Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Setting and Patients
4.2. Microbiological Sampling and Transport
4.3. Microbiological Cultures and Species Identification
4.4. In Vitro Antibiotic Susceptibility Testing (AST)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Komiyama, E.Y.; Lepesqueur, L.S.; Yassuda, C.G.; Samaranayake, L.P.; Parahitiyawa, N.B.; Balducci, I.; Koga-Ito, C.Y. Enterococcus Species in the Oral Cavity: Prevalence, Virulence Factors and Antimicrobial Susceptibility. PLoS ONE 2016, 11, e0163001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, K.M. Enterococcal infection in children. Semin. Pediatr. Infect. Dis. 2006, 17, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Chirouze, C.; Athan, E.; Alla, F.; Chu, V.H.; Ralph Corey, G.; Selton-Suty, C.; Erpelding, M.L.; Miro, J.M.; Olaison, L.; Hoen, B.; et al. Enterococcal endocarditis in the beginning of the 21st century: Analysis from the International Collaboration on Endocarditis-Prospective Cohort Study. Clin. Microbiol. Infect. 2013, 19, 1140–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Cattaneo, C.; Rieg, S.; Schwarzer, G.; Muller, M.C.; Blumel, B.; Kern, W.V. Enterococcus faecalis bloodstream infection: Does infectious disease specialist consultation make a difference? Infection 2021, 49, 1289–1297. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Lebreton, F.; van Schaik, W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr. Opin. Microbiol. 2013, 16, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7, 10. [Google Scholar] [CrossRef]
- Souto, R.; Colombo, A.P. Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch. Oral Biol. 2008, 53, 155–160. [Google Scholar] [CrossRef]
- Balaei-Gajan, E.; Shirmohammadi, A.; Abashov, R.; Agazadeh, M.; Faramarzie, M. Detection of enterococcus faecalis in subgingival biofilm of patients with chronic refractory periodontitis. Med. Oral Patol. Oral Cir. Bucal. 2010, 15, e667–e670. [Google Scholar] [CrossRef]
- Espindola, L.C.P.; do Nascimento, M.V.M.R.; do Souto, R.M.; Colombo, A.P.V. Antimicrobial susceptibility and virulence of Enterococcus spp. isolated from periodontitis-associated subgingival biofilm. J. Periodontol. 2021, 92, 1588–1600. [Google Scholar] [CrossRef]
- Espindola, L.C.P.; Picao, R.C.; Mancano, S.; Martins do Souto, R.; Colombo, A.P.V. Prevalence and antimicrobial susceptibility of Gram-negative bacilli in subgingival biofilm associated with periodontal diseases. J. Periodontol. 2022, 93, 69–79. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.K.; Cho, J.Y.; Lee, J.M.; Hong, S.H. Quantification of subgingival bacterial pathogens at different stages of periodontal diseases. Curr. Microbiol. 2012, 65, 22–27. [Google Scholar] [CrossRef]
- Zhuang, L.F.; Watt, R.M.; Steiner, S.; Lang-Hua, B.H.; Wang, R.; Ramseier, C.A.; Lang, N.P. Subgingival microbiota of Sri Lankan tea labourers naive to oral hygiene measures. J. Clin. Periodontol. 2014, 41, 433–441. [Google Scholar] [CrossRef]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.M.; Batista de Morais, M.; Morais, T.B. A novel and potentially valuable exposure measure: Escherichia coli in oral cavity and its association with child daycare center attendance. J. Trop. Pediatr. 2012, 58, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, P.J.; Perkowski, K.; Padzik, M.; Mierzwinska-Nastalska, E.; Szaflik, J.P.; Conn, D.B.; Chomicz, L. Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections. Biomed. Res. Int. 2017, 2017, 8106491. [Google Scholar] [CrossRef]
- Villar, C.C.; Dongari-Bagtzoglou, A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol. 2000 2021, 87, 166–180. [Google Scholar] [CrossRef]
- Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016, 532, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.; Naglik, J.R.; Hube, B. The Missing Link between Candida albicans Hyphal Morphogenesis and Host Cell Damage. PLoS Pathog. 2016, 12, e1005867. [Google Scholar] [CrossRef] [Green Version]
- Arirachakaran, P.; Luangworakhun, S.; Charalampakis, G.; Dahlen, G. Non-oral, aerobic, Gram-negative bacilli in the oral cavity of Thai HIV-positive patients on Highly-active anti-retrovirus therapy medication. J. Investig. Clin. Dent. 2019, 10, e12387. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.B.; Mehta, M.; Sood, S.; Sharma, J. Biofilm Formation by Drug Resistant Enterococci Isolates Obtained from Chronic Periodontitis Patients. J. Clin. Diagn. Res. 2017, 11, DC01–DC03. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, P629–P655. [Google Scholar] [CrossRef]
- Jepsen, K.; Falk, W.; Brune, F.; Fimmers, R.; Jepsen, S.; Bekeredjian-Ding, I. Prevalence and antibiotic susceptibility trends of periodontal pathogens in the subgingival microbiota of German periodontitis patients: A retrospective surveillance study. J. Clin. Periodontol. 2021, 48, 1216–1227. [Google Scholar] [CrossRef]
- Colombo, A.P.V.; Magalhaes, C.B.; Hartenbach, F.A.R.R.; do Souto, R.M.; da Silva-Boghossian, C.M. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb. Pathog. 2016, 94, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Dahlén, G. Bacterial infections of the oral mucosa. Periodontol. 2000 2009, 49, 13–38. [Google Scholar] [CrossRef]
- Patini, R.; Staderini, E.; Lajolo, C.; Lopetuso, L.; Mohammed, H.; Rimondini, L.; Rocchetti, V.; Franceschi, F.; Cordaro, M.; Gallenzi, P. Relationship between oral microbiota and periodontal disease: A systematic review. Eur. Rev. Med. Pharm. 2018, 22, 5775–5788. [Google Scholar]
- Sun, J.; Song, X. Assessment of antimicrobial susceptibility of Enterococcus faecalis isolated from chronic periodontitis in biofilm versus planktonic phase. J. Periodontol. 2011, 82, 626–631. [Google Scholar] [CrossRef]
- Goncalves, M.O.; Coutinho-Filho, W.P.; Pimenta, F.P.; Pereira, G.A.; Pereira, J.A.; Mattos-Guaraldi, A.L.; Hirata, R., Jr. Periodontal disease as reservoir for multi-resistant and hydrolytic enterobacterial species. Lett. Appl. Microbiol. 2007, 44, 488–494. [Google Scholar] [CrossRef]
- Rams, T.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic Resistance in Human Chronic Periodontitis Microbiota. J. Periodontol. 2014, 85, 160–169. [Google Scholar] [CrossRef]
- Rams, T.E.; Degener, J.E.; van Winkelhoff, A.J. Prevalence of β-lactamase-producing bacteria in human periodontitis. J. Periodont. Res. 2013, 48, 493–499. [Google Scholar] [CrossRef]
- Barbosa, F.C.; Irino, K.; Carbonell, G.V.; Mayer, M.P. Characterization of Serratia marcescens isolates from subgingival biofilm, extraoral infections and environment by prodigiosin production, serotyping, and genotyping. Oral Microbiol. Immunol. 2006, 21, 53–60. [Google Scholar] [CrossRef]
- Ranganathan, A.T.; Sarathy, S.; Chandran, C.R.; Iyan, K. Subgingival prevalence rate of enteric rods in subjects with periodontal health and disease. J. Indian Soc. Periodontol. 2017, 21, 224–228. [Google Scholar] [CrossRef]
- Moradigaravand, D.; Boinett, C.J.; Martin, V.; Peacock, S.J.; Parkhill, J. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland. Genome Res. 2016, 26, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.M.; El Chakhtoura, N.G.; Patel, S.; Saade, E.; Donskey, C.J.; Bonomo, R.A.; Perez, F. Carbapenem-Resistant Enterobacter cloacae in Patients from the US Veterans Health Administration, 2006–2015. Emerg. Infect. Dis. 2017, 23, 878–880. [Google Scholar] [CrossRef]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.C. Multidrug-Resistant Enterobacter cloacae Complex Emerging as a Global, Diversifying Threat. Front. Microbiol. 2019, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Rams, T.E.; Feik, D.; Young, V.; Hammond, B.F.; Slots, J. Enterococci in human periodontitis. Oral Microbiol. Immunol. 1992, 7, 249–252. [Google Scholar] [CrossRef]
- Quiloan, M.L.G.; Vu, J.; Carvalho, J. Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Front. Biol. 2012, 7, 167–177. [Google Scholar] [CrossRef]
- Costa-Orlandi, C.B.; Sardi, J.C.O.; Pitangui, N.S.; de Oliveira, H.C.; Scorzoni, L.; Galeane, M.C.; Medina-Alarcon, K.P.; Melo, W.; Marcelino, M.Y.; Braz, J.D.; et al. Fungal Biofilms and Polymicrobial Diseases. J. Fungi 2017, 3, 22. [Google Scholar] [CrossRef]
- Dupuy, A.K.; David, M.S.; Li, L.; Heider, T.N.; Peterson, J.D.; Montano, E.A.; Dongari-Bagtzoglou, A.; Diaz, P.I.; Strausbaugh, L.D. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: Discovery of Malassezia as a prominent commensal. PLoS ONE 2014, 9, e90899. [Google Scholar] [CrossRef] [Green Version]
- Rams, T.E.; Feik, D.; Mortensen, J.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic susceptibility of periodontal Enterococcus faecalis. J. Periodontol. 2013, 84, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; Jonas, D.; Huber, I.; Karygianni, L.; Wolber, J.; Hellwig, E.; Arweiler, N.; Vach, K.; Wittmer, A.; Al-Ahmad, A. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Front. Microbiol. 2015, 6, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, E.T.; Gomes, B.P.F.A.; Drucker, D.B.; Zaia, A.A.; Ferraz, C.C.R.; Souza-Filho, F.J. Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int. Endod. J. 2004, 37, 756–763. [Google Scholar] [CrossRef]
- Gotkowska-Plachta, A. The Prevalence of Virulent and Multidrug-Resistant Enterococci in River Water and in Treated and Untreated Municipal and Hospital Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 563. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.K.; Lee, M.J.; Ju, Y.; Lee, S.E.; Yang, K.S.; Sohn, J.W.; Kim, M.J. Determining the clinical significance of co-colonization of vancomycin-resistant Enterococci and methicillin-resistant Staphylococcus aureus in the intestinal tracts of patients in intensive care units: A case-control study. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, G.; Blomqvist, S.; Almstahl, A.; Carlen, A. Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections. J. Oral Microbiol. 2012, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaetti-Jardim Junior, E.; Nakano, V.; Wahasugui, T.C.; Cabral, F.C.; Gamba, R.; Avila-Campos, M.J. Occurrence of yeasts, enterococci and other enteric bacteria in subgingival biofilm of HIV-positive patients with chronic gingivitis and necrotizing periodontitis. Braz. J. Microbiol. 2008, 39, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J.V. Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect. Dis. 2018, 18, e368–e378. [Google Scholar] [CrossRef] [Green Version]
- Falkenstein, S.; Stein, J.M.; Henne, K.; Conrads, G. Trends in antibiotic use and microbial diagnostics in periodontal treatment: Comparing surveys of German dentists in a ten-year period. Clin. Oral Investig. 2016, 20, 2203–2210. [Google Scholar] [CrossRef]
- Lemmen, S.W.; Lewalter, K. Antibiotic stewardship and horizontal infection control are more effective than screening, isolation and eradication. Infection 2018, 46, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in Enterococci. Expert. Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- McKinnell, J.; Kunz, D.F.; Moser, S.A.; Vangala, S.; Tseng, C.H.; Shapiro, M.; Miller, L.G. Patient-level analysis of incident vancomycin-resistant Enterococci colonization and antibiotic days of therapy. Epidemiol. Infect. 2016, 144, 1748–1755. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Gajdacs, M.; Barath, Z.; Karpati, K.; Szabo, D.; Usai, D.; Zanetti, S.; Donadu, M.G. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics 2021, 10, 1134. [Google Scholar] [CrossRef]
- Wu, S.C.; Liu, F.; Zhu, K.; Shen, J.Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. J. Agric. Food Chem. 2019, 67, 13195–13211. [Google Scholar] [CrossRef]
- Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M.; Wen, Y.F. Global, regional, and national burden of severe periodontitis, 1990–2019: An analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 2021, 48, 1165–1188. [Google Scholar] [CrossRef]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Beglundh, T.; Sculean, A.; Tonetti, M.S.; EFP Workshop Participants and Methodological Consultants. Treatment of stage I-III periodontitis-The EFP S3 level clinical practice guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef]
- Armitage, G.C. Development of a Classification System for Periodontal Diseases and Conditions. Ann. Periodontol. 2000, 4, 1–6. [Google Scholar] [CrossRef]
- Jousimies-Somer, H. Wadsworth-KTL Anaerobic Bacteriology Manual; Star Publishing: Belmont, CA, USA, 2002. [Google Scholar]
- Podbielski, A.; Herrmann, M.; Kniehl, E.; Mauch, H. MiQ: Qualitätsstandards in der Mikrobiologisch-Infektiologischen Diagnostik: MiQ Grundwerk Heft 1–29; Urban & Fischer Verlag/Elsevier GmgH: München, Germany, 2007. [Google Scholar]
- Schoerner, C.; Abele-Horn, M.; Albert, F.; Haase, G.; Leitritz, L.; Habenau, H.F. MiQ: Qualitätsstandards in der Mikrobiologisch-Infektiologischen Diagnostik; Urban & Fischer Verlag/Elsevier GmbH: München, Germany, 2009. [Google Scholar]
(a) | |||||||||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 |
Number of Patients | 2692 | 1984 | 1903 | 2104 | 1942 | 1808 | 2014 | 2165 | 16,612 |
samples positive with species (%) | |||||||||
S. marcescens | 2.6 | 3.3 | 2.6 | 2.6 | 2.3 | 2.9 | 3.3 | 3.1 | 2.8 |
S. liquefaciens | 0.5 | 1.3 | 1.4 | 2.1 | 2.1 | 1.3 | 1.4 | 1.8 | 1.5 |
K. pneumonia | 0.8 | 0.7 | 1.7 | 1.4 | 0.4 | 1.2 | 1.2 | 1.5 | 1.1 |
K. oxytoca | 2.8 | 4.7 | 3.6 | 4.6 | 3.8 | 3.2 | 2.9 | 3.5 | 3.6 |
Enterobacter cloacae | 2.0 | 2.1 | 2.5 | 3.3 | 2.6 | 2.7 | 2.3 | 2.5 | 2.5 |
Enterococcus spp. | 3.5 | 5.1 | 5.9 | 5.4 | 6.9 | 6.6 | 6.7 | 5.8 | 5.6 |
Candida albicans | 14.7 | 22.8 | 23.0 | 22.4 | 22.9 | 20.9 | 25.9 | 24.0 | 21.8 |
(b) | |||||||||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 |
Number of Patients | 395 | 453 | 438 | 472 | 444 | 378 | 521 | 520 | 3621 |
samples positive with species Candida albicans co-infections (%) | |||||||||
S. marcescens | 4.6 | 1.3 | 3.2 | 0.2 | 2.3 | 2.1 | 2.1 | 1.7 | 2.1 |
S. liquefaciens | 0.5 | 1.1 | 0.9 | 0.8 | 1.4 | 1.1 | 1.0 | 0.8 | 0.9 |
K. pneumonia | 1.3 | 0.4 | 2.3 | 1.3 | 0.9 | 1.3 | 1.2 | 1.3 | 1.2 |
K. oxytoca | 3.8 | 3.3 | 2.5 | 4.0 | 2.7 | 2.6 | 3.1 | 1.7 | 2.9 |
Enterobacter cloacae | 2.0 | 1.5 | 2.3 | 3.2 | 3.4 | 2.6 | 1.7 | 1.0 | 2.2 |
Enterococcus spp. | 7.8 | 3.3 | 6.4 | 4.9 | 8.1 | 9.3 | 6.0 | 7.1 | 6.5 |
(a) | ||||||||||||||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 | Logistic Regression Analyses | ||||
patients (n) | 70 | 66 | 49 | 55 | 45 | 53 | 67 | 67 | 472 | Odds Ratio | Confidence interval 95% | estimate | p-value | |
* Serratia marcescens resistant to | lower | upper | ||||||||||||
* AML | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100.0 | n/a | ||||
AMC | 87.1 | 89.4 | 81.6 | 83.6 | 80.0 | 69.8 | 86.6 | 83.6 | 83.3 | 0.940 | 1.040 | 0.850 | −0.062 | 0.229 |
DO | 44.3 | 45.5 | 30.6 | 49.1 | 40.0 | 22.6 | 26.9 | 40.3 | 37.7 | 0.925 | 1.000 | 0.856 | −0.078 | 0.049 |
CIP | 4.3 | 0.0 | 0.0 | 0.0 | 4.4 | 0.0 | 0.0 | 1.5 | 1.3 | 0.837 | 1.193 | 0.588 | −0.177 | 0.325 |
(b) | ||||||||||||||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 | Logistic Regression Analyses | ||||
patients (n) | 14 | 26 | 27 | 42 | 39 | 24 | 29 | 40 | 241 | Odds Ratio | Confidence interval 95% | estimate (year) | p-value | |
Serratia liquefaciens resistant to | lower | upper | ||||||||||||
AML | 92.9 | 80.8 | 77.8 | 95.2 | 100 | 100 | 100 | 95.0 | 93.4 | 1.499 | 1.976 | 1.137 | 0.405 | 0.004 |
AMC | 85.7 | 73.1 | 44.4 | 33.3 | 10.3 | 16.7 | 34.5 | 42.5 | 38.2 | 0.797 | 0.905 | 0.701 | −0.227 | 0.001 |
Do | 7.1 | 7.7 | 0 | 14.3 | 0.0 | 0.0 | 0.0 | 2.5 | 4.2 | 0.754 | 1.038 | 0.548 | −0.282 | 0.083 |
CIP | 0.0 | 7.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 1.2 | 0.819 | 1.422 | 0.472 | −0.199 | 0.479 |
(a) | ||||||||||||||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 | Logistic Regression Analyses | ||||
patients (n) | 21 | 14 | 32 | 30 | 8 | 22 | 25 | 32 | 184 | Odds Ratio | Confidence interval 95% | estimate (year) | p-value | |
* Klebsiella pneumonia resistant to | lower | upper | ||||||||||||
AML | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | n/a | ||||
AMC | 9.5 | 14.3 | 0.0 | 0.0 | 12.5 | 0.0 | 4.0 | 9.4 | 4.9 | 0.990 | 1.317 | 0.745 | 0.010 | 0.947 |
DO | 4.8 | 14.3 | 3.1 | 6.7 | 12.5 | 9.1 | 20.0 | 9.4 | 9.2 | 1.153 | 1.436 | 0.925 | 0.142 | 0.206 |
CIP | 4.8 | 7.1 | 0.0 | 0.0 | 12.5 | 0.0 | 0.0 | 0.0 | 1.6 | 0.635 | 1.208 | 0.334 | 0.455 | 0.166 |
(b) | ||||||||||||||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 | Logistic Regression Analyses | ||||
patients (n) | 75 | 94 | 68 | 96 | 74 | 58 | 59 | 76 | 600 | Odds Ratio | Confidence interval 95% | estimate (year) | p-value | |
* Klebsiella oxytoca resistant to | lower | upper | ||||||||||||
* AML | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | n/a | ||||
AMC | 21.3 | 3.2 | 0.0 | 7.3 | 1.4 | 3.5 | 1.7 | 6.6 | 5.8 | 0.789 | 0.933 | 0.667 | −0.237 | 0.006 |
DO | 5.3 | 3.2 | 10.3 | 9.4 | 6.8 | 3.5 | 3.4 | 5.3 | 6.0 | 0.970 | 1.125 | 0.835 | −0.031 | 0.684 |
CIP | 5.3 | 0.0 | 2.9 | 0.0 | 1.4 | 3.5 | 0.0 | 0.0 | 1.5 | 0.746 | 1.050 | 0.530 | −0.293 | 0.093 |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 | Logistic Regression Analyses | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
patients (n) | 54 | 41 | 47 | 69 | 51 | 48 | 47 | 54 | 411 | Odds Ratio | Confidence interval 95% | estimate (year) | p-value | |
* Enterobacter cloacae resistant to | lower | upper | ||||||||||||
AML | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | n/a | ||||
AMC | 96.3 | 92.7 | 59.6 | 72.5 | 74.5 | 62.5 | 87.2 | 88.9 | 79.1 | 0.957 | 1.063 | 0.861 | −0.044 | 0.410 |
DO | 24.1 | 46.3 | 14.9 | 24.6 | 9.8 | 12.5 | 10.6 | 22.2 | 20.4 | 0.869 | 0.968 | 0.780 | −0.140 | 0.011 |
CIP | 0.0 | 0.0 | 4.3 | 1.5 | 5.9 | 0.0 | 2.1 | 1.9 | 2.0 | 1.101 | 1.505 | 0.805 | 0.096 | 0.546 |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2008–2015 | Logistic Regression Analyses | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
patients (n) | 93 | 102 | 112 | 113 | 134 | 119 | 135 | 126 | 934 | Odds Ratio | Confidence interval 95% | estimate (year) | p-value | |
Enterococcus spp. Resistant to | lower | upper | ||||||||||||
AML | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | n/a | ||||
AMC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | n/a | ||||
DO | 46.2 | 19.6 | 31.3 | 37.2 | 54.5 | 64.7 | 66.7 | 65.9 | 49.6 | 1.290 | 1.372 | 1.213 | 0.255 | <0.0001 |
CIP | 62.4 | 24.5 | 47.3 | 15.0 | 11.9 | 26.1 | 4.4 | 49.2 | 28.7 | 0.873 | 0.931 | 0.819 | −0.136 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jepsen, K.; Falk, W.; Brune, F.; Cosgarea, R.; Fimmers, R.; Bekeredjian-Ding, I.; Jepsen, S. Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study. Antibiotics 2022, 11, 385. https://doi.org/10.3390/antibiotics11030385
Jepsen K, Falk W, Brune F, Cosgarea R, Fimmers R, Bekeredjian-Ding I, Jepsen S. Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study. Antibiotics. 2022; 11(3):385. https://doi.org/10.3390/antibiotics11030385
Chicago/Turabian StyleJepsen, Karin, Wolfgang Falk, Friederike Brune, Raluca Cosgarea, Rolf Fimmers, Isabelle Bekeredjian-Ding, and Søren Jepsen. 2022. "Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study" Antibiotics 11, no. 3: 385. https://doi.org/10.3390/antibiotics11030385
APA StyleJepsen, K., Falk, W., Brune, F., Cosgarea, R., Fimmers, R., Bekeredjian-Ding, I., & Jepsen, S. (2022). Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study. Antibiotics, 11(3), 385. https://doi.org/10.3390/antibiotics11030385