Detection of Methicillin-Resistant Staphylococcus aureus Infections Using Molecular Methods
Abstract
:1. Introduction
2. Detection of MRSA Nasal Colonization
3. Detecting MRSA and MSSA in Positive Blood Culture Bottles and Skin and Soft Tissue Specimens
4. Further Exploring the Discrepancies between Genotypic and Phenotypic Results
5. Whole Genome Sequencing as a Diagnostic Tool
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: A systematic review and meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, K.A.; West, J.E.; Balada-Llasat, J.-M.; Pancholi, P.; Stevenson, K.B.; Goff, D.A. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin. Infect. Dis. 2010, 51, 1074–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, P.L.; Lin, S.-W.; DePestel, D.D.; Newton, D.W. Impact of mecA gene testing and intervention by infectious disease clinical pharmacists on time to optimal antimicrobial therapy for Staphylococcus aureus bacteremia at a University Hospital. J. Clin. Microbiol. 2008, 46, 2381–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [Green Version]
- Archer, G.L.; Pennell, E. Detection of methicillin resistance in staphylococci by using a DNA probe. Antimicrob. Agents Chemother. 1990, 34, 1720–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokue, Y.; Shoji, S.; Satoh, K.; Watanabe, A.; Motomiya, M. Comparison of a polymerase chain reaction assay and a conventional microbiologic method for detection of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1992, 36, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Ubukata, K.; Nonoguchi, R.; Song, M.D.; Matsuhashi, M.; Konno, M. Homology of mecA gene in methicillin-resistant Staphylococcus haemolyticus and Staphylococcus simulans to that of Staphylococcus aureus. Antimicrob. Agents Chemother. 1990, 34, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, E.; Hiramatsu, K.; Yokota, T. Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob. Agents Chemother. 1992, 36, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Y.; Kim, S.; Kim, J.; Park, S.-D.; Uh, Y.; Lee, H. Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures. J. Clin. Microbiol. 2014, 52, 1911–1920. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Katayama, Y.; Asada, K.; Mori, N.; Tsutsumimoto, K.; Tiensasitorn, C.; Hiramatsu, K. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1323–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, Y.; Ito, T.; Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Huletsky, A.; Giroux, R.; Rossbach, V.; Gagnon, M.; Vaillancourt, M.; Bernier, M.; Gagnon, F.; Truchon, K.; Bastien, M.; Picard, F.J.; et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J. Clin. Microbiol. 2004, 42, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolk, D.M.; Struelens, M.J.; Pancholi, P.; Davis, T.; Della-Latta, P.; Fuller, D.; Picton, E.; Dickenson, R.; Denis, O.; Johnson, D.; et al. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: Multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J. Clin. Microbiol. 2009, 47, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Dubouix-Bourandy, A.; de Ladoucette, A.; Pietri, V.; Mehdi, N.; Benzaquen, D.; Guinand, R.; Gandois, J.-M. Direct detection of Staphylococcus osteoarticular infections by use of Xpert MRSA/SA SSTI real-time PCR. J. Clin. Microbiol. 2011, 49, 4225–4230. [Google Scholar] [CrossRef] [Green Version]
- Valour, F.; Blanc-Pattin, V.; Freydière, A.-M.; Bouaziz, A.; Chanard, E.; Lustig, S.; Ferry, T.; Laurent, F. Lyon Bone Joint Infection Study Group Rapid detection of Staphylococcus aureus and methicillin resistance in bone and joint infection samples: Evaluation of the GeneXpert MRSA/SA SSTI assay. Diagn. Microbiol. Infect. Dis. 2014, 78, 313–315. [Google Scholar] [CrossRef]
- Wolk, D.M.; Picton, E.; Johnson, D.; Davis, T.; Pancholi, P.; Ginocchio, C.C.; Finegold, S.; Welch, D.F.; de Boer, M.; Fuller, D.; et al. Multicenter evaluation of the Cepheid Xpert methicillin-resistant Staphylococcus aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J. Clin. Microbiol. 2009, 47, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Rossney, A.S.; Herra, C.M.; Brennan, G.I.; Morgan, P.M.; O’Connell, B. Evaluation of the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay using the GeneXpert real-time PCR platform for rapid detection of MRSA from screening specimens. J. Clin. Microbiol. 2008, 46, 3285–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paule, S.M.; Hacek, D.M.; Kufner, B.; Truchon, K.; Thomson, R.B.; Kaul, K.L.; Robicsek, A.; Peterson, L.R. Performance of the BD GeneOhm methicillin-resistant Staphylococcus aureus test before and during high-volume clinical use. J. Clin. Microbiol. 2007, 45, 2993–2998. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.R.; Liesenfeld, O.; Woods, C.W.; Allen, S.D.; Pombo, D.; Patel, P.A.; Mehta, M.S.; Nicholson, B.; Fuller, D.; Onderdonk, A. Multicenter evaluation of the LightCycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test as a rapid method for detection of MRSA in nasal surveillance swabs. J. Clin. Microbiol. 2010, 48, 1661–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, D.S.; Basset, P.; Nahimana-Tessemo, I.; Jaton, K.; Greub, G.; Zanetti, G. High proportion of wrongly identified methicillin-resistant Staphylococcus aureus carriers by use of a rapid commercial PCR assay due to presence of staphylococcal cassette chromosome element lacking the mecA gene. J. Clin. Microbiol. 2011, 49, 722–724. [Google Scholar] [CrossRef] [Green Version]
- Ciardo, D.E.; Burger, S.; Payer, M.; Lee, C.; McCallum, N. GeneXpert captures unstable methicillin-resistant Staphylococcus aureus prone to rapidly losing the mecA gene. J. Clin. Microbiol. 2010, 48, 3030–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupp, J.; Fenner, I.; Solbach, W.; Gieffers, J. Be aware of the possibility of false-positive results in single-locus PCR assays for methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2006, 44, 2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.K.; Park, K.Y.; Jin, T.; Kim, J.H.; Seo, S.J. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus in atopic dermatitis by using the BD Max StaphSR Assay. Ann. Lab. Med. 2017, 37, 320–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulliard, E.; Grandbastien, B.; Senn, L.; Greub, G.; Blanc, D.S. Evaluation of three consecutive versions of a commercial rapid PCR test to screen for methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2019, 25, 1430.e1–1430.e4. [Google Scholar] [CrossRef] [Green Version]
- Stojanov, M.; Blanc, D.S. Characterization of the staphylococcal cassette chromosome mec insertion site in 108 isolates lacking the mecA gene and identified as methicillin-resistant Staphylococcus aureus by the Xpert MRSA assay. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1967–1971. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Parente, D.M.; Cunha, C.B.; Mylonakis, E.; Timbrook, T.T. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: A diagnostic meta-analysis with antimicrobial stewardship implications. Clin. Infect. Dis. 2018, 67, 1–7. [Google Scholar] [CrossRef]
- Trevino, S.E.; Pence, M.A.; Marschall, J.; Kollef, M.H.; Babcock, H.M.; Burnham, C.A.D. Rapid MRSA PCR on respiratory specimens from ventilated patients with suspected pneumonia: A tool to facilitate antimicrobial stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Peker, N.; Couto, N.; Sinha, B.; Rossen, J.W. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: Recent developments in molecular approaches. Clin. Microbiol. Infect. 2018, 24, 944–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagacé-Wiens, P.R.S.; Adam, H.J.; Karlowsky, J.A.; Nichol, K.A.; Pang, P.F.; Guenther, J.; Webb, A.A.; Miller, C.; Alfa, M.J. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: Analysis of performance, cost, and turnaround time. J. Clin. Microbiol. 2012, 50, 3324–3328. [Google Scholar] [CrossRef] [Green Version]
- Rentschler, S.; Kaiser, L.; Deigner, H.-P. Emerging options for the diagnosis of bacterial infections and the characterization of antimicrobial resistance. Int. J. Mol. Sci. 2021, 22, 456. [Google Scholar] [CrossRef] [PubMed]
- May, L.S.; Zocchi, M.; Zatorski, C.; Jordan, J.A.; Rothman, R.E.; Ware, C.E.; Eells, S.; Miller, L. Treatment failure outcomes for emergency department patients with skin and soft tissue infections. West J. Emerg. Med. 2015, 16, 642–652. [Google Scholar] [CrossRef] [Green Version]
- Gröbner, S.; Dion, M.; Plante, M.; Kempf, V.A.J. Evaluation of the BD GeneOhm StaphSR assay for detection of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from spiked positive blood culture bottles. J. Clin. Microbiol. 2009, 47, 1689–1694. [Google Scholar] [CrossRef] [Green Version]
- Emonet, S.; Charles, P.G.; Harbarth, S.; Stewardson, A.J.; Renzi, G.; Uckay, I.; Cherkaoui, A.; Rougemont, M.; Schrenzel, J. Rapid molecular determination of methicillin resistance in staphylococcal bacteraemia improves early targeted antibiotic prescribing: A randomized clinical trial. Clin. Microbiol. Infect. 2016, 22, 946.e9–946.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Gordon, C.L.; Tong, S.Y.C.; Baird, R.W.; Davis, J.S. Impact of results of a rapid Staphylococcus aureus diagnostic test on prescribing of antibiotics for patients with clustered gram-positive cocci in blood cultures. J. Clin. Microbiol. 2012, 50, 2056–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamper, P.D.; Cai, M.; Howard, T.; Speser, S.; Carroll, K.C. Clinical validation of the molecular BD GeneOhm StaphSR assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J. Clin. Microbiol. 2007, 45, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Buchan, B.W.; Allen, S.; Burnham, C.-A.D.; McElvania TeKippe, E.; Davis, T.; Levi, M.; Mayne, D.; Pancholi, P.; Relich, R.F.; Thomson, R.; et al. Comparison of the next-generation Xpert MRSA/SA BC assay and the GeneOhm StaphSR assay to routine culture for identification of Staphylococcus aureus and methicillin-resistant S. aureus in positive-blood-culture broths. J. Clin. Microbiol. 2015, 53, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenover, F.C.; Tickler, I.A.; Le, V.M.; Dewell, S.; Mendes, R.E.; Goering, R.V. Updating molecular diagnostics for detecting methicillin-susceptible and methicillin-resistant Staphylococcus aureus isolates in blood culture bottles. J. Clin. Microbiol. 2019, 57, e01195-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, J.W.; Munier, G.K.; Heckman, S.A.; Camp, P.; Overman, T.L. Failure of the BD GeneOhm StaphSR assay for direct detection of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates in positive blood cultures collected in the United States. J. Clin. Microbiol. 2009, 47, 3747–3748. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, Y.J.; Park, D.J.; Park, K.G.; Lee, H.K. Evaluation of BD MAX Staph SR assay for differentiating between Staphylococcus aureus and coagulase-negative staphylococci and determining methicillin resistance directly from positive blood cultures. Ann. Lab. Med. 2017, 37, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressler, A.M.; Williams, T.; Culler, E.E.; Zhu, W.; Lonsway, D.; Patel, J.B.; Nolte, F.S. Correlation of penicillin binding protein 2a detection with oxacillin resistance in Staphylococcus aureus and discovery of a novel penicillin binding protein 2a mutation. J. Clin. Microbiol. 2005, 43, 4541–4544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goering, R.V.; Swartzendruber, E.A.; Obradovich, A.E.; Tickler, I.A.; Tenover, F.C. Emergence of oxacillin resistance in stealth methicillin-resistant Staphylococcus aureus due to mecA sequence instability. Antimicrob. Agents Chemother. 2019, 63, e00558-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hososaka, Y.; Hanaki, H.; Endo, H.; Suzuki, Y.; Nagasawa, Z.; Otsuka, Y.; Nakae, T.; Sunakawa, K. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: A new type of MRSA. J. Infect. Chemother. 2007, 13, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.; Moddrell, C.; Tickler, I.A.; Henthorne, M.A.; Kehrli, M.; Goering, R.V.; Tenover, F.C. Wound infections caused by inducible meticillin-resistant Staphylococcus aureus strains. J. Glob. Antimicrob. Resist. 2013, 1, 79–83. [Google Scholar] [CrossRef]
- Tenover, F.C.; Tickler, I.A. Is that Staphylococcus aureus isolate really methicillin susceptible? Clin. Microbiol. Newsl. 2015, 37, 79–84. [Google Scholar] [CrossRef]
- Monecke, S.; Gavier-Widén, D.; Hotzel, H.; Peters, M.; Guenther, S.; Lazaris, A.; Loncaric, I.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; et al. Diversity of Staphylococcus aureus isolates in European wildlife. PLoS ONE 2016, 11, e0168433. [Google Scholar]
- Zhang, M.; Ito, T.; Li, S.; Misawa, S.; Kondo, S.; Miida, T.; Ohsaka, A.; Hiramatsu, K. Analysis of Staphylococcal cassette chromosome mec in BD GeneOhm MRSA assay-negative strains. Antimicrob. Agents Chemother. 2013, 57, 2890–2891. [Google Scholar] [CrossRef] [Green Version]
- Berglund, C.; Ito, T.; Ma, X.X.; Ikeda, M.; Watanabe, S.; Söderquist, B.; Hiramatsu, K. Genetic diversity of methicillin-resistant Staphylococcus aureus carrying type IV SCCmec in Orebro County and the western region of Sweden. J. Antimicrob. Chemother. 2009, 63, 32–41. [Google Scholar] [CrossRef]
- Ito, T.; Kuwahara-Arai, K.; Katayama, Y.; Uehara, Y.; Han, X.; Kondo, Y.; Hiramatsu, K. Staphylococcal Cassette Chromosome mec (SCCmec) analysis of MRSA. Methods Mol. Biol. 2014, 1085, 131–148. [Google Scholar]
- Diep, B.A.; Stone, G.G.; Basuino, L.; Graber, C.J.; Miller, A.; des Etages, S.-A.; Jones, A.; Palazzolo-Ballance, A.M.; Perdreau-Remington, F.; Sensabaugh, G.F.; et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: Convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 2008, 197, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espedido, B.A.; Steen, J.A.; Barbagiannakos, T.; Mercer, J.; Paterson, D.L.; Grimmond, S.M.; Cooper, M.A.; Gosbell, I.B.; van Hal, S.J.; Jensen, S.O. Carriage of an ACME II variant may have contributed to methicillin-resistant Staphylococcus aureus sequence type 239-like strain replacement in Liverpool Hospital, Sydney, Australia. Antimicrob. Agents Chemother. 2012, 56, 3380–3383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Archer, G.L. Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island. J. Bacteriol. 2010, 192, 3204–3212. [Google Scholar] [CrossRef] [Green Version]
- Hill-Cawthorne, G.A.; Hudson, L.O.; El Ghany, M.F.A.; Piepenburg, O.; Nair, M.; Dodgson, A.; Forrest, M.S.; Clark, T.G.; Pain, A. Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methicillin resistance in Staphylococcus aureus. PLoS ONE 2014, 9, e101419. [Google Scholar]
- Doern, G.V.; Carroll, K.C.; Diekema, D.J.; Garey, K.W.; Rupp, M.E.; Weinstein, M.P.; Sexton, D.J. Practical guidance for clinical microbiology laboratories: A comprehensive update on the problem of blood culture contamination and a discussion of methods for addressing the problem. Clin. Microbiol. Rev. 2019, 33, e0009-19. [Google Scholar] [CrossRef]
- Tickler, I.A.; Goering, R.V.; Dewell, S.; Le, V.M.; Johar, L.; Obradovich, A.E.; Tenover, F.C. Mobile genetic elements responsible for discordant Staphylococcus aureus phenotypes and genotypes in the same blood culture bottle. Diagn. Microbiol. Infect. Dis. 2020, 98, 115175. [Google Scholar] [CrossRef] [PubMed]
- Chlebowicz, M.A.; Nganou, K.; Kozytska, S.; Arends, J.P.; Engelmann, S.; Grundmann, H.; Ohlsen, K.; van Dijl, J.M.; Buist, G. Recombination between ccrC genes in a type V (5C2&5) staphylococcal cassette chromosome mec (SCCmec) of Staphylococcus aureus ST398 leads to conversion from methicillin resistance to methicillin susceptibility in vivo. Antimicrob. Agents Chemother. 2010, 54, 783–791. [Google Scholar] [PubMed] [Green Version]
- Yee, R.; Dien Bard, J.; Simner, P.J. The genotype-to-phenotype dilemma: How should laboratories approach discordant susceptibility results? J. Clin. Microbiol. 2021, 59, e00138-20. [Google Scholar] [CrossRef]
- Didelot, X.; Walker, A.S.; Peto, T.E.; Crook, D.W.; Wilson, D.J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 2016, 14, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Ledda, A.; Price, J.R.; Cole, K.; Llewelyn, M.J.; Kearns, A.M.; Crook, D.W.; Paul, J.; Didelot, X. Re-emergence of methicillin susceptibility in a resistant lineage of Staphylococcus aureus. J. Antimicrob. Chemother. 2017, 72, 1285–1288. [Google Scholar] [PubMed] [Green Version]
- Ellem, J.A.; Olma, T.; O’Sullivan, M.V.N. Rapid Detection of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus directly from positive blood cultures by use of the BD Max StaphSR Assay. J. Clin. Microbiol. 2015, 53, 3900–3904. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, M.M.; Wu, S.W.; Zhou, Y.; Sieradzki, K.; de Lencastre, H.; Richardson, P.; Bruce, D.; Rubin, E.; Myers, E.; Siggia, E.D.; et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl. Acad. Sci. USA 2007, 104, 9451–9456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giulieri, S.G.; Holmes, N.E.; Stinear, T.P.; Howden, B.P. Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev. Anti Infect. Ther. 2016, 14, 1023–1036. [Google Scholar] [CrossRef]
- Harris, S.R.; Cartwright, E.J.P.; Török, M.E.; Holden, M.T.G.; Brown, N.M.; Ogilvy-Stuart, A.L.; Ellington, M.J.; Quail, M.A.; Bentley, S.D.; Parkhill, J.; et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: A descriptive study. Lancet Infect. Dis. 2013, 13, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Salipante, S.J.; SenGupta, D.J.; Cummings, L.A.; Land, T.A.; Hoogestraat, D.R.; Cookson, B.T. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 2015, 53, 1072–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.W.; Williams, D.; Valson, C.; Cantu, C.C.; Cernoch, P.; Musser, J.M.; Olsen, R.J. A genomic day in the life of a clinical microbiology laboratory. J. Clin. Microbiol. 2013, 51, 1272–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taxt, A.M.; Avershina, E.; Frye, S.A.; Naseer, U.; Ahmad, R. Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing. Sci. Rep. 2020, 10, 7622. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, S.; Yuan, F.; Wan, S. The applications of nanopore sequencing technology in pathogenic microorganism detection. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 6675206. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenover, F.C.; Tickler, I.A. Detection of Methicillin-Resistant Staphylococcus aureus Infections Using Molecular Methods. Antibiotics 2022, 11, 239. https://doi.org/10.3390/antibiotics11020239
Tenover FC, Tickler IA. Detection of Methicillin-Resistant Staphylococcus aureus Infections Using Molecular Methods. Antibiotics. 2022; 11(2):239. https://doi.org/10.3390/antibiotics11020239
Chicago/Turabian StyleTenover, Fred C., and Isabella A. Tickler. 2022. "Detection of Methicillin-Resistant Staphylococcus aureus Infections Using Molecular Methods" Antibiotics 11, no. 2: 239. https://doi.org/10.3390/antibiotics11020239
APA StyleTenover, F. C., & Tickler, I. A. (2022). Detection of Methicillin-Resistant Staphylococcus aureus Infections Using Molecular Methods. Antibiotics, 11(2), 239. https://doi.org/10.3390/antibiotics11020239