, Lee H-J, Jo S-H, Kim M-G, Lee Y, Lee W, Kim W, Joo H-S, Kim Y-G, Kim J-S, et al. Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2022; 11(12):1714. https://doi.org/10.3390/antibiotics11121714
Chicago/Turabian StyleKim, Byungchan, Hong-Ju Lee, Sung-Hyun Jo, Min-Gyu Kim, Yeonhee Lee, Wonsik Lee, Wooseong Kim, Hwang-Soo Joo, Yun-Gon Kim, Jae-Seok Kim, and et al. 2022. "Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus" Antibiotics 11, no. 12: 1714. https://doi.org/10.3390/antibiotics11121714
APA StyleKim, B., Lee, H. -J., Jo, S. -H., Kim, M. -G., Lee, Y., Lee, W., Kim, W., Joo, H. -S., Kim, Y. -G., Kim, J. -S., & Yang, Y. -H. (2022). Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics, 11(12), 1714. https://doi.org/10.3390/antibiotics11121714