Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, Single Center Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akova, M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 2016, 7, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Padmini, N.; Ajilda, A.A.K.; Sivakumar, N.; Selvakumar, G. Extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae: Critical tools for antibiotic resistance pattern. J. Basic Microbiol. 2017, 57, 460–470. [Google Scholar] [CrossRef]
- Jayol, A.; Nordmann, P.; Poirel, L.; Dubois, V. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018, 73, 542–544. [Google Scholar] [CrossRef]
- Liscio, J.L.; Mahoney, M.V.; Hirsch, E.B. Ceftolozane/tazobactam and ceftazidime/avibactam: Two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 2015, 46, 266–271. [Google Scholar] [CrossRef]
- Behzadi, P.; García-Perdomo, H.A.; Karpiński, T.M.; Issakhanian, L. Metallo-ß-lactamases: A review. Mol. Biol. Rep. 2020, 47, 6281–6294. [Google Scholar] [CrossRef]
- Available online: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 1 January 2022).
- Chen, M.; Zhang, M.; Huang, P.; Lin, Q.; Sun, C.; Zeng, H.; Deng, Y. Novel β-lactam/β-lactamase inhibitors versus alternative antibiotics for the treatment of complicated intra-abdominal infection and complicated urinary tract infection: A meta-analysis of randomized controlled trials. Expert Rev. Anti-Infect. Ther. 2018, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Shiber, S.; Yahav, D.; Avni, T.; Leibovici, L.; Paul, M. β-Lactam/β-lactamase inhibitors versus carbapenems for the treatment of sepsis: Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2015, 70, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Issakhanian, L.; Behzadi, P. Antimicrobial Agents and Urinary Tract Infections. Curr. Pharm. Des. 2019, 25, 1409–1423. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase–producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Mazuski, J.E.; Wagenlehner, F.; Torres, A.; Carmeli, Y.; Chow, J.W.; Wajsbrot, D.; Stone, G.G.; Irani, P.; Bharucha, D.; Cheng, K.; et al. Clinical and Microbiological Outcomes of Ceftazidime-Avibactam Treatment in Adults with Gram-Negative Bacteremia: A Subset Analysis from the Phase 3 Clinical Trial Program. Infect. Dis. Ther. 2021, 10, 2399–2414. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Potoski, B.A.; Marini, R.V.; Doi, Y.; Kreiswirth, B.N.; Clancy, C.J. Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e00883-17. [Google Scholar] [CrossRef] [Green Version]
- Castón, J.J.; Gallo, M.; García, M.; Cano, A.; Escribano, A.; Machuca, I.; Gracia-Aufinger, I.; Guzman-Puche, J.; Pérez-Nadales, E.; Recio, M.; et al. Ceftazidime-avibactam in the treatment of infections caused by KPC-producing Klebsiella pneumoniae: Factors associated with clinical efficacy in a single-center cohort. Int. J. Antimicrob. Agents 2020, 56, 106075. [Google Scholar] [CrossRef]
- Kohler, P.P.; Volling, C.; Green, K.; Uleryk, E.M.; Shah, P.S.; McGeer, A. Carbapenem resistance, initial antibiotic therapy, and mortality in Klebsiella pneumoniae bacteremia: A systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 2017, 38, 1319–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Tansarli, G.S.; Karageorgopoulos, D.E.; Vardakas, K.Z. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg. Infect. Dis. 2014, 20, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Benattar, Y.D.; Omar, M.; Zusman, O.; Yahav, D.; Zak-Doron, Y.; Altunin, S.; Elbaz, M.; Daitch, V.; Granot, M.; Leibovici, L.; et al. The effectiveness and safety of high-dose colistin: Prospective cohort study. Clin. Infect. Dis. 2016, 63, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Barchiesi, F.; Montalti, R.; Castelli, P.; Nicolini, D.; Staffolani, S.; Mocchegiani, F.; Fiorentini, A.; Manso, E.; Vivarelli, M. Carbapenem-resistant Klebsiella pneumoniae influences the outcome of early infections in liver transplant recipients. BMC Infect. Dis. 2016, 16, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clancy, C.J.; Chen, L.; Shields, R.K.; Zhao, Y.; Cheng, S.; Chavda, K.D.; Hao, B.; Hong, J.H.; Doi, Y.; Kwak, E.J. Epidemiology and molecular characterization of bacteremia due to carbapenem-resistant Klebsiella pneumoniae in transplant recipients. Am. J. Transplant. 2013, 13, 2619–2633. [Google Scholar] [CrossRef] [Green Version]
- Villegas, M.V.; Pallares, C.J.; Escandón-Vargas, K. Characterization and clinical impact of bloodstream infection caused by carbapenemase-producing Enterobacteriaceae in seven Latin American Countries. PLoS ONE 2016, 11, e0154092. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhong, H.; Yang, T.; Shen, C.; Deng, Y.; Han, L.; Chen, X.; Zhang, H.; Qian, Y. Ceftazidime-Avibactam as Salvage Treatment for Infections Due to Carbapenem-Resistant Klebsiella pneumoniae in Liver Transplantation Recipients. Infect. Drug Resist. 2021, 14, 5603–5612. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 1 January 2022).
All (n = 81) | Successful Clinical Outcome (n = 52) | Clinical Failure (n = 29) | p | |
---|---|---|---|---|
Variables | ||||
Patients variables | ||||
Sex | ||||
Male | 56 (69%) | 39 (75%) | 17 (59%) | 0.126 |
Female | 25 (31%) | 13 (25%) | 12 (41%) | |
Age (years) mean (IQR) | 67 (56–75) | 67 (55.75–75.25) | 67 (58–75) | 1 |
Charlson’s Comorbidity Index ≥ 3 | 58 (73%) | 34 (67%) | 24 (83%) | 0.121 |
Comorbidities | ||||
Diabetes | 17 (21%) | 9 (17%) | 8(27%) | 0.276 |
COPD | 7 (9%) | 4 (8%) | 3 (10%) | 0.697 |
Hematological malignancies | 11 (4%) | 7 (14%) | 4 (14%) | 1 |
Solid tumors | 17 (21%) | 9 (17%) | 8 (28%) | 0.278 |
Chronic Hepatitis | 15 (19%) | 9 (17%) | 6 (21%) | 0.707 |
Cardiovascular Disease | 54 (67%) | 37 (71%) | 17 (59%) | 0.251 |
Neurological disease | 22 (28%) | 13 (25%) | 9 (32%) | 0.495 |
Chronic kidney disease | 24 (30%) | 14 (27%) | 10 (35%) | 1 |
HIV | 2(3%) | 1 (2%) | 1 (3%) | 1 |
Neutropenia | 2(3%) | 1 (2%) | 1 (3%) | 1 |
Gastrointestinal disease | 15 (19%) | 9 (17%) | 6 (21%) | 0.707 |
SOT | 8 (10%) | 1 (2%) | 7 (24%) | 0.003 |
Wards submitting index culture | ||||
Intensive care unit | 33 (41%) | 19 (37%) | 14 (48%) | 0.320 |
Surgery | 11 (14%) | 10 (19%) | 1 (3.4%) | 0.04 |
Medicine | 37 (46%) | 23 (44%) | 14 (48%) | 0.726 |
Pre-infection variables | ||||
Central venous catheter | 55 (68%) | 34 (64%) | 21 (72%) | 0.223 |
Nasogastric tube | 5 (6%) | 2 (4%) | 3 (10%) | 0.244 |
Surgical drainage | 13 (16%) | 8 (15%) | 5 (17%) | 1 |
Bladder catheter | 55 (68%) | 34 (65%) | 21 (72%) | 0.516 |
Endoscopy a | 4 (5%) | 3 (6%) | 1 (3%) | 1 |
Mechanical ventilation a | 11 (14%) | 4 (8%) | 7 (24%) | 0.049 |
CVVH | 13 (16%) | 6 (12%) | 7 (24%) | 0.206 |
Steroid therapy b | 27 (33%) | 17 (33%) | 10 (35%) | 0.870 |
Immunosuppressive therapy b,c | 14 (17%) | 6 (12%) | 8 (28%) | 0.067 |
Previous surgery d | 43 (53%) | 30 (58%) | 13 (45%) | 0.266 |
Infection variables | ||||
Nosocomial infection | 63 (78%) | 40 (77%) | 23 (80%) | 0.804 |
Polymicrobial infections | 31 (38%) | 22 (42%) | 9 (31%) | 0.317 |
Septic shock | 16 (20%) | 11 (21%) | 5 (17%) | 0.672 |
Pneumoniae | 66 (82%) | 38 (73%) | 28 (97%) | 0.009 |
Sites of isolation | ||||
Urinary tract | 15 (19%) | 10 (19%) | 5 (17%) | 0.825 |
Bronchial/pleural fluid | 27 (33%) | 16 (31%) | 11 (38%) | 0.512 |
abdominal fluid | 5 (6%) | 2 (4%) | 3 (10%) | 0.343 |
wounds | 6 (7%) | 6 (12%) | 0 | 0.083 |
blood | 23 (28%) | 16 (31%) | 7 (24%) | 0.526 |
Pathogens | ||||
K. pneumoniae KPC | 64 (79%) | 22 (76%) | 32 (62% | 0.225 |
P. aeruginosa | 10 (12%) | 4 (14%) | 6 (12%) | 0.739 |
E. coli | 5 (6%) | 3 (10%) | 2 (4%) | 0.534 |
Other e | 2 (2%) | 0 | 2 (4%) | 0.534 |
Empirical use | 6 (7%) | 0 | 6 (12%) | 0.08 |
Treatment variables | ||||
Previous therapy with others regimens b,f | 29 (36%) | 18 (35%) | 11 (38%) | 0.729 |
Days of antibiotic therapy (median) | 11 (7–14) | 10 (7–14) | 13 (7–14) | 0.419 |
Combination therapy | 50 (62%) | 32 (62%) | 18 (62%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pietrantonio, M.; Brescini, L.; Candi, J.; Gianluca, M.; Pallotta, F.; Mazzanti, S.; Mantini, P.; Candelaresi, B.; Olivieri, S.; Ginevri, F.; et al. Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, Single Center Study. Antibiotics 2022, 11, 321. https://doi.org/10.3390/antibiotics11030321
Di Pietrantonio M, Brescini L, Candi J, Gianluca M, Pallotta F, Mazzanti S, Mantini P, Candelaresi B, Olivieri S, Ginevri F, et al. Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, Single Center Study. Antibiotics. 2022; 11(3):321. https://doi.org/10.3390/antibiotics11030321
Chicago/Turabian StyleDi Pietrantonio, Maria, Lucia Brescini, Jennifer Candi, Morroni Gianluca, Francesco Pallotta, Sara Mazzanti, Paolo Mantini, Bianca Candelaresi, Silvia Olivieri, Francesco Ginevri, and et al. 2022. "Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, Single Center Study" Antibiotics 11, no. 3: 321. https://doi.org/10.3390/antibiotics11030321
APA StyleDi Pietrantonio, M., Brescini, L., Candi, J., Gianluca, M., Pallotta, F., Mazzanti, S., Mantini, P., Candelaresi, B., Olivieri, S., Ginevri, F., Cesaretti, G., Castelletti, S., Cocci, E., Polo, R. G., Cerutti, E., Simonetti, O., Cirioni, O., Tavio, M., Giacometti, A., & Barchiesi, F. (2022). Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, Single Center Study. Antibiotics, 11(3), 321. https://doi.org/10.3390/antibiotics11030321