Kassporin-KS1: A Novel Pentadecapeptide from the Skin Secretion of Kassina senegalensis: Studies on the Structure-Activity Relationships of Site-Specific “Glycine-Lysine” Motif Insertions
Abstract
:1. Introduction
2. Results
2.1. “Shotgun” Cloning of the Kassporin-KS-1 (QUB-1641) Precursor Encoding cDNA from a cDNA Library of Kassina Senegalensis Skin Secretion
2.2. The Identification and Sequence Characterization of Kassporin-KS1 (QUB-1641)
2.3. Design of Kassporin-KS1 (QUB-1641) Analogues
2.4. The Purification and Identification of Kassporin-KS1 (QUB-1641) and Analogues
2.5. Physicochemical Properties and Structural Analysis of QUB-1641 and Its Analogues
2.6. Mean Inhibitory Concentration (MIC)/Mean Bactericidal Concentration (MBC) Assays of Kassporin-KS1 (QUB-1641) and Its Analogues
2.7. Anti-Biofilm Activity of Kassporin-KS1 (QUB-1641) and Its Analogues
2.8. Killing Kinetics of Kassporin-KS1 (QUB-1641) and Its Analogues
2.9. Membrane Permeability of QUB-1641 and Its Analogues
2.10. Salt and pH Sensitivity of Kassporin-KS1 (QUB-1641) and Its Analogues
2.11. Hemolytic Activity of Kassporin-KS1 (QUB-1641) and Its Analogues
2.12. The Influence of Peptides on the Survival Rate of Wax Worm Larvae Infected with S. aureus
3. Discussion
4. Materials and Methods
4.1. Acquisition of Amphibian Skin Secretions
4.2. “Shotgun” Cloning Kassporin-KS1 (QUB-1641) Biosynthetic Precursor Encoding cDNA from the cDNA Library Established from Kassina Senegalensis Skin Secretions
4.3. Isolation of Kassporin-KS1 (QUB-1641) from the Skin Secretion of Kassina Senegalensis
4.4. Chemical Synthesis of Kassporin-KS1 (QUB-1641) and Its Analogues
4.5. Structural Investigation of Kassporin-KS1 (QUB-1641) and Analogues
4.6. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Tests of Kassporin-KS1 (QUB-1641) and Analogues
4.7. Anti-Biofilm Assays
4.8. Membrane Permeability Assays
4.9. Killing Kinetics Assays
4.10. Salt and pH Sensitivity Assays
4.11. Hemolysis Assays
4.12. Evaluation of the Efficacy of Peptides on S. aureus in Wax Worm Models In Vivo
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-H.; Hofferek, V.; Separovic, F.; Reid, G.E.; Aguilar, M.-I. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr. Opin. Chem. Biol. 2019, 52, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Molchanova, N.; Hansen, P.R.; Franzyk, H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 2017, 22, 1430. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar] [PubMed]
- Crofts, T.S.; Gasparrini, A.J.; Dantas, G. Next-generation approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol. 2017, 15, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Flores-Kim, J.; Dobihal, G.S.; Fenton, A.; Rudner, D.Z.; Bernhardt, T.G. A switch in surface polymer biogenesis triggers growth-phase-dependent and antibiotic-induced bacteriolysis. Elife 2019, 8, e44912. [Google Scholar] [CrossRef]
- Joo, H.-S.; Fu, C.-I.; Otto, M. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150292. [Google Scholar] [CrossRef] [Green Version]
- Varga, J.F.; Bui-Marinos, M.P.; Katzenback, B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol. 2019, 9, 3128. [Google Scholar] [CrossRef]
- Lanza, B. A list of the somali amphibians and reptiles. Monit. Zool. Ital. Suppl. 1983, 18, 193–247. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, H.; Chen, X.; Zhou, M.; Wei, M.; Xi, X.; Ma, C.; Du, Q.; Chen, T.; Shaw, C.; et al. A novel antimicrobial peptide (Kassinatuerin-3) isolated from the skin secretion of the african frog, kassina senegalensis. Biology 2020, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Reid, C.N.; Walker, B.; Zhou, M.; Shaw, C. Kassinakinin S: A novel histamine-releasing heptadecapeptide from frog (Kassina senegalensis) skin secretion. Biochem. Biophys. Res. Commun. 2005, 337, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Zhou, M.; Yang, M.; Ma, C.; Chen, T.; Zhang, Y.; Zeller, M.; Hornshaw, M.; Shaw, C. Functional peptidomics of amphibian skin secretion: A novel Kunitz-type chymotrypsin inhibitor from the African hyperoliid frog, Kassina senegalensis. Biochimie 2012, 94, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, R.; Xi, X.; Meng, T.; Zhou, M.; Wang, L.; Zhang, Y.; Chen, T.; Shaw, C. Senegalin: A novel antimicrobial/myotropic hexadecapeptide from the skin secretion of the African running frog, Kassina senegalensis. Amino Acids 2013, 44, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, L.; Zeller, M.; Hornshaw, M.; Wu, Y.; Zhou, M.; Li, J.; Hang, X.; Cai, J.; Chen, T.; et al. Kassorins: Novel innate immune system peptides from skin secretions of the African hyperoliid frogs, Kassina maculata and Kassina senegalensis. Mol. Immunol. 2011, 48, 442–451. [Google Scholar] [CrossRef] [PubMed]
- König, E.; Bininda-Emonds, O.R.P.; Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 2015, 63, 96–117. [Google Scholar] [CrossRef] [PubMed]
- Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M.L.; Barra, D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem. 1996, 242, 788–792. [Google Scholar] [CrossRef]
- Mahalka, A.K.; Kinnunen, P.K.J. Binding of amphipathic α-helical antimicrobial peptides to lipid membranes: Lessons from temporins B and L. Biochim. Biophys. Acta 2009, 1788, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics 2020, 9, 491. [Google Scholar] [CrossRef]
- Mishra, B.; Wang, X.; Lushnikova, T.; Zhang, Y.; Golla, R.M.; Narayana, J.L.; Wang, C.; McGuire, T.R.; Wang, G. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides 2018, 106, 9–20. [Google Scholar] [CrossRef]
- De Marothy, M.T.; Elofsson, A. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding. Protein Sci. 2015, 24, 1057–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domanov, Y.A.; Kinnunen, P.K.J. Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers. Biophys. J. 2006, 91, 4427–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, L.A.; Skoda, M.W.A.; Le Brun, A.P.; Ciesielski, F.; Kuzmenko, I.; Holt, S.A.; Lakey, J.H. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 2015, 31, 404–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, A.C.; Conlon, J.M. Chapter 56—Temporins. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 400–406. [Google Scholar]
- Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond. Front. Chem. 2021, 9, 1532. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, E.; Killian, J.A. Snorkeling of lysine side chains in transmembrane helices: How easy can it get? FEBS Lett. 2003, 544, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Avitabile, C.; Netti, F.; Orefice, G.; Palmieri, M.; Nocerino, N.; Malgieri, G.; D’Andrea, L.D.; Capparelli, R.; Fattorusso, R.; Romanelli, A. Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria. Biochim. Biophys. Acta 2013, 1830, 3767–3775. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Sharma, M.; Zhou, H.-X.; Cross, T.A. Glycines: Role in α-helical membrane protein structures and a potential indicator of native conformation. Biochemistry 2012, 51, 4779–4789. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, K.R.; Fleming, K.G. Association energetics of membrane spanning α-helices. Curr. Opin. Struct. Biol. 2008, 18, 412–419. [Google Scholar] [CrossRef]
- Bioinformatics for Geneticists. Available online: https://onlinelibrary.wiley.com/doi/10.1002/0470867302.ch14 (accessed on 10 December 2021).
- Zhang, L.; Benz, R.; Hancock, R.E.W. Influence of proline residues on the antibacterial and synergistic activities of α-Helical peptides. Biochemistry 1999, 38, 8102–8111. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem. 2012, 287, 7738–7745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, M.; Liu, L.-P.; Deber, C.M. Cationic hydrophobic peptides with antimicrobial activity. Antimicrob. Agents Chemother. 2002, 46, 3585–3590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrino, B.; Schillaci, D.; Carnevale, I.; Giovannetti, E.; Diana, P.; Cirrincione, G.; Cascioferro, S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur. J. Med. Chem. 2019, 161, 154–178. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.S.; Robertson, G.T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 2008, 59, 415–428. [Google Scholar] [CrossRef]
- Nandakumar, V.; Chittaranjan, S.; Kurian, V.M.; Doble, M. Characteristics of bacterial biofilm associated with implant material in clinical practice. Polym. J. 2013, 45, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [Green Version]
- Ustunol, I.B.; Gonzalez-Pech, N.I.; Grassian, V.H. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. J. Colloid Interface Sci. 2019, 554, 362–375. [Google Scholar] [CrossRef]
- Song, B.; Leff, L.G. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol. Res. 2006, 161, 355–361. [Google Scholar] [CrossRef]
- Demishtein, K.; Reifen, R.; Shemesh, M. Antimicrobial properties of magnesium open opportunities to develop healthier food. Nutrients 2019, 11, 2363. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem. 2005, 280, 12316–12329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jander, G.; Rahme, L.G.; Ausubel, F.M. Positive correlation between virulence ofPseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 2000, 182, 3843–3845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Shi, D.; Zhong, R.; Ye, Z.; Ma, C.; Zhou, M.; Xi, X.; Wang, L.; Chen, T.; Kwok, H.F. Bioevaluation of Ranatuerin-2Pb from the frog skin secretion of rana pipiens and its truncated analogues. Biomolecules 2019, 9, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabaeifard, P.; Abdi-Ali, A.; Soudi, M.R.; Dinarvand, R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods 2014, 105, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, Y.; Cao, S.; Wang, H.; Jiang, C.; Pang, S.; Hussain, M.A.; Hou, J. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences. Int. J. Mol. Sci. 2018, 19, 2951. [Google Scholar] [CrossRef] [Green Version]
Peptide | Sequence |
---|---|
QUB-1641 | FLALALIQEAIAKLK-NH2 |
QUB-1599 | FLALAGKQEAIAKLK-NH2 |
QUB-1585 | FLALALGKEAIAKLK-NH2 |
QUB-1570 | FLALALIGKAIAKLK-NH2 |
QUB-1643 | FLAGKLIQEAIAKLK-NH2 |
QUB-1498 | FLALALIGGAIAKLK-NH2 |
QUB-1609 | FLALALIPKAIAKLK-NH2 |
Peptide | Sequence | Hydrophobicity | Hydrophobic Moment | Net Charge | α-Helix (%) |
---|---|---|---|---|---|
QUB-1641 | FLALALIQEAIAKLK-NH2 | 0.706 | 0.267 | +1 | 45.3 |
QUB-1599 | FLALAGKQEAIAKLK-NH2 | 0.407 | 0.178 | +2 | 36.7 |
QUB-1585 | FLALALGKEAIAKLK-NH2 | 0.535 | 0.154 | +2 | 30.8 |
QUB-1570 | FLALALIGKAIAKLK-NH2 | 0.697 | 0.290 | +3 | 67.4 |
QUB-1643 | FLAGKLIQEAIAKLK-NH2 | 0.506 | 0.303 | +2 | 40.8 |
QUB-1498 | FLALALIGGAIAKLK-NH2 | 0.763 | 0.224 | +2 | 37.6 |
QUB-1609 | FLALALIPKAIAKLK-NH2 | 0.745 | 0.295 | +3 | 33.0 |
Microorganism | MIC/MBC (µM) | ||||||
---|---|---|---|---|---|---|---|
QUB-1641 | QUB-1599 | QUB-1585 | QUB-1570 | QUB-1643 | QUB-1498 | QUB-1609 | |
S. aureus NCTC 10788 | 64/64 | >128/>128 | 32/64 | 2/8 | 32/64 | 16/16 | 8/32 |
E. coli NCTC 10418 | >128/>128 | >128/>128 | 64/128 | 16/32 | 128/>128 | 32/>128 | 8/64 |
C. albicans NCTC 10231 | >128/>128 | >128/>128 | 64/128 | 8/8 | 64/128 | 32/>128 | 16/32 |
MRSA NCTC 12493 | 64/128 | >128/>128 | 64/128 | 4/8 | 64/128 | 128/>128 | 8/16 |
K. pneumoniae ATCC 43816 | >128/>128 | >128/>128 | >128/>128 | 32/32 | >128/>128 | >128/>128 | 128/>128 |
E. faecalis NCTC 12697 | 64/128 | >128/>128 | 128/>128 | 8/8 | 128/>128 | 32/64 | 16/64 |
P. aeruginosa ATCC 27853 | >128/>128 | >128/>128 | >128/>128 | >128/>128 | >128/>128 | >128/>128 | >128/>128 |
Microorganism | MBIC/MBEC (µM) | ||||||
---|---|---|---|---|---|---|---|
QUB-1641 | QUB-1599 | QUB-1585 | QUB-1570 | QUB-1643 | QUB-1498 | QUB-1609 | |
S. aureus NCTC 10788 | 128/>128 | >128/>128 | 64/128 | 4/16 | 128/>128 | 32/128 | 16/128 |
E. coli NCTC 10418 | >128/>128 | >128/>128 | 128/128 | 32/64 | >128/>128 | >128/>128 | 64/128 |
Medium | MIC/MBC (µM) | ||||||
---|---|---|---|---|---|---|---|
QUB-1641 | QUB-1599 | QUB-1585 | QUB-1570 | QUB-1643 | QUB-1498 | QUB-1609 | |
PH 7.0 | 64/64 | >128/>128 | 32/64 | 2/8 | 32/64 | 16/16 | 8/32 |
PH 6.0 | >128/>128 | >128/>128 | >128/>128 | 128/>128 | >128/>128 | 32/64 | 16/64 |
PH 8.0 | >128/>128 | >128/>128 | >128/>128 | 64/128 | 128/>128 | 32/64 | 32/64 |
+NaCl (150 mM) | >128/>128 | >128/>128 | 128/>128 | 8/16 | 128/128 | 16/64 | 16/64 |
+MgCl2 (1 mM) | 128/>128 | >128/>128 | 128/>128 | 16/32 | 128/>128 | 8/32 | 4/16 |
+FeCl3 (4 µM) | >128/>128 | >128/>128 | 128/>128 | 16/32 | 128/>128 | 16/64 | 8/64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Zou, W.; Wang, L.; Xi, X.; Ma, C.; Chen, X.; Chen, T.; Shaw, C.; Zhang, X.; Zhou, M. Kassporin-KS1: A Novel Pentadecapeptide from the Skin Secretion of Kassina senegalensis: Studies on the Structure-Activity Relationships of Site-Specific “Glycine-Lysine” Motif Insertions. Antibiotics 2022, 11, 243. https://doi.org/10.3390/antibiotics11020243
Lu Y, Zou W, Wang L, Xi X, Ma C, Chen X, Chen T, Shaw C, Zhang X, Zhou M. Kassporin-KS1: A Novel Pentadecapeptide from the Skin Secretion of Kassina senegalensis: Studies on the Structure-Activity Relationships of Site-Specific “Glycine-Lysine” Motif Insertions. Antibiotics. 2022; 11(2):243. https://doi.org/10.3390/antibiotics11020243
Chicago/Turabian StyleLu, Yueyang, Wanchen Zou, Lei Wang, Xinping Xi, Chengbang Ma, Xiaoling Chen, Tianbao Chen, Chris Shaw, Xu Zhang, and Mei Zhou. 2022. "Kassporin-KS1: A Novel Pentadecapeptide from the Skin Secretion of Kassina senegalensis: Studies on the Structure-Activity Relationships of Site-Specific “Glycine-Lysine” Motif Insertions" Antibiotics 11, no. 2: 243. https://doi.org/10.3390/antibiotics11020243
APA StyleLu, Y., Zou, W., Wang, L., Xi, X., Ma, C., Chen, X., Chen, T., Shaw, C., Zhang, X., & Zhou, M. (2022). Kassporin-KS1: A Novel Pentadecapeptide from the Skin Secretion of Kassina senegalensis: Studies on the Structure-Activity Relationships of Site-Specific “Glycine-Lysine” Motif Insertions. Antibiotics, 11(2), 243. https://doi.org/10.3390/antibiotics11020243