Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach
Abstract
:1. Introduction
2. Results
2.1. Inhibitors Identified from the Ligand-Protein Docking Computation
2.2. Growth Inhibition Assay Using L. innocua
2.3. Minimum Inhibitory Concentration (MIC) Assay Using L. innocua
2.4. Growth Inhibition Assay Using E. coli
2.5. MIC Assay Using E. coli
3. Discussion
4. Materials and Methods
4.1. Identification of MurA Inhibitors through Molecular Docking Based Virtual Screening
4.2. Bacterial Strains and Culture Conditions
4.3. Chemical Stock Solution Preparation and Storage
4.4. Bacterial Growth Inhibition Study
4.5. Minimum Inhibitory Concentration (MIC) Assays
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Compound Number in this Study | Compound Name | Database | Vender | Solvent Used |
---|---|---|---|---|
S1 | Mebendazole | FDA-approved | Sigma | DMSO |
S2 | Indigo carmine | FDA-approved | Sigma | H2O |
S3 | Olsalazine sodium | FDA-approved | Sigma | H2O |
S4 | Albendazole | FDA-approved | Sigma | DMSO |
S5 | Iobenguane sulfate | FDA-approved | Sigma | H2O |
S6 | Balsalazide disodium salt hydrate | FDA-approved | Sigma | H2O |
S7 | Lodoxamide | FDA-approved | Sigma | DMSO |
S8 | Diflunisal | FDA-approved | Sigma | DMSO |
S9 | TRIPHENYLPHOSPHINE-3,3’,3’’-TRISULFONIC acid trisodium salt (TPPTS) | Sigma | Sigma | H2O |
S10 | 3-(4-(Benzyloxy)phenyl)-1H-pyrazole-5-carbohydrazide | Sigma | Sigma | DMSO |
S11 | 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p′-disulfonic acid monosodium salt hydrate | Sigma | Sigma | H2O |
S12 * | Fosfomycin disodium salt | Sigma | Sigma | H2O |
S13 | Tris(3,3′,3″-phosphinidynetris(benzenesulfonato) palladium(0) nonasodium salt nonahydrate | Sigma | Sigma | H2O |
S14 | Glutaraldehyde sodium bisulfite addition | Sigma | Sigma | DMSO |
S15 | [5-(2-Methyl-5-fluorophenyl)furan-2-ylcarbonyl]guanidine | Sigma | Sigma | DMSO |
S16 | 4-Methyl-5-(sulfomethylamino)-2-(2-thiazolylazo)benzoic acid | Sigma | Sigma | H2O |
S17 | 2-Amino-5-bromobenzimidazole | Sigma | Sigma | DMSO |
S18 | 3-Hydroxy-2-(6-methylquinazolin-4-ylamino)propanoic acid hydrochloride | Sigma | Sigma | H2O |
S19 | 2,3-Pyrazinedicarboxamide | Sigma | Sigma | DMSO |
S20 | (R)-(–)-2-Aminobutanamide hydrochloride | Sigma | Sigma | DMSO |
C1 | 2-[4-(dimethylamino)benzylidene]-N-nitrohydrazinecarboximidamide | ChemBridge | ChemBridge | DMSO |
C2 | disodium 4,4’-(2-oxo-2,3-dihydro-1H-imidazole-4,5-diyl)dibenzenesulfonate | ChemBridge | ChemBridge | DMSO |
C3 | 4-[2-(aminocarbonyl)carbonohydrazonoyl]-2-methoxyphenyl 3-chloro-1-benzothiophene-2-carboxylate | ChemBridge | ChemBridge | DMSO |
C4 | N-(2-amino-2-oxoethyl)-4-[(1-hydroxycyclohexyl)ethynyl]benzamide | ChemBridge | ChemBridge | DMSO |
C5 | 3-(1,2-dihydro-5-acenaphthylenyl)-1H-pyrazole-5-carbohydrazide | ChemBridge | ChemBridge | DMSO |
C6 | 2-[4-(6-bromo-4-phenyl-2-quinolinyl)phenoxy]acetohydrazide | ChemBridge | ChemBridge | DMSO |
C7 | 4-({[5-(2-carboxyvinyl)-2,3-dimethoxyphenyl]sulfonyl}amino)benzoic acid | ChemBridge | ChemBridge | DMSO |
C8 | ethyl 2-{[4-(aminocarbonyl)phenyl]hydrazono}-3-oxobutanoate | ChemBridge | ChemBridge | DMSO |
C9 | 4-({2-cyano-2-[4-(3-nitrophenyl)-1,3-thiazol-2-yl]vinyl}amino)benzamide | ChemBridge | ChemBridge | DMSO |
C10 | 2-[(aminocarbonyl)amino]-N-{2-[4-(hydroxymethyl)piperidin-1-yl]-5,6,7,8-tetrahydroquinazolin-5-yl}acetamide | ChemBridge | ChemBridge | DMSO |
C11 | N-{2-[2-(4-chlorophenyl)-1,4,6,7-tetrahydro-5H-imidazo[4,5-c]pyridin-5-yl]-2-oxoethyl}urea | ChemBridge | ChemBridge | DMSO |
C12 | 2-methoxy-3’-{[(1-methyl-2-oxopyrrolidin-3-yl)amino]carbonyl}biphenyl-4-carboxylic acid | ChemBridge | ChemBridge | DMSO |
C13 | N-{2-[4-(4-cyanophenyl)-3-oxo-1-piperazinyl]-2-oxoethyl}urea | ChemBridge | ChemBridge | DMSO |
C14 | N-[(5-amino-1H-1,2,4-triazol-3-yl)methyl]-2-(4-methylphenyl)-4-quinolinecarboxamide | ChemBridge | ChemBridge | DMSO |
References
- De Noordhout, C.M.; Devleesschauwer, B.; Angulo, F.J.; Verbeke, G.; Haagsma, J.; Kirk, M.; Havelaar, A.; Speybroeck, N. The Global Burden of Listeriosis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2014, 14, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A Review of Listeria Monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Archer, P. Growth of Listeria Monocytogenes at Refrigeration Temperatures. J. Appl. Bacteriol. 1990, 68, 157–162. [Google Scholar]
- Lecuit, M.; Vandormael-Pournin, S.; Lefort, J.; Huerre, M.; Gounon, P.; Dupuy, C.; Babinet, C.; Cossart, P. A Transgenic Model for Listeriosis: Role of Internalin in Crossing the Intestinal Barrier. Science 2001, 292, 1722–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Associated with Jensen Farms Cantaloupe—United States. January–March 2022. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6039a5.htm (accessed on 1 January 2020).
- Iwu, C.D.; Iwu-Jaja, C.J.; Elhadi, R.; Semerjian, L.; Okoh, A.I. Modelling the Potential Risk of Infection Associated with Listeria Monocytogenes in Irrigation Water and Agricultural Soil in Two District Municipalities in South Africa. Microorganisms 2022, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Khsim, I.E.F.; Mohanaraj-Anton, A.; Horte, I.B.; Lamont, R.F.; Khan, K.S.; Jørgensen, J.S.; Amezcua-Prieto, C. Listeriosis in Pregnancy: An Umbrella Review of Maternal Exposure, Treatment and Neonatal Complications. BJOG Int. J. Obstet. Gynaecol.Gyneacol. 2022, 1–7. [Google Scholar] [CrossRef]
- Radkov, A.D.; Hsu, Y.-P.; Booher, G.; VanNieuwenhze, M.S. Imaging Bacterial Cell Wall Biosynthesis. Annu. Rev. Biochem. 2018, 87, 991–1014. [Google Scholar] [CrossRef]
- Hrast, M.; Sosič, I.; Sink, R.; Gobec, S. Inhibitors of the Peptidoglycan Biosynthesis Enzymes MurA-F. Bioorg. Chem. 2014, 55, 2–15. [Google Scholar] [CrossRef]
- Kahan, F.M.; Kahan, J.S.; Cassidy, P.J.; Kropp, H. The Mechanism of Action of Fosfomycin (Phosphonomycin). Ann. N. Y. Acad. Sci. 1974, 235, 364–386. [Google Scholar] [CrossRef]
- Fillgrove, K.L.; Pakhomova, S.; Schaab, M.R.; Newcomer, M.E.; Armstrong, R.N. Structure and Mechanism of the Genomically Encoded Fosfomycin Resistance Protein, FosX, from Listeria Monocytogenes. Biochemistry 2007, 46, 8110–8120. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound Databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem. 2014, 14, 1923–1938. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Zhang, F.; Haider, S.; Kraut, D.; Huang, Z. An Integrated Computational and Experimental Approach to Identifying Inhibitors for SARS-CoV-2 3CL Protease. Front. Mol. Biosci. 2021, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhai, T.; Haider, S.; Liu, Y.; Huang, Z.J. Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria Monocytogenes Strain. ACS Omega 2020, 5, 7537–7544. [Google Scholar] [CrossRef] [Green Version]
- Bensen, D.C.; Rodriguez, S.; Nix, J.; Cunningham, M.L.; Tari, L.W. Structure of MurA (UDP-N-Acetylglucosamine Enolpyruvyl Transferase) from Vibrio Fischeri in Complex with Substrate UDP-N-Acetylglucosamine and the Drug Fosfomycin. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Bellich, B.; Janež, N.; Sterniša, M.; Klančnik, A.; Ravenscroft, N.; Rizzo, R.; Sabotič, J.; Cescutti, P. Characterisation of a New Cell Wall Teichoic Acid Produced by Listeria Innocua ŽM39 and Analysis of Its Biosynthesis Genes. Carbohydr. Res. 2022, 511, 108499. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Liu, Q.; Pang, X.; Zhao, X.; Yang, H. Sanitising Efficacy of Lactic Acid Combined with Low-Concentration Sodium Hypochlorite on Listeria Innocua in Organic Broccoli Sprouts. Int. J. Food Microbiol. 2019, 295, 41–48. [Google Scholar] [CrossRef]
- Machata, S.; Hain, T.; Rohde, M.; Chakraborty, T. Simultaneous Deficiency of Both MurA and P60 Proteins Generates a Rough Phenotype in Listeria Monocytogenes. J. Bacteriol. 2005, 187, 8385. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, M.; Rasool, N.; Ahmad, G.; Kosar, N.; Rashid, U. N-Arylation of Protected and Unprotected 5-Bromo-2-Aminobenzimidazole as Organic Material: Non-Linear Optical (NLO) Properties and Structural Feature Determination through Computational Approach. Molecules 2021, 26, 6920. [Google Scholar] [CrossRef]
- Capot Chemical Co. 5-Bromo-1H-benzo[d]imidazol-2-amine MSDS. Available online: https://www.capotchem.com/doc/viewmsds_791595-74-9.html (accessed on 15 January 2022).
- Jung, H.; Medina, L.; García, L.; Fuentes, I.; Moreno-Esparza, R. Absorption Studies of Albendazole and Some Physicochemical Properties of the Drug and Its Metabolite Albendazole Sulphoxide. J. Pharm. Pharmacol. 2011, 50, 43–48. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. Albenza Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020666s005s006lbl.pdf (accessed on 16 January 2022).
- Dehkordi, A.B.; Sanei, B.; Yousefi, M.; Sharafi, S.M.; Safarnezhad, F.; Jafari, R.; Darani, H.Y. Albendazole and Treatment of Hydatid Cyst, Review of Literature. Infect. Disord. Drug Targets 2019, 19, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.J. Albendazole in Treatment of Human Cystic Echinococcosis: 12 Years of Experience. Acta Trop. 1997, 64, 79–93. [Google Scholar] [CrossRef]
- Papich, M.G. Albendazole. In Saunders Handbook of Veterinary Drugs; Elsevier: Amsterdam, The Netherlands, 2016; pp. 12–14. [Google Scholar]
- Tempero, K.F.; Cirillo, V.J.; Steelman, S.L. Diflunisal: A Review of Pharmacokinetic and Pharmacodynamic Properties, Drug Interactions, and Special Tolerability Studies in Humans. Br. J. Clin. Pharmacol. 1977, 4, 31S–36S. [Google Scholar] [CrossRef]
- Brogden, R.N.; Heel, R.C.; Pakes, G.E.; Speight, T.M.; Avery, G.S. Diflunisal: A Review of Its Pharmacological Properties and Therapeutic Use in Pain and Musculoskeletal Strains and Sprains and Pain in Osteoarthritis. Drugs 1980, 19, 84–106. [Google Scholar] [CrossRef]
- Merck. DOLOBID® (DIFLUNISAL). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/018445s058lbl.pdf (accessed on 16 January 2022).
- Sekijima, Y.; Dendle, M.A.; Kelly, J.W. Orally Administered Diflunisal Stabilizes Transthyretin against Dissociation Required for Amyloidogenesis. Amyloid 2006, 13, 236–249. [Google Scholar] [CrossRef]
- Neves, M.A.C.; Totrov, M.; Abagyan, R. Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement. J. Comput. Aided. Mol. Des. 2012, 26, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Brown, J.R.; Sylvester, D.R.; Huang, J.; Chalker, A.F.; So, C.Y.; Holmes, D.J.; Payne, D.J.; Wallis, N.G. Two Active Forms of UDP-N-Acetylglucosamine Enolpyruvyl Transferase in Gram-Positive Bacteria. J. Bacteriol. 2000, 182, 4146. [Google Scholar] [CrossRef] [Green Version]
- Chabán, M.F.; Hrast, M.; Frlan, R.; Graikioti, D.G.; Athanassopoulos, C.M.; Carpinella, M.C. Inhibition of Mura Enzyme from Escherichia Coli and Staphylococcus Aureus by Diterpenes from Lepechinia Meyenii and Their Synthetic Analogs. Antibiotics 2021, 10, 1535. [Google Scholar] [CrossRef]
- Gautam, A.; Rishi, P.; Tewari, R. UDP-N-Acetylglucosamine Enolpyruvyl Transferase as a Potential Target for Antibacterial Chemotherapy: Srecent Developments. Appl. Microbiol. Biotechnol. 2011, 92, 211–225. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Structure | Compound Number in this Study | Name of Compound | Growth Inhibition in L. innocua | Growth Inhibition in E. coli | ||
---|---|---|---|---|---|---|
Effective | MIC (mg/mL) | Effective | MIC (mg/mL) | |||
C1 | 2-[4-(dimethylamino)benzylidene]-N-nitrohydrazinecarboximidamide | Yes | 0.5 | No | - | |
S17 | 2-Amino-5-bromobenzimidazole | Yes | 0.5 | Yes | 0.5 | |
S4 | Albendazole | No | - | Yes | 0.0625 | |
S8 | Diflunisal | No | - | Yes | 0.0625 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Graham, J.; Zhai, T.; Liu, Y.; Huang, Z. Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach. Antibiotics 2022, 11, 528. https://doi.org/10.3390/antibiotics11040528
Zhang F, Graham J, Zhai T, Liu Y, Huang Z. Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach. Antibiotics. 2022; 11(4):528. https://doi.org/10.3390/antibiotics11040528
Chicago/Turabian StyleZhang, Fangyuan, Joshua Graham, Tianhua Zhai, Yanhong Liu, and Zuyi Huang. 2022. "Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach" Antibiotics 11, no. 4: 528. https://doi.org/10.3390/antibiotics11040528
APA StyleZhang, F., Graham, J., Zhai, T., Liu, Y., & Huang, Z. (2022). Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach. Antibiotics, 11(4), 528. https://doi.org/10.3390/antibiotics11040528