Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
- -
- 7650 (subcodes 76501, 76502, 76503, 76504, 76505) “Disorders relating to extreme immaturity of infant”.
- -
- 7651 (subcodes 76511, 76512, 76513, 76514, 76515) “Disorders relating to other preterm infants”.
- -
- 7652 (subcodes 76521, 76522, 76523, 76524, 76525, 76526, 76527) “Weeks of gestation”.
2.1. Standard of Care
2.2. Statistical Analysis
3. Results
3.1. Pathogens Involved in EOS and LOS
3.2. Antibiotic Susceptibility
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The Global Burden of Paediatric and Neonatal Sepsis: A Systematic Review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef]
- Hadfield, B.R.; Cantey, J.B. Neonatal Bloodstream Infections. Curr. Opin. Infect. Dis. 2021, 34, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Dele Davies, H. Early-Onset Neonatal Sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swingle, H.M.; Bucciarelli, R.L.; Ayoub, E.M. Synergy between Penicillins and Low Concentrations of Gentamicin in the Killing of Group b Streptococci. J. Infect. Dis. 1985, 152, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Sullins, A.K.; Abdel-Rahman, S.M. Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents. Pediatric Drugs 2013, 15, 93–117. [Google Scholar] [CrossRef]
- Boghossian, N.S.; Page, G.P.; Bell, E.F.; Stoll, B.J.; Murray, J.C.; Cotten, C.M.; Shankaran, S.; Walsh, M.C.; Laptook, A.R.; Newman, N.S.; et al. Late-Onset Sepsis in Very Low Birth Weight Infants from Singleton and Multiple-Gestation Births. J. Pediatrics 2013, 162, 1120.e1–1124.e1. [Google Scholar] [CrossRef] [Green Version]
- Advani, S.D.; Murray, T.S.; Murdzek, C.M.; Aniskiewicz, M.J.; Bizzarro, M.J. Shifting Focus toward Healthcare-Associated Bloodstream Infections: The Need for Neonatal Intensive Care Unit-Specific NHSN Definitions. Infect. Control Hosp. Epidemiol. 2019, 41, 181–186. [Google Scholar] [CrossRef]
- Mariani, M.; Bandettini, R.; La Masa, D.; Minghetti, D.; Baldelli, I.; Serveli, S.; Mesini, A.; Saffioti, C.; Ramenghi, L.A.; Castagnola, E. Bacterial Invasive Infections in a Neonatal Intensive Care Unit: A 13 Years Microbiological Report from an Italian Tertiary Care Centre. J. Prev. Med. Hyg. 2020, 61, E162–E166. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Yan, J.; Zhang, T. Literature Review on the Distribution Characteristics and Antimicrobial Resistance of Bacterial Pathogens in Neonatal Sepsis. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2022, 35, 861–870. [Google Scholar] [CrossRef]
- Garland, J.S.; Alex, C.P.; Sevallius, J.M.; Murphy, D.M.; Good, M.J.; Volberding, A.M.; Hofer, L.L.; Gordon, B.J.; Maki, D.G. Cohort Study of the Pathogenesis and Molecular Epidemiology of Catheter-Related Bloodstream Infection in Neonates With Peripherally Inserted Central Venous Catheters. Infect. Control Hosp. Epidemiol. 2008, 29, 243–249. [Google Scholar] [CrossRef]
- Fanaroff, A.A. Statewide NICU Central-Line-Associated Bloodstream Infection Rates Decline After Bundles and Checklists. Yearb. Neonatal Perinat. Med. 2011, 2011, 175–177. [Google Scholar] [CrossRef]
- Holzmann-Pazgal, G.; Khan, A.M.; Northrup, T.F.; Domonoske, C.; Eichenwald, E.C. Decreasing Vancomycin Utilization in a Neonatal Intensive Care Unit. Am. J. Infect. Control 2015, 43, 1255–1257. [Google Scholar] [CrossRef]
- Alexander, V.N.; Northrup, V.; Bizzarro, M.J. Antibiotic Exposure in the Newborn Intensive Care Unit and the Risk of Necrotizing Enterocolitis. J. Pediatrics 2011, 159, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Palomar, N.; Balasch-Carulla, M.; González-Di Lauro, S.; Céspedes, M.C.; Andreu, A.; Frick, M.A.; Linde, M.Á.; Soler-Palacin, P. Escherichia Coli Early-Onset Sepsis: Trends over Two Decades. Eur. J. Pediatrics 2017, 176, 1227–1234. [Google Scholar] [CrossRef]
- Cantey, J.B.; Wozniak, P.S.; Pruszynski, J.E.; Sánchez, P.J. Reducing Unnecessary Antibiotic Use in the Neonatal Intensive Care Unit (SCOUT): A Prospective Interrupted Time-Series Study. Lancet Infect. Dis. 2016, 16, 1178–1184. [Google Scholar] [CrossRef]
- Fanaroff, A.A.; Fanaroff, J.M. Advances in Neonatal Infections. Am. J. Perinatol. 2020, 37, S5–S9. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0, 2020 2020, 0–77. Available online: http://www.eucast.org/clinical_breakpoints (accessed on 1 January 2020).
- Puopolo, K.M.; Lynfield, R.; Cummings, J.J. Management of Infants at Risk for Group B Streptococcal Disease. Pediatrics 2019, 144. [Google Scholar] [CrossRef] [Green Version]
- Sussman, C.B.; Weiss, M.D. While Waiting: Early Recognition and Initial Management of Neonatal Hypoxic-Ischemic Encephalopathy. Adv. Neonatal Care 2013, 13, 415–423. [Google Scholar] [CrossRef]
- Smit, E.; Liu, X.; Gill, H.; Sabir, H.; Jary, S.; Thoresen, M. Factors Associated with Permanent Hearing Impairment in Infants Treated with Therapeutic Hypothermia. J. Pediatrics 2013, 163, 995–1000. [Google Scholar] [CrossRef]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID Guideline for the Diagnosis and Management of Candida Diseases 2012: Prevention and Management of Invasive Infections in Neonates and Children Caused by Candida Spp. Clin. Microbiol. Infect. 2012, 18, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R Core Team. R: A Lang. Environ. Stat. Comput. 2013, 55, 275–286. [Google Scholar]
- The Jamovi Project. Copyright 2020 Licensed under a Creative Common Attribution-NonCommercial 4.0 International Licence. Available online: http://www.jamovi.org (accessed on 1 January 2020).
- Castagnola, E.; Gargiullo, L.; Renna, S.; Loy, A.; Risso, F.; Moscatelli, A.; Baldelli, I.; Cangemi, G.; Bandettini, R. What Is the Best Initial Empirical Treatment of Suspected Sepsis in a Newborn Readmitted Soon after Discharge Home in an Era of Increased Resistance to Antibiotics? A Report of Two Cases. Am. J. Perinatol. 2016, 33, 1090–1092. [Google Scholar] [CrossRef]
- Risso, F.M.; Castagnola, E.; Bandettini, R.; Minghetti, D.; Pagani, L.; Ramenghi, L.A. Group B Streptococcus Late Onset Sepsis in Very Low Birth Weight Newborns: 10 Years Experience. J. Matern.-Fetal Neonatal Med. 2018, 31, 18–20. [Google Scholar] [CrossRef]
- Lee, S.M.; Chang, M.; Kim, K.S. Blood Culture Proven Early Onset Sepsis and Late Onset Sepsis in Very-Low-Birth-Weight Infants in Korea. J. Korean Med. Sci. 2015, 30, S67–S74. [Google Scholar] [CrossRef] [Green Version]
Year | Total Admissions | Total Patient Days | <34 Weeks | <1500 g | Total Isolates | EOS | LOS | Gram-Positives | Gram-Negatives | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | n | Episodes/ 1000 admissions | n | Episodes/ 1000 admissions | n | Episodes/ 1000 patient days | Episodes/ 1000 admissions | n | n | n | n | ||
2005 | 67 | 5295 | - | 0 | 0 | 21 | 4 | 313 | 5 | 16 | 18 | 3 | |
2006 | 277 | 5348 | - | 0 | 0 | 75 | 14 | 271 | 12 | 63 | 67 | 8 | |
2007 | 197 | 4431 | - | 0 | 0 | 45 | 10 | 228 | 6 | 39 | 40 | 5 | |
2008 | 90 | 2348 | - | 0 | 16 | 178 | 35 | 15 | 389 | 4 | 31 | 27 | 8 |
2009 | 234 | 5807 | 62 | 265 | 41 | 175 | 65 | 11 | 278 | 5 | 60 | 54 | 11 |
2010 | 258 | 5625 | 57 | 221 | 59 | 229 | 63 | 11 | 244 | 4 | 59 | 59 | 4 |
2011 | 230 | 16777 | 90 | 391 | 50 | 217 | 90 | 5 | 391 | 0 | 90 | 80 | 10 |
2012 | 166 | 18875 | 29 | 175 | 55 | 331 | 137 | 7 | 825 | 4 | 133 | 119 | 18 |
2013 | 191 | 18426 | 25 | 131 | 50 | 262 | 62 | 3 | 325 | 5 | 57 | 54 | 8 |
2014 | 253 | 8465 | 15 | 59 | 99 | 391 | 54 | 6 | 213 | 8 | 46 | 49 | 5 |
2015 | 280 | 8840 | 32 | 114 | 104 | 371 | 61 | 7 | 218 | 1 | 60 | 53 | 8 |
2016 | 273 | 7973 | 166 | 608 | 88 | 322 | 53 | 7 | 194 | 4 | 49 | 44 | 9 |
2017 | 312 | 7538 | 136 | 436 | 69 | 221 | 42 | 6 | 135 | 9 | 33 | 37 | 5 |
2018 | 213 | 6759 | 138 | 648 | 79 | 371 | 56 | 8 | 263 | 8 | 48 | 46 | 10 |
TOTAL | 3041 | 122507 | 750 | 247 | 0 | 859 | 7 | 282 | 75 | 784 | 747 | 112 |
Pathogen | % Ampicillin-R | % Gentamycin-R | % Methicillin-R | % Piperacillin/Tazobactam-R | % Ceftazidime-R | % Meropenem-R | % Vancomycin-R | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EOS | LOS | EOS | LOS | EOS | LOS | EOS | LOS | EOS | LOS | EOS | LOS | EOS | LOS | |
S. aureus (n = 61) | 50 | 85 | 25 | 38 | 25 | 30 | - | - | - | - | - | - | 0 | 0 |
(1/2) | (35/41) | (1/4) | (21/55) | (1/4) | (17/56) | (0/4) | (0/56) | |||||||
CoNS (n = 599) | 93 | 99.8 | 66 | 93 | 74 | 95 | - | - | - | - | - | - | 0 | 0.2 |
(28/30) | (462/463) | (25/38) | (501/536) | (28/38) | (502/530) | (0/38) | (1/542) | |||||||
E. faecalis (n = 34) | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - | 0 | 0 |
(0/1) | (0/33) | (0/1) | (0/6) | (0/1) | (0/33) | |||||||||
E. coli (n = 39) | 100 | 82 | 17 | 10 | - | - | 0 | 3.4 | 17 | 0 | 0 | 0 | - | - |
(3/3) | (18/22) | (1/6) | (3/29) | (0/6) | (1/29) | (1/6) | (0/29) | (0/6) | (0/29) | |||||
K. pneumoniae (n = 20) | - | 100 | - | 16 | - | - | - | 26 | - | 28 | - | 0 | - | - |
(14/14) | (3/19) | (5/19) | (5/19) | (0/19) | ||||||||||
S. agalactiae (n = 23) | 0 | 0 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
(0/1) | (0/1) | (0/1) | (0/1) | (0/4) | (0/8) | |||||||||
K. oxytoca (n = 15) | - | 100 | - | 0 | - | - | - | 8 | - | 0 | - | 0 | - | - |
(10/10) | (0/12) | (1/12) | (0/12) | (0/12) | ||||||||||
E. cloacae (n = 11) | - | 100 | - | 0 | - | - | - | 18 | - | 18 | - | 0 | - | - |
(9/9) | (0/11) | (2/11) | (2/11) | (0/11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, M.; Parodi, A.; Minghetti, D.; Ramenghi, L.A.; Palmero, C.; Ugolotti, E.; Medici, C.; Saffioti, C.; Castagnola, E. Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit. Antibiotics 2022, 11, 284. https://doi.org/10.3390/antibiotics11020284
Mariani M, Parodi A, Minghetti D, Ramenghi LA, Palmero C, Ugolotti E, Medici C, Saffioti C, Castagnola E. Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit. Antibiotics. 2022; 11(2):284. https://doi.org/10.3390/antibiotics11020284
Chicago/Turabian StyleMariani, Marcello, Alessandro Parodi, Diego Minghetti, Luca A. Ramenghi, Candida Palmero, Elisabetta Ugolotti, Chiara Medici, Carolina Saffioti, and Elio Castagnola. 2022. "Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit" Antibiotics 11, no. 2: 284. https://doi.org/10.3390/antibiotics11020284
APA StyleMariani, M., Parodi, A., Minghetti, D., Ramenghi, L. A., Palmero, C., Ugolotti, E., Medici, C., Saffioti, C., & Castagnola, E. (2022). Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit. Antibiotics, 11(2), 284. https://doi.org/10.3390/antibiotics11020284