Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Research Specimens
2.2. Screening for Methicillin-Sensitive and Methicillin-Resistant S. aureus
2.3. RNA Extraction and cDNA Synthesis
2.4. cDNA Sequencing
2.5. Data Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The Role of Nasal Carriage in Staphylococcus aureus Infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Yao, D.; Yu, F.; Qin, Z.; Chen, C.; He, S.; Chen, Z.; Zhang, X.; Wang, L. Molecular Characterization of Staphylococcus aureus Isolates Causing Skin and Soft Tissue Infections (SSTIs). BMC Infect. Dis. 2010, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Maina, E.K.; Kiiyukia, C.; Wamae, C.N.; Waiyaki, P.G.; Kariuki, S. Characterization of Methicillin-Resistant Staphylococcus aureus from Skin and Soft Tissue Infections in Patients in Nairobi, Kenya. Int. J. Infect. Dis. 2013, 17, e115–e119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Noviello, S.; Leone, S. Epidemiology and Microbiology of Skin and Soft Tissue Infections. Curr. Opin. Infect. Dis. 2016, 29, 109–115. [Google Scholar]
- Harch, S.A.J.; MacMorran, E.; Tong, S.Y.C.; Holt, D.C.; Wilson, J.; Athan, E.; Hewagama, S. High Burden of Complicated Skin and Soft Tissue Infections in the Indigenous Population of Central Australia Due to Dominant Panton Valentine Leucocidin Clones ST93-MRSA and CC121-MSSA. BMC Infect. Dis. 2017, 17, 405. [Google Scholar] [CrossRef] [Green Version]
- David, M.Z.; Daum, R.S. Treatment of Staphylococcus aureus Infections. In Staphylococcus Aureus: Microbiology, Pathology, Immunology, Therapy and Prophylaxis; Bagnoli, F., Rappuoli, R., Grandi, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 325–383. ISBN 978-3-319-72063-0. [Google Scholar]
- Yu, F.; Liu, Y.; Lv, J.; Qi, X.; Lu, C.; Yu, D.; Dan, L.; Liu, H.; Wang, L. Antimicrobial Susceptibility, Virulence Determinant Carriage and Molecular Characteristics of Staphylococcus aureus Isolates Associated with Skin and Soft Tissue Infections. Braz. J. Infect. Dis. 2015, 19, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Creech, C.B.; Al-Zubeidi, D.N.; Fritz, S.A. Prevention of Recurrent Staphylococcal Skin Infections. Infect. Dis. Clin. North Am. 2015, 29, 429–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dukic, V.M.; Lauderdale, D.S.; Wilder, J.; Daum, R.S.; David, M.Z. Epidemics of Community-Associated Methicillin-Resistant Staphylococcus aureus in the United States: A Meta-Analysis. PLoS ONE 2013, 8, e52722. [Google Scholar] [CrossRef] [Green Version]
- Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A. Methicillin-Resistant S. aureus Infections among Patients in the Emergency Department. N. Engl. J. Med. 2006, 355, 666–674. [Google Scholar] [CrossRef]
- Kumar, N.; David, M.Z.; Boyle-Vavra, S.; Sieth, J.; Daum, R.S. High Staphylococcus aureus Colonization Prevalence among Patients with Skin and Soft Tissue Infections and Controls in an Urban Emergency Department. J. Clin. Microbiol. 2015, 53, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Ring, R.P.; Aswani, V.; Stemper, M.E.; Kislow, J.; Ye, Z.; Shukla, S.K. Phylogenetic Distribution and Expression of a Penicillin-Binding Protein Homologue, Ear and Its Significance in Virulence of Staphylococcus aureus. J. Med. Microbiol. 2017, 66, 1811–1821. [Google Scholar] [CrossRef]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and Virulence Determinants of High Virulence Community-Acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef]
- Pantrangi, M.; Singh, V.K.; Shukla, S.K. Regulation of Staphylococcal Superantigen-Like Gene, Ssl8, Expression in Staphylococcus aureus Strain, RN6390. Clin. Med. Res. 2015, 13, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Pantrangi, M.; Singh, V.K.; Wolz, C.; Shukla, S.K. Staphylococcal Superantigen-like Genes, Ssl5 and Ssl8, Are Positively Regulated by Sae and Negatively by Agr in the Newman Strain. FEMS Microbiol. Lett. 2010, 308, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus Genetic Background, Virulence Factors, Agr Groups (Alleles), and Human Disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Naimi, T.S.; LeDell, K.H.; Como-Sabetti, K.; Borchardt, S.M.; Boxrud, D.J.; Etienne, J.; Johnson, S.K.; Vandenesch, F.; Fridkin, S.; O’Boyle, C.; et al. Comparison of Community- and Health Care–Associated Methicillin-Resistant Staphylococcus aureus Infection. JAMA 2003, 290, 2976–2984. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.K.; Ramaswamy, S.V.; Conradt, J.; Stemper, M.E.; Reich, R.; Reed, K.D.; Graviss, E.A. Novel Polymorphisms in Mec Genes and a New Mec Complex Type in Methicillin-Resistant Staphylococcus Aureus Isolates Obtained in Rural Wisconsin. Antimicrob Agents Chemother 2004, 48, 3080–3085. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.K.; Karow, M.E.; Brady, J.M.; Stemper, M.E.; Kislow, J.; Moore, N.; Wroblewski, K.; Chyou, P.-H.; Warshauer, D.M.; Reed, K.D.; et al. Virulence Genes and Genotypic Associations in Nasal Carriage, Community-Associated Methicillin-Susceptible and Methicillin-Resistant USA400 Staphylococcus aureus Isolates. J. Clin. Microbiol. 2010, 48, 3582–3592. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.K.; Stemper, M.E.; Ramaswamy, S.V.; Conradt, J.M.; Reich, R.; Graviss, E.A.; Reed, K.D. Molecular Characteristics of Nosocomial and Native American Community-Associated Methicillin-Resistant Staphylococcus Aureus Clones from Rural Wisconsin. J. Clin. Microbiol. 2004, 42, 3752–3757. [Google Scholar] [CrossRef] [Green Version]
- Limbago, B.; Fosheim, G.E.; Schoonover, V.; Crane, C.E.; Nadle, J.; Petit, S.; Heltzel, D.; Ray, S.M.; Harrison, L.H.; Lynfield, R.; et al. Characterization of Methicillin-Resistant Staphylococcus aureus Isolates Collected in 2005 and 2006 from Patients with Invasive Disease: A Population-Based Analysis. J. Clin. Microbiol. 2009, 47, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- van Belkum, A.; Melles, D.C.; Snijders, S.V.; van Leeuwen, W.B.; Wertheim, H.F.L.; Nouwen, J.L.; Verbrugh, H.A.; Etienne, J. Clonal Distribution and Differential Occurrence of the Enterotoxin Gene Cluster, Egc, in Carriage- versus Bacteremia-Associated Isolates of Staphylococcus aureus. J. Clin. Microbiol. 2006, 44, 1555–1557. [Google Scholar] [CrossRef] [Green Version]
- Saïd-Salim, B.; Mathema, B.; Braughton, K.; Davis, S.; Sinsimer, D.; Eisner, W.; Likhoshvay, Y.; Deleo, F.R.; Kreiswirth, B.N. Differential Distribution and Expression of Panton-Valentine Leucocidin among Community-Acquired Methicillin-Resistant Staphylococcus aureus Strains. J. Clin. Microbiol. 2005, 43, 3373–3379. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lin, Y.; Qiao, L. Direct MALDI-TOF MS Identification of Bacterial Mixtures. Anal. Chem. 2018, 90, 10400–10408. [Google Scholar] [CrossRef]
- Koreen, L.; Ramaswamy, S.V.; Graviss, E.A.; Naidich, S.; Musser, J.M.; Kreiswirth, B.N. Spa Typing Method for Discriminating among Staphylococcus aureus Isolates: Implications for Use of a Single Marker to Detect Genetic Micro- and Macrovariation. J. Clin. Microbiol. 2004, 42, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Glenn, T.C.; Nilsen, R.A.; Kieran, T.J.; Sanders, J.G.; Bayona-Vásquez, N.J.; Finger, J.W.; Pierson, T.W.; Bentley, K.E.; Hoffberg, S.L.; Louha, S.; et al. Adapterama I: Universal Stubs and Primers for 384 Unique Dual-Indexed or 147,456 Combinatorially-Indexed Illumina Libraries (ITru & INext). PeerJ 2019, 7, e7755. [Google Scholar] [CrossRef] [Green Version]
- Eleaume, H.; Jabbouri, S. Comparison of Two Standardisation Methods in Real-Time Quantitative RT-PCR to Follow Staphylococcus aureus Genes Expression during in Vitro Growth. J. Microbiol. Methods 2004, 59, 363–370. [Google Scholar] [CrossRef]
- Goerke, C.; Bayer, M.G.; Wolz, C. Quantification of Bacterial Transcripts during Infection Using Competitive Reverse Transcription-PCR (RT-PCR) and LightCycler RT-PCR. Clin. Diagn. Lab. Immunol. 2001, 8, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, F., III; Torres, V.J. The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 2014, 78, 199–230. [Google Scholar] [CrossRef] [Green Version]
- Aman, M.J.; Adhikari, R.P. Staphylococcal Bicomponent Pore-Forming Toxins: Targets for Prophylaxis and Immunotherapy. Toxins 2014, 6, 950–972. [Google Scholar] [CrossRef] [Green Version]
- Spaan, A.N.; van Strijp, J.A.G.; Torres, V.J. Leukocidins: Staphylococcal Bi-Component Pore-Forming Toxins Find Their Receptors. Nat. Rev. Microbiol. 2017, 15, 435–447. [Google Scholar] [CrossRef]
- Deresinski, S. Methicillin-Resistant Staphylococcus Aureus: An Evolutionary, Epidemiologic, and Therapeutic Odyssey. Clin. Infect. Dis. 2005, 40, 562–573. [Google Scholar] [CrossRef]
- Melles, D.C.; van Leeuwen, W.B.; Boelens, H.A.M.; Peeters, J.K.; Verbrugh, H.A.; van Belkum, A. Panton-Valentine Leukocidin Genes in Staphylococcus aureus. Emerg. Infect. Dis. 2006, 12, 1174–1175. [Google Scholar] [CrossRef]
- Menestrina, G.; Dalla Serra, M.; Prévost, G. Mode of Action of β-Barrel Pore-Forming Toxins of the Staphylococcal α-Hemolysin Family. Toxicon 2001, 39, 1661–1672. [Google Scholar] [CrossRef]
- Guillet, V.; Roblin, P.; Werner, S.; Coraiola, M.; Menestrina, G.; Monteil, H.; Prévost, G.; Mourey, L. Crystal Structure of Leucotoxin S Component: New insight into the staphylococcal β-barrel pore-forming toxins. J. Biol. Chem. 2004, 279, 41028–41037. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, K.; Kawai, Y.; Tanaka, Y.; Hirano, N.; Kaneko, J.; Tomita, N.; Ohta, M.; Kamio, Y.; Yao, M.; Tanaka, I. Crystal Structure of the Octameric Pore of Staphylococcal γ-Hemolysin Reveals the β-Barrel Pore Formation Mechanism by Two Components. Proc. Natl. Acad. Sci. USA 2011, 108, 17314–17319. [Google Scholar] [CrossRef] [Green Version]
- Yoong, P.; Torres, V.J. The Effects of Staphylococcus aureus Leukotoxins on the Host: Cell Lysis and Beyond. Curr. Opin. Microbiol. 2013, 16, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, J.; Kamio, Y. Bacterial Two-Component and Hetero-Heptameric Pore-Forming Cytolytic Toxins: Structures, Pore-Forming Mechanism, and Organization of the Genes. Biosci. Biotechnol. Biochem. 2004, 68, 981–1003. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Liu, Y.; Xu, Y.; Shang, Y.; Lou, D.; Qin, Z.; Parsons, C.; Zhou, W.; Huang, X.; Li, Y.; et al. Expression of Panton-Valentine Leukocidin MRNA among Staphylococcus aureus Isolates Associates with Specific Clinical Presentations. PLoS ONE 2013, 8, e83368. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.-O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine Leukocidin—Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Date, S.V.; Modrusan, Z.; Lawrence, M.; Morisaki, J.H.; Toy, K.; Shah, I.M.; Kim, J.; Park, S.; Xu, M.; Basuino, L.; et al. Global Gene Expression of Methicillin-Resistant Staphylococcus aureus USA300 During Human and Mouse Infection. J. Infect. Dis. 2014, 209, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- Boubaker, K.; Diebold, P.; Blanc, D.S.; Vandenesch, F.; Praz, G.; Dupuis, G.; Troillet, N. Panton-Valentine Leukocidin and Staphyloccoccal Skin Infections in Schoolchildren. Emerg. Infect. Dis. 2004, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Marazza, G.; Harbarth, S. Serious Staphylococcus aureus Skin Infections That Are Panton-Valentine Leukocidin Positive: A New Challenge. Rev. Med. Suisse 2007, 3, 1106–1108. [Google Scholar]
- Loughman, J.A.; Fritz, S.A.; Storch, G.A.; Hunstad, D.A. Virulence Gene Expression in Human Community-Acquired Staphylococcus aureus Infection. J. Infect. Dis. 2009, 199, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, M.R.; Horsburgh, M.J.; Hayhurst, E.J.; Wright, L.; Jonsson, I.-M.; Tarkowski, A.; Kokai-Kun, J.F.; Mond, J.J.; Foster, S.J. Characterization of IsaA and SceD, Two Putative Lytic Transglycosylases of Staphylococcus aureus. J. Bacteriol. 2007, 189, 7316–7325. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, U.; Ohlsen, K.; Karch, H.; Hecker, M.; Thiede, A.; Hacker, J. Human Antibody Response during Sepsis against Targets Expressed by Methicillin Resistant Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 2000, 29, 145–153. [Google Scholar] [CrossRef]
- van den Berg, S.; Bonarius, H.P.; van Kessel, K.P.; Elsinga, G.S.; Kooi, N.; Westra, H.; Bosma, T.; van der Kooi-Pol, M.M.; Koedijk, D.G.A.M.; Groen, H.; et al. A Human Monoclonal Antibody Targeting the Conserved Staphylococcal Antigen IsaA Protects Mice against Staphylococcus aureus Bacteremia. Int. J. Med. Microbiol. 2015, 305, 55–64. [Google Scholar] [CrossRef]
- Chen, K.; Lin, S.; Li, P.; Song, Q.; Luo, D.; Liu, T.; Zeng, L.; Zhang, W. Characterization of Staphylococcus aureus Isolated from Patients with Burns in a Regional Burn Center, Southeastern China. BMC Infect. Dis. 2018, 18, 51. [Google Scholar] [CrossRef]
- Heilmann, C.; Hartleib, J.; Hussain, M.S.; Peters, G. The Multifunctional Staphylococcus aureus Autolysin Aaa Mediates Adherence to Immobilized Fibrinogen and Fibronectin. Infect. Immun. 2005, 73, 4793–4802. [Google Scholar] [CrossRef] [Green Version]
- Hirschhausen, N.; Schlesier, T.; Peters, G.; Heilmann, C. Characterization of the Modular Design of the Autolysin/Adhesin Aaa from Staphylococcus aureus. PLoS ONE 2012, 7, e40353. [Google Scholar] [CrossRef]
- Porayath, C.; Suresh, M.K.; Biswas, R.; Nair, B.G.; Mishra, N.; Pal, S. Autolysin Mediated Adherence of Staphylococcus aureus with Fibronectin, Gelatin and Heparin. Int. J. Biol. Macromol. 2018, 110, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Fleury, O.M.; McAleer, M.A.; Feuillie, C.; Formosa-Dague, C.; Sansevere, E.; Bennett, D.E.; Towell, A.M.; McLean, W.H.I.; Kezic, S.; Robinson, D.A.; et al. Clumping Factor B Promotes Adherence of Staphylococcus aureus to Corneocytes in Atopic Dermatitis. Infect. Immun. 2017, 85, e00994-16. [Google Scholar] [CrossRef] [Green Version]
- Vitry, P.; Valotteau, C.; Feuillie, C.; Bernard, S.; Alsteens, D.; Geoghegan, J.A.; Dufrêne, Y.F. Force-Induced Strengthening of the Interaction between Staphylococcus aureus Clumping Factor B and Loricrin. mBio 2017, 8, e01748-17. [Google Scholar] [CrossRef] [Green Version]
- Herman-Bausier, P.; Labate, C.; Towell, A.M.; Derclaye, S.; Geoghegan, J.A.; Dufrêne, Y.F. Staphylococcus aureus Clumping Factor A Is a Force-Sensitive Molecular Switch That Activates Bacterial Adhesion. Proc. Natl. Acad. Sci. USA 2018, 115, 5564–5569. [Google Scholar] [CrossRef] [Green Version]
- Salamaga, B.; Kong, L.; Pasquina-Lemonche, L.; Lafage, L.; von Und Zur Muhlen, M.; Gibson, J.F.; Grybchuk, D.; Tooke, A.K.; Panchal, V.; Culp, E.J.; et al. Demonstration of the Role of Cell Wall Homeostasis in Staphylococcus aureus Growth and the Action of Bactericidal Antibiotics. Proc. Natl. Acad. Sci. USA 2021, 118, e2106022118. [Google Scholar] [CrossRef]
- Kintarak, S.; Whawell, S.A.; Speight, P.M.; Packer, S.; Nair, S.P. Internalization of Staphylococcus aureus by Human Keratinocytes. Infect. Immun. 2004, 72, 5668–5675. [Google Scholar] [CrossRef] [Green Version]
- Walsh, E.J.; Miajlovic, H.; Gorkun, O.V.; Foster, T.J. Identification of the Staphylococcus aureus MSCRAMM Clumping Factor B (ClfB) Binding Site in the AlphaC-Domain of Human Fibrinogen. Microbiology 2008, 154, 550–558. [Google Scholar] [CrossRef]
- Walsh, E.J.; O’Brien, L.M.; Liang, X.; Hook, M.; Foster, T.J. Clumping Factor B, a Fibrinogen-Binding MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) Adhesin of Staphylococcus aureus, Also Binds to the Tail Region of Type I Cytokeratin 10. J. Biol. Chem. 2004, 279, 50691–50699. [Google Scholar] [CrossRef] [Green Version]
- Ní Eidhin, D.; Perkins, S.; Francois, P.; Vaudaux, P.; Höök, M.; Foster, T.J. Clumping Factor B (ClfB), a New Surface-Located Fibrinogen-Binding Adhesin of Staphylococcus aureus. Mol. Microbiol. 1998, 30, 245–257. [Google Scholar] [CrossRef]
- Hauck, C.R.; Ohlsen, K. Sticky Connections: Extracellular Matrix Protein Recognition and Integrin-Mediated Cellular Invasion by Staphylococcus aureus. Curr. Opin. Microbiol. 2006, 9, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Shinji, H.; Yosizawa, Y.; Tajima, A.; Iwase, T.; Sugimoto, S.; Seki, K.; Mizunoe, Y. Role of Fibronectin-Binding Proteins A and B in in Vitro Cellular Infections and in Vivo Septic Infections by Staphylococcus aureus. Infect. Immun. 2011, 79, 2215–2223. [Google Scholar] [CrossRef] [Green Version]
- Schwan, W.R.; Langhorne, M.H.; Ritchie, H.D.; Stover, C.K. Loss of Hemolysin Expression in Staphylococcus aureus Agr Mutants Correlates with Selective Survival during Mixed Infections in Murine Abscesses and Wounds. FEMS Immunol. Med. Microbiol. 2003, 38, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, C.P.; Boyle-Vavra, S.; Daum, R.S. Importance of the Global Regulators Agr and SaeRS in the Pathogenesis of CA-MRSA USA300 Infection. PLoS ONE 2010, 5, e15177. [Google Scholar] [CrossRef] [Green Version]
- Morfeldt, E.; Taylor, D.; von Gabain, A.; Arvidson, S. Activation of Alpha-Toxin Translation in Staphylococcus aureus by the Trans-Encoded Antisense RNA, RNAIII. EMBO J. 1995, 14, 4569–4577. [Google Scholar] [CrossRef]
- Geisinger, E.; Adhikari, R.P.; Jin, R.; Ross, H.F.; Novick, R.P. Inhibition of Rot Translation by RNAIII, a Key Feature of Agr Function. Mol. Microbiol. 2006, 61, 1038–1048. [Google Scholar] [CrossRef]
- Heyer, G.; Saba, S.; Adamo, R.; Rush, W.; Soong, G.; Cheung, A.; Prince, A. Staphylococcus aureus Agr and SarA Functions Are Required for Invasive Infection but Not Inflammatory Responses in the Lung. Infect. Immun. 2002, 70, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Novick, R.P.; Jiang, D. The Staphylococcal SaeRS System Coordinates Environmental Signals with Agr Quorum Sensing. Microbiology 2003, 149, 2709–2717. [Google Scholar] [CrossRef] [Green Version]
- Steinhuber, A.; Goerke, C.; Bayer, M.G.; Döring, G.; Wolz, C. Molecular Architecture of the Regulatory Locus Sae of Staphylococcus Aureus and Its Impact on Expression of Virulence Factors. J. Bacteriol. 2003, 185, 6278–6286. [Google Scholar] [CrossRef] [Green Version]
- Flack, C.E.; Zurek, O.W.; Meishery, D.D.; Pallister, K.B.; Malone, C.L.; Horswill, A.R.; Voyich, J.M. Differential Regulation of Staphylococcal Virulence by the Sensor Kinase SaeS in Response to Neutrophil-Derived Stimuli. Proc. Natl. Acad. Sci. USA 2014, 111, E2037–E2045. [Google Scholar] [CrossRef] [Green Version]
- Houston, P.; Rowe, S.E.; Pozzi, C.; Waters, E.M.; O’Gara, J.P. Essential Role for the Major Autolysin in the Fibronectin-Binding Protein-Mediated Staphylococcus aureus Biofilm Phenotype. Infect. Immun. 2011, 79, 1153–1165. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.J.; Lowy, F.D. Pathogenesis of Methicillin-Resistant Staphylococcus aureus Infection. Clin. Infect. Dis. 2008, 46, S350–S359. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.S.; Zussman, J.; Donegan, N.P.; Ramos, R.I.; Garcia, N.C.; Uslan, D.Z.; Iwakura, Y.; Simon, S.I.; Cheung, A.L.; Modlin, R.L.; et al. Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections. J. Invest. Derm. 2011, 131, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Diep, B.A.; Chan, L.; Tattevin, P.; Kajikawa, O.; Martin, T.R.; Basuino, L.; Mai, T.T.; Marbach, H.; Braughton, K.R.; Whitney, A.R.; et al. Polymorphonuclear Leukocytes Mediate Staphylococcus Aureus Panton-Valentine Leukocidin-Induced Lung Inflammation and Injury. Proc. Natl. Acad. Sci. USA 2010, 107, 5587–5592. [Google Scholar] [CrossRef] [Green Version]
cDNA Reads | Minimum | Maximum | Average |
---|---|---|---|
Range of sequencing reads per sample | 3,867,530 | 7,552,309 | 5,432,957 |
Ranges of cDNA reads that matched to S. aureus USA300 | 255 | 247,463 | 43,660 |
Ranges of number of sequences that match to an annotated loci | 0 | 77,765 | 11,345 |
Ranges of the number of loci that have at least one sequence of coverage | 0 | 2372 | 668 |
Virulence Genes | Gene | Pus (n = 7) | Swab (n = 10) | p Value ** | ||
---|---|---|---|---|---|---|
Average cDNA Count | cDNA Count Relative to gmk * | Average cDNA Count | cDNA Count Relative to gmk * | |||
Panton–Valentine Leukocidin | lukF-PV | 235.4 | 22.6 | 6.8 | 11.3 | 0.06 |
Panton–Valentine Leukocidin | lukS-PV | 194.4 | 18.6 | 8.5 | 14.2 | ≤0.05 |
Immunodominant staphylococcal antigen | isaA | 139.3 | 13.4 | 5.1 | 8.5 | ≤0.05 |
Staphylococcal SecretoryAntigen | ssaA | 49.9 | 4.8 | 1.9 | 3.1 | ≤0.05 |
Hemolysin D | hld | 39.3 | 3.8 | 2.8 | 4.6 | 0.06 |
Hemolysin B | hlgB | 26.6 | 2.6 | 0.4 | 0.7 | 0.10 |
Hemolysin C | hlgC | 15 | 1.4 | 0.8 | 1.33 | ≤0.05 |
Hemolysin A | hla | 0.7 | 1.3 | 0.8 | 1.33 | 0.09 |
Adhesion and Clumping Factor Genes | Gene | Pus (n = 7) | Swab (n = 10) | p Values ** | ||
---|---|---|---|---|---|---|
Average cDNA Count | cDNA Count Relative to gmk * | Average cDNA Count | cDNA Count Relative to gmk * | |||
Autolysin | atl | 185.4 | 17.7 | 5 | 8.33 | ≤0.05 |
Clumping factor | clfB | 110.3 | 10.57 | 7 | 11.6 | ≤0.05 |
Laminin-binding protein | eno | 63 | 6.04 | 1.9 | 3.16 | ≤0.05 |
Fibronectin-binding protein | fnbA | 61.9 | 5.93 | 0.2 | 0.33 | ≤0.05 |
Clumping factor | clfA | 40.9 | 3.9 | 0.5 | 0.83 | ≤0.05 |
Fibronectin-binding protein | fnbB | 39.1 | 3.75 | 0.4 | 0.66 | ≤0.05 |
Coagulase | coa | 17.3 | 1.65 | 0 | 0 | ≤0.05 |
Elastin-binding protein | ebpS | 13.6 | 1.3 | 0.7 | 1.16 | ≤0.05 |
Regulatory genes | Gene | Pus (n = 7) | Swab (n = 10) | p Value ** | ||
---|---|---|---|---|---|---|
Average cDNA Count | cDNA Count Relative to gmk * | Average cDNA Count | cDNA Count Relative to gmk * | |||
S. aureus exoprotein expression S | saeS | 66.7 | 6.3 | 0.8 | 1.33 | ≤0.05 |
Accessory gene regulator C | agrC | 58.6 | 5.6 | 0.9 | 1.5 | ≤0.05 |
S. aureus exoprotein expression R | saeR | 56.3 | 5.4 | 2 | 3.33 | ≤0.05 |
Accessory gene regulator B | agrB | 25.6 | 2.45 | 0.5 | 0.83 | 0.073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulia, M.S.; Anderson, J.; Ye, Z.; Elsayed, N.S.; Le, T.; Patitucci, J.; Ganta, K.; Hall, M.; Singh, V.K.; Shukla, S.K. Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics 2022, 11, 527. https://doi.org/10.3390/antibiotics11040527
Pulia MS, Anderson J, Ye Z, Elsayed NS, Le T, Patitucci J, Ganta K, Hall M, Singh VK, Shukla SK. Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics. 2022; 11(4):527. https://doi.org/10.3390/antibiotics11040527
Chicago/Turabian StylePulia, Michael S., Jennifer Anderson, Zhan Ye, Noha S. Elsayed, Thao Le, Jacob Patitucci, Krishna Ganta, Matthew Hall, Vineet K. Singh, and Sanjay K. Shukla. 2022. "Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections" Antibiotics 11, no. 4: 527. https://doi.org/10.3390/antibiotics11040527
APA StylePulia, M. S., Anderson, J., Ye, Z., Elsayed, N. S., Le, T., Patitucci, J., Ganta, K., Hall, M., Singh, V. K., & Shukla, S. K. (2022). Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics, 11(4), 527. https://doi.org/10.3390/antibiotics11040527