Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections
Abstract
:1. Introduction
2. Clinical Cases
2.1. Case 1
2.2. Case 2
2.3. Case 3
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, L.; Nonejuie, P.; Munguia, J.; Hollands, A.; Olson, J.; Dam, Q.; Kumaraswamy, M.; Rivera, H.; Corriden, R.; Rohde, M.; et al. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens. EBioMedicine 2015, 2, 690–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaraswamy, M.; Lin, L.; Olson, J.; Sun, C.F.; Nonejuie, P.; Corriden, R.; Döhrmann, S.; Ali, S.R.; Amaro, D.; Rohde, M.; et al. Standard susceptibility testing overlooks potent azithromycin activity and cationic peptide synergy against MDR Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2016, 71, 1264–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulloa, E.R.; Kousha, A.; Tsunemoto, H.; Pogliano, J.; Licitra, C.; LiPuma, J.J.; Sakoulas, G.; Nizet, V.; Kumaraswamy, M. Azithromycin Exerts Bactericidal Activity and Enhances Innate Immune Mediated Killing of MDR Achromobacter xylosoxidans. Infect. Microbes Dis. 2020, 2, 10–17. [Google Scholar] [CrossRef]
- Yamada, K.; Yanagihara, K.; Kaku, N.; Harada, Y.; Migiyama, Y.; Nagaoka, K.; Morinaga, Y.; Nakamura, S.; Imamura, Y.; Miyazaki, T.; et al. Azithromycin Attenuates Lung Inflammation in a Mouse Model of Ventilator-Associated Pneumonia by Multidrug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013, 57, 3883–3888. [Google Scholar] [CrossRef] [Green Version]
- Zarogoulidis, P.; Papanas, N.; Kioumis, I.; Chatzaki, E.; Maltezos, E.; Zarogoulidis, K. Macrolides: From in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur. J. Clin. Pharmacol. 2012, 68, 479–503. [Google Scholar] [CrossRef]
- Mogayzel, P.J., Jr.; Naureckas, E.T.; Robinson, K.A.; Mueller, G.; Hadjiliadis, D.; Hoag, J.B.; Lubsch, L.; Hazle, L.; Sabadosa, K.; Marshall, B. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am. J. Respir. Crit. Care Med. 2013, 187, 680–689. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Fluoroquinolone Antimicrobial Drugs Information. Available online: https://www.fda.gov/drugs/information-drug-class/fluoroquinolone-antimicrobial-drugs-information (accessed on 19 March 2022).
- Tsai, W.-C.; Hsu, C.-C.; Chen, C.P.; Chang, H.-N.; Wong, A.M.; Lin, M.-S.; Pang, J.-H.S. Ciprofloxacin up-regulates tendon cells to express matrix metalloproteinase-2 with degradation of type I collagen. J. Orthop. Res. 2011, 29, 67–73. [Google Scholar] [CrossRef]
- Mandell, L.A.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M., Jr.; Musher, D.M.; Niederman, M.S.; et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults. Clin. Infect. Dis. 2007, 44 (Suppl. S2), S27–S72. [Google Scholar] [CrossRef]
- Sendzik, J.; Shakibaei, M.; Schäfer-Korting, M.; Lode, H.; Stahlmann, R. Synergistic effects of dexamethasone and quinolones on human-derived tendon cells. Int. J. Antimicrob. Agents 2010, 35, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.; Fantl, M.; Geriak, M.; Nizet, V.; Sakoulas, G. Current Paradigms of Combination Therapy in Methicillin-Resistant Staphy-lococcus aureus (MRSA) Bacteremia: Does it Work, Which Combination, and For Which Patients? Clin. Infect. Dis. 2021, 73, 2353–2360. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Risk for COVID-19 Infection, Hospitalization, and Death by Age Group. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html (accessed on 19 March 2022).
- Hancox, J.C.; Hasnain, M.; Vieweg, W.V.R.; Crouse, E.L.B.; Baranchuk, A. Azithromycin, cardiovascular risks, QTc interval prolongation, torsade de pointes, and regulatory issues: A narrative review based on the study of case reports. Ther. Adv. Infect. Dis. 2013, 1, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monk, J.M.; Charusanti, P.; Aziz, R.K.; Lerman, J.A.; Premyodhin, N.; Orth, J.D.; Feist, A.M.; Palsson, B. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl. Acad. Sci. USA 2013, 110, 20338–20343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdács, M.; Baráth, Z.; Kárpáti, K.; Szabó, D.; Usai, D.; Zanetti, S.; Donadu, M.G. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics 2021, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Girardello, R.; Bispo, P.J.; Yamanaka, T.M.; Gales, A.C. Cation Concentration Variability of Four Distinct Mueller-Hinton Agar Brands Influences Polymyxin B Susceptibility Results. J. Clin. Microbiol. 2012, 50, 2414–2418. [Google Scholar] [CrossRef] [Green Version]
- Farha, M.A.; French, S.; Stokes, J.M.; Brown, E.D. Bicarbonate Alters Bacterial Susceptibility to Antibiotics by Targeting the Proton Motive Force. ACS Infect. Dis. 2018, 4, 382–390. [Google Scholar] [CrossRef]
- Gillis, R.J.; Iglewski, B.H. Azithromycin Retards Pseudomonas aeruginosa Biofilm Formation. J. Clin. Microbiol. 2004, 42, 5842–5845. [Google Scholar] [CrossRef] [Green Version]
- Molinari, G.; Guzman, C.A.; Pesce, A.; Schito, G.C. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory con-centrations of azithromycin and other macrolide antibiotics. J. Antimicrob. Chemother. 1993, 31, 681–688. [Google Scholar] [CrossRef]
- Molinari, G.; Paglia, P.; Schito, G.C. Inhibition of motility of Pseudomonas aeruginosa and Proteus mirabilis by subinhibitory con-centrations of azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 469–471. [Google Scholar] [CrossRef]
- Hoffmann, N.; Lee, B.; Hentzer, M.; Rasmussen, T.B.; Song, Z.; Johansen, H.K.; Givskov, M.; Høiby, N. Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation and Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing of Pseudomonas aeruginosa and Attenuates Chronic P. aeruginosa Lung Infection in Cftr−/− Mice. Antimicrob. Agents Chemother. 2007, 51, 3677–3687. [Google Scholar] [CrossRef] [Green Version]
- Baumann, U.; Fischer, J.J.; Gudowius, P.; Lingner, M.; Herrmann, S.; Tümmler, B.; Von Der Hardt, H. Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long-term therapy with azithromycin. Infection 2001, 29, 7–11. [Google Scholar] [CrossRef]
- Braga, P.C.; Piatti, G. Interference by Subinhibitory Concentrations of Azithromycin with the Mechanism of Bacterial Adhesion to Human Epithelial Cells. Chemotherapy 1993, 39, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Belanger, C.R.; Lee, A.H.-Y.; Pletzer, D.; Dhillon, B.K.; Falsafi, R.; Hancock, R.E.W. Identification of novel targets of azithromycin activity against Pseudomonas aeruginosa grown in physiologically relevant media. Proc. Natl. Acad. Sci. USA 2020, 117, 33519–33529. [Google Scholar] [CrossRef] [PubMed]
- Buyck, J.M.; Plésiat, P.; Traore, H.; Vanderbist, F.; Tulkens, P.M.; Van Bambeke, F. Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability. Clin. Infect. Dis. 2012, 55, 534–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic | Case 1 | Case 2 | Case 3 | |||
---|---|---|---|---|---|---|
MIC (mg/L) | Interpretation | MIC (mg/L) | Interpretation | MIC (mg/L) | Interpretation | |
Amikacin | >32 | R | - | - | - | - |
Aztreonam | >16 | R | ≤4 | S | ≤4 | S |
Cefepime | >16 | R | ≤2 | S | 8 | S |
Cefidericol | 8 | I | - | - | - | - |
Ceftazidime | >16 | R | ≤1 | S | 4 | S |
Ceftazidime/avibactam | >16 | R | - | - | - | - |
Ceftolozane/tazobactam | >8 | R | - | - | - | - |
Ciprofloxacin | >2 | R | ≤0.25 | S | >2 | R |
Delafloxacin | >2 | R | - | - | - | - |
Colistin | 2 | I | - | - | - | - |
Eravacycline | 4 | (ND) | - | - | - | - |
Gentamicin | >8 | R | ≤2 | S | >8 | R |
Imipenem | >16/4 | R | - | - | >8 | R |
Levofloxacin | >4 | R | ≤0.50 | S | >4 | R |
Meropenem | >8 | R | ≤1 | S | 2 | S |
Meropenem/vaborbactam | >16/8 | R | - | - | - | - |
Piperacillin/tazobactam | >64 | R | ≤8 | S | ≤8 | S |
Tobramycin | >8 | R | ≤2 | S | ≤2 | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulloa, E.R.; Sakoulas, G. Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections. Antibiotics 2022, 11, 515. https://doi.org/10.3390/antibiotics11040515
Ulloa ER, Sakoulas G. Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections. Antibiotics. 2022; 11(4):515. https://doi.org/10.3390/antibiotics11040515
Chicago/Turabian StyleUlloa, Erlinda R., and George Sakoulas. 2022. "Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections" Antibiotics 11, no. 4: 515. https://doi.org/10.3390/antibiotics11040515
APA StyleUlloa, E. R., & Sakoulas, G. (2022). Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections. Antibiotics, 11(4), 515. https://doi.org/10.3390/antibiotics11040515