Evaluation of Retail Meat as a Source of ESBL Escherichia coli in Tamaulipas, Mexico
Abstract
:1. Introduction
2. Results
2.1. Prevalence of E. coli ESBL in Samples
2.2. Antimicrobial Susceptibility Phenotypes and Genotypes in E. coli ESBL
2.3. Distribution of Phylogenetic Groups in E. coli ESBL
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation and Identification of E. coli
4.3. Phenotypic Test for the Presence of Extended-Spectrum β-Lactamase (ESBL)
4.4. Antimicrobial Susceptibility Testing
4.5. Detection of Integron Sequences
4.6. Identification of β-Lactamase Genes
4.7. Detection of Antibiotic Resistance Genes
4.8. Phylogenetic Groups
4.9. Virulence Factor Genes
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benavides, J.A.; Salgado, M.; Opazo, A.; González, P.; Piñeiro, A.; Otto, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia coli carrying CTX-M genes circulating among livestock, dogs, and wild mammals in small-scale farms of central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Montero, L.; Irazabal, J.; Cardenas, P.; Graham, J.P.; Trueba, G. Extended-spectrum β-lactamase producing Escherichia coli isolated from irrigation waters and produce in Ecuador. Front. Microbiol. 2021, 12, 709418. [Google Scholar] [CrossRef] [PubMed]
- Gekenidis, M.T.; Rigotti, S.; Hummerjohann, J.; Walsh, F.; Drissner, D. Long-term persistence of blaCTX-M-15 in soil and lettuce after introducing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli via manure or water. Microorganisms 2020, 8, 1646. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Aung, K.T.; Leekitcharoenphon, P.; Tay, M.Y.F.; Seow, L.G.; Zhong, Y.; Ng, L.C.; Aarestrup, F.M.; Schlundt, J. Prevalence and genomic analysis of ESBL-producing Escherichia coli in retail raw meats in Singapore. J. Antimicrob. Chemother. 2021, 76, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Kanokudom, S.; Assawakongkarat, T.; Akeda, Y.; Ratthawongjirakul, P.; Chuanchuen, R.; Chaichanawongsaroj, N. Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE 2021, 16, e0248536. [Google Scholar] [CrossRef]
- Clemente, L.; Leão, C.; Moura, L.; Albuquerque, T.; Amaro, A. Prevalence and Characterization of ESBL/AmpC Producing Escherichia coli from Fresh Meat in Portugal. Antibiotics 2021, 10, 1333. [Google Scholar] [CrossRef]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Said, L.B.; Jouini, A.; Klibi, N.; Dziri, R.; Alonso, C.A.; Boudabous, A.; Slama, K.B.; Torres, C. Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of the farm environment in Tunisia. Int. J. Food Microbiol. 2015, 203, 86–92. [Google Scholar] [CrossRef]
- Aguilar, D. Escherichia coli ESBL, la enterobacteria que ha atravesado barreras. Rev. Invest. Med. Sur. Mex. 2015, 22, 57–63. [Google Scholar]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Delavari, P.; Kuskowski, M.; Stell, A. Phylogenetic distribution of extraintestinal virulence-asociated traits in Escherichia coli. J. Infect. Dis. 2001, 183, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Moon, J.S.; Oh, D.H.; Chon, J.W.; Song, B.R.; Lim, J.S.; Sung, K. Genotypic characterization of ESBL-producing E coli from imported meat in South Korea. Food Res. Int. 2018, 107, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Randall, L.P.; Lodge, M.P.; Elvis, N.C.; Lemma, F.L.; Hopkins, K.L.; Teale, C.J.; Woodford, N. Evaluation of meat, fruit and vegetables from retail stores in five United Kingdom regions as sources of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Escherichia coli. Int. J. Food Microbiol. 2017, 241, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Jiang, X.; Fu, K.; Liu, B.; Xu, D.; Ji, S.; Zhou, L. Detection of extended-spectrum β-lactamase and plasmid-mediated quinolone resistance determinants in Escherichia coli isolates from retail meat in China. J. Food Sci. 2015, 80, M1039–M1043. [Google Scholar] [CrossRef]
- Barrios, E.; Cortés, G.; Lozano, P.; Romero, S.; Lara, N.; Estepa, V.; Somalo, S.; Torres, C.; Rocha, R.C. Characterization of extended-spectrum and CMY-2 ß-lactamases, and associated virulence genes in Escherichia coli from food of animal origin in México. Br. Food J. 2018, 120, 1457–1473. [Google Scholar] [CrossRef]
- Martínez-Vázquez, A.V.; Rivera, G.; Lira, K.; Reyes, M.A.; Bocanegra, V. Prevalence, antimicrobial resistance and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. J. Glob. Antimicrob. Resist. 2018, 14, 266–272. [Google Scholar] [CrossRef]
- Galindo-Méndez, M. Reservoirs of CTX-M extended spectrum B-lactamase-producing Enterobacteriaceae in Oaxaca, Mexico. J. Microbiol. Exp. 2019, 7, 43–47. [Google Scholar]
- Ye, Q.; Wu, Q.; Zhang, S.; Zhang, J.; Yang, G.; Wang, J.; Xue, L.; Chen, M. Characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae from retail food in China. Front. Microbiol. 2018, 9, 1709. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Nguyen, T.A.D.; Le, T.H.; Tran, N.M.D.; Ngo, T.P.; Dang, V.C.; Kawai, T.; Kanki, M.; Kawahara, R.; Jinnai, M.; et al. Dissemination of extended-spectrum β -lactamase- and AmpC β -lactamase-producing Escherichia coli within the food distribution system of Ho Chi Minh City, Vietnam. BioMed Res. Int. 2016, 8182096. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, M.; Khare, N.; Kumar, S.; Gulati, P. High prevalence of antibiotic resistance and Integrons in Escherichia coli isolated from urban River Water, India. Microb. Drug Resist. 2019, 25, 359–370. [Google Scholar] [CrossRef]
- Kargar, M.; Mohammadalipour, Z.; Doosti, A.; Lorzadeh, S.; Japoni, A. High Prevalence of Class 1 to 3 integrons among multidrug-resistant diarrheagenic Escherichia coli in southwest of Iran. Osong Public Health Res. Perspect. Sci. 2014, 5, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, N.; Leclaire, A.; Laval, M.; Miltgen, G.; Jégo, M.; Stéphane, R.; Jaubert, J.; Belmonte, O.; Cardinale, E. Risk factors of extended-spectrum β-lactamase producing enterobacteriaceae occurrence in farms in Madagascar and Mayotte Islands, 2016–2017. Vet. Sci. 2018, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peirano, G.; Hung, J.H.; Pitondo-Silva, A.; Laupland, K.B.; Pitout, J.D.D. Molecular epidemiology of extended-spectrum-β-lactamase-producing Klebsiella pneumoniae over a 10-year period in Calgary, Canada. J. Antimicrob. Chemother. 2012, 67, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, I.; Thomas, K.; Van Essen, A.; Schink, A.K.; Day, M.; Chattaway, M.; Wu, G.; Mevius, D.; Helmuth, R.; Guerra, B. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany, The Netherlands and the UK. Int. J. Antimicrob. Agents 2014, 43, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Sudarwanto, M.P.; Widaya, D.; Latif, H.; Pisestyani, H.; Sukmawinata, E.; Akineden, O.; Usleber, E. CTX-M producing Escherichia coli isolated from cattle feces in Bogor slaughterhouse, Indonesia. Asian Pac. J. Trop. Biomed. 2016, 6, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A. Animal reservoirs for extended spectrum β-lactamase producers. Clin. Microbiol. Infect. 2008, 14, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, H.M.; Reuland, E.A.; Wintermans, B.B.; Naiemi, N.; Koek, A.; Abdelwahab, A.M.; Ammar, A.M.; Mohamed, A.A.; Vandenbroucke, C.M.J.E. Extended-spectrum β-lactamases and/or carbapenemases-producing enterobacteriaceae isolated from retail chicken meat in Zagazig, Egypt. PLoS ONE 2015, 10, e0136052. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standars for Antimicrobial Susceptibility Testing, 31st ed.; CLSI supplement M100; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2021. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. 2021. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 1 November 2020).
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Canizalez, A.; González, E.; Vidal, J.E.; Flores, H.; León, N. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int. J. Food Microbiol. 2013, 164, 36–45. [Google Scholar] [CrossRef]
City | No. Stores | No. Samples | E. coli Prevalence % (n) | Total | ||
---|---|---|---|---|---|---|
Beef | Pork | Chicken | ||||
Reynosa | 40 | 120 | 57.5% (23/40) | 62.5% (25/40) | 75.0% (30/40) | 65.0% (78/120) |
Río Bravo | 11 | 33 | 72.7% (8/11) | 54.5% (6/11) | 72.7% (8/11) | 66.0% (22/33) |
Matamoros | 25 | 75 | 68.0% (17/25) | 76.0% (19/25) | 60.0% (15/25) | 68.0% (51/75) |
Total | 76 | 228 | 63.1% (48/76) | 62.7% (50/76) | 69.7% (53/76) | 66.2% (151/228) |
Gene | Beef n (%) | Chicken n (%) | Pork n (%) | Total |
---|---|---|---|---|
blaCTX-M | 2/5 (40) | 1/6 (17) | 0/4 (25) | 3/15 (20.0) |
blaTEM | 1/5 (20) | 1/6 (17) | 0/4 (25) | 2/15 (13.3) |
blaSHV | 0/5 (20) | 0/6 (17) | 0/4 (25) | 0/15 (0.0) |
blaOXA | 0/5 (20) | 0/6 (17) | 0/4 (25) | 0/15 (0.0) |
tetA | 2/5 (40) | 1/6 (17) | 2/4 (50) | 5/15 (33.3) |
tetB | 2/5 (40) | 3/6 (50) | 3/4 (75) | 8/15 (53.3) |
strA | 2/5 (40) | 1/6 (17) | 1/4 (25) | 4/15 (26.6) |
strB | 2/5 (40) | 1/6 (17) | 1/4 (25) | 4/15 (26.6) |
sul1 | 0/5 (20) | 0/6 (17) | 1/4 (25) | 1/15 (6.6) |
sul2 | 2/5 (40) | 1/6 (17) | 0/4 (25) | 3/15 (20.0) |
sul3 | 2/5 (40) | 1/6 (17) | 0/4 (25) | 3/15 (20.0) |
qnrA | 0/5 (20) | 0/6 (17) | 1/4 (25) | 1/15 (6.6) |
qnrB | 1/5 (20) | 1/6 (17) | 1/4 (25) | 3/15 (20.0) |
aadA | 1/5 (20) | 1/6 (17) | 0/4 (25) | 1/15 (6.6) |
aac(3)-VI | 0/5 (20) | 0/6 (17) | 0/4 (25) | 0/15 (0.0) |
int1 | 4/5 (80) | 1/6 (17) | 3/4 (75) | 8/15 (53.3) |
int2 | 0/5 (20) | 0/6 (17) | 0/4 (25) | 0/15 (0.0) |
int3 | 0/5 (20) | 0/6 (17) | 0/4 (25) | 0/15 (0.0) |
Tetracycline Resistance | β-Lactamase Resistance | ||||||
---|---|---|---|---|---|---|---|
Phenotypic | Genotypic | Phenotypic | Genotypic | ||||
Tetracycline | 9/15 (60.0%) | tetA | 5/15 (33.3%) | cefotaxime | 13/15 (86.6%) | blaCTX-M | 3/15 (20.0%) |
tetB | 8/15 (53.3%) | amoxicillin–clavulanic acid | 15/15 (100%) | blaTEM | 2/15 (13.3%) | ||
A + B | 4/15 (26.6%) | cefepime | 15/15 (100%) | blaSHV | 0 | ||
ceftazidime | 11/15 (73.3%) | blaOXA | 0 | ||||
ampicillin | 11/15 (73.3%) | CTX + TEM | 2/15 (13.3%) | ||||
Streptomycin resistance | Quinolone resistance | ||||||
Phenotypic | Genotypic | Phenotypic | Genotypic | ||||
streptomycin | 8/15 (53.3%) | strA | 4/15 (26.6%) | ciprofloxacin | 2/15 (13.3%) | qnrA | 1/15 (6.6%) |
strB | 4/15 (26.6%) | levofloxacin | 2/15 (13.3%) | qnrB | 3/15 (20.0%) | ||
A + B | 4/15 (26.6%) | A+B | 1/15 (6.6%) | ||||
aadA | 1/15 (6.6%) | ||||||
A + B + a | 1/15 (6.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Vázquez, A.V.; Mandujano, A.; Cruz-Gonzalez, E.; Guerrero, A.; Vazquez, J.; Cruz-Pulido, W.L.; Rivera, G.; Bocanegra-García, V. Evaluation of Retail Meat as a Source of ESBL Escherichia coli in Tamaulipas, Mexico. Antibiotics 2022, 11, 1795. https://doi.org/10.3390/antibiotics11121795
Martínez-Vázquez AV, Mandujano A, Cruz-Gonzalez E, Guerrero A, Vazquez J, Cruz-Pulido WL, Rivera G, Bocanegra-García V. Evaluation of Retail Meat as a Source of ESBL Escherichia coli in Tamaulipas, Mexico. Antibiotics. 2022; 11(12):1795. https://doi.org/10.3390/antibiotics11121795
Chicago/Turabian StyleMartínez-Vázquez, Ana Verónica, Antonio Mandujano, Eduardo Cruz-Gonzalez, Abraham Guerrero, Jose Vazquez, Wendy Lizeth Cruz-Pulido, Gildardo Rivera, and Virgilio Bocanegra-García. 2022. "Evaluation of Retail Meat as a Source of ESBL Escherichia coli in Tamaulipas, Mexico" Antibiotics 11, no. 12: 1795. https://doi.org/10.3390/antibiotics11121795
APA StyleMartínez-Vázquez, A. V., Mandujano, A., Cruz-Gonzalez, E., Guerrero, A., Vazquez, J., Cruz-Pulido, W. L., Rivera, G., & Bocanegra-García, V. (2022). Evaluation of Retail Meat as a Source of ESBL Escherichia coli in Tamaulipas, Mexico. Antibiotics, 11(12), 1795. https://doi.org/10.3390/antibiotics11121795