Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability
Abstract
:1. Introduction
2. Biomaterials in Orthopedics
2.1. Biomaterials for Replacements
2.1.1. Metallic Materials: Titanium and Titanium Alloys
2.1.2. Polymers: Ultra-High-Molecular-Weight Polyethylene
2.2. Biomaterials for Regeneration
2.2.1. Poly(ε-caprolactone)
2.2.2. Calcium Phosphates and Composites
3. Antibacterial and Anti-Adhesive Compounds
3.1. Metal Ions
3.2. Essential Oils
3.3. Vitamin E
4. Biomaterials Coupled with Anti-Adhesive and Antimicrobial Agents
4.1. Biomaterials for Replacements Coupled with Anti-Adhesive and Antimicrobial Agents
4.2. Biomaterials for Regeneration Coupled with Anti-Adhesive and Antimicrobial Agents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ag | silver |
BCP | biphasic calcium phosphate |
CaPs | calcium phosphates |
Ce | cerium |
CFU | colony-forming unit |
CT | chemically treated |
Cu | copper |
DLC | diamond-like carbon |
EO | essential oil |
FESEM | field emission scanning electron microscopy |
GA | gallic acid |
GLU | glucose |
GO | graphene oxide |
HA | Hydroxyapatite |
HXLPE | cross-linked polyethylene |
MRSA | methicillin-resistant Staphylococcus aureus |
OX-PE | oxidized PE |
P | peppermint |
PCL | polycaprolactone |
PDO | polydioxanone |
PE | polyethylene |
PGA | polyglycolic acid |
PJI | prosthetic joint infection |
PLA | polylactic acid |
PVA | polyvinyl alcohol |
ROS | reactive oxygen species |
SaOS-2 | sarcoma osteogenic-2 |
ST | starch |
TA | tannic acid |
TCP | tricalcium phosphate |
THA | total hip arthroplasty |
Ti | titanium |
TKA | total knee arthroplasty |
UHMWPE | ultra-high-molecular-weight polyethylene |
VE | Vitamin E |
VE-PE 0.1 | 0.1% w/w vitamin E |
VE-PE 0.5 | 0.5% w/w vitamin E |
Zn | zinc |
ZnO | zinc oxide |
β-TCP | β-tricalcium phosphate |
References
- Busscher, H.J.; van der Mei, H.C.; Subbiahdoss, G.; Jutte, P.C.; van den Dungen, J.J.A.M.; Zaat, S.A.J.; Schultz, M.J.; Grainger, D.W. Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface. Sci. Transl. Med. 2012, 4, 153rv10. [Google Scholar] [CrossRef] [Green Version]
- Klug, A.; Gramlich, Y.; Rudert, M.; Drees, P.; Hoffmann, R.; Weißenberger, M.; Kutzner, K.P. The Projected Volume of Primary and Revision Total Knee Arthroplasty Will Place an Immense Burden on Future Health Care Systems over the next 30 Years. Knee Surg. Sports Traumatol. Arthrosc. 2020, 29, 3287–3298. [Google Scholar] [CrossRef]
- Hasan, A.; Byambaa, B.; Morshed, M.; Cheikh, M.I.; Shakoor, R.A.; Mustafy, T.; Marei, H.E. Advances in Osteobiologic Materials for Bone Substitutes. J. Tissue Eng. Regen. Med. 2018, 12, 1448–1468. [Google Scholar] [CrossRef]
- Lin, X.; Yang, S.; Lai, K.; Yang, H.; Webster, T.J.; Yang, L. Orthopedic Implant Biomaterials with Both Osteogenic and Anti-Infection Capacities and Associated in Vivo Evaluation Methods. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 123–142. [Google Scholar] [CrossRef]
- Zardi, E.M.; Franceschi, F. Prosthetic Joint Infection. A Relevant Public Health Issue. J. Infect. Public Health 2020, 13, 1888–1891. [Google Scholar] [CrossRef]
- Sabah, S.A.; Alvand, A.; Price, A.J. Revision Knee Replacement for Prosthetic Joint Infection: Epidemiology, Clinical Outcomes and Health-Economic Considerations. Knee 2021, 28, 417–421. [Google Scholar] [CrossRef]
- Robinson, J.C.; Pozen, A.; Tseng, S.; Bozic, K.J. Variability in Costs Associated with Total Hip and Knee Replacement Implants. J. Bone Jt. Surg. Am. 2012, 94, 1693–1698. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. Biomaterials in Orthopaedics. J. R. Soc. Interface 2008, 5, 1137–1158. [Google Scholar] [CrossRef] [Green Version]
- Bjerke-Kroll, B.T.; Sculco, P.K.; McLawhorn, A.S.; Christ, A.B.; Gladnick, B.P.; Mayman, D.J. The Increased Total Cost Associated with Post-Operative Drains in Total Hip and Knee Arthroplasty. J. Arthroplast. 2014, 29, 895–899. [Google Scholar] [CrossRef]
- Yu, Y.; Kong, Y.; Ye, J.; Wang, A.; Si, W. Microbiological Pattern of Prosthetic Hip and Knee Infections: A High-Volume, Single-Centre Experience in China. J. Med. Microbiol. 2021, 70, 001305. [Google Scholar] [CrossRef]
- Parvizi, J.; Azzam, K.; Ghanem, E.; Austin, M.S.; Rothman, R.H. Periprosthetic Infection Due to Resistant Staphylococci: Serious Problems on the Horizon. Clin. Orthop. Relat. Res. 2009, 467, 1732–1739. [Google Scholar] [CrossRef] [Green Version]
- Tande, A.J.; Patel, R. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [Green Version]
- Ayoade, F.; Li, D.D.; Mabrouk, A.; Todd, J.R. Prosthetic Joint Infection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Report Annuale Riap 2019 e Compendio. Available online: https://riap.iss.it/riap/it/attivita/report/2020/10/19/report-riap-2019/ (accessed on 31 May 2021).
- Winkler, H. Treatment of Chronic Orthopaedic Infection. EFORT Open Rev. 2017, 2, 110–116. [Google Scholar] [CrossRef]
- Cochis, A.; Barberi, J.; Ferraris, S.; Miola, M.; Rimondini, L.; Vernè, E.; Yamaguchi, S.; Spriano, S. Competitive Surface Colonization of Antibacterial and Bioactive Materials Doped with Strontium and/or Silver Ions. Nanomaterials 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, B.F.; Muthukrishnan, G.; Masters, E.; Ninomiya, M.; Lee, C.C.; Schwarz, E.M. Staphylococcus Aureus Evasion of Host Immunity in the Setting of Prosthetic Joint Infection: Biofilm and Beyond. Curr. Rev. Musculoskelet. Med. 2018, 11, 389–400. [Google Scholar] [CrossRef]
- Drago, L.; Clerici, P.; Morelli, I.; Ashok, J.; Benzakour, T.; Bozhkova, S.; Alizadeh, C.; Del Sel, H.; Sharma, H.K.; Peel, T.; et al. The World Association against Infection in Orthopaedics and Trauma (WAIOT) Procedures for Microbiological Sampling and Processing for Periprosthetic Joint Infections (PJIs) and Other Implant-Related Infections. J. Clin. Med. 2019, 8, 933. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A.; Sperling, J.W.; Schleck, C.; Harmsen, W.; Cofield, R.H. Periprosthetic Infections after Shoulder Hemiarthroplasty. J. Shoulder Elbow Surg. 2012, 21, 1304–1309. [Google Scholar] [CrossRef] [Green Version]
- Peersman, G.; Laskin, R.; Davis, J.; Peterson, M. Infection in Total Knee Replacement: A Retrospective Review of 6489 Total Knee Replacements. Clin. Orthop. Relat. Res. 2001, 392, 15–23. [Google Scholar] [CrossRef]
- Paz, Z.; Zhu, C.; Lieber, S.B.; Fowler, M.L.; Shmerling, R.H. Presentation and Outcomes of Peri-Prosthetic Joint Infection: A Comparison of Culture-Positive and Culture-Negative Disease. Surg. Infect. 2021, 22, 828–835. [Google Scholar] [CrossRef]
- Tonnelier, M.; Bouras, A.; Joseph, C.; Samad, Y.E.; Brunschweiler, B.; Schmit, J.-L.; Mabille, C.; Lanoix, J.-P. Impact of Rifampicin Dose in Bone and Joint Prosthetic Device Infections Due to Staphylococcus Spp: A Retrospective Single-Center Study in France. BMC Infect. Dis. 2021, 21, 174. [Google Scholar] [CrossRef]
- Richards, J.; Inacio, M.C.S.; Beckett, M.; Navarro, R.A.; Singh, A.; Dillon, M.T.; Sodl, J.F.; Yian, E.H. Patient and Procedure-Specific Risk Factors for Deep Infection after Primary Shoulder Arthroplasty. Clin. Orthop. Relat. Res. 2014, 472, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- Raphel, J.; Holodniy, M.; Goodman, S.B.; Heilshorn, S.C. Multifunctional Coatings to Simultaneously Promote Osseointegration and Prevent Infection of Orthopaedic Implants. Biomaterials 2016, 84, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of Orthopedic Implants with Emphasis on Bacterial Adhesion Process and Techniques Used in Studying Bacterial-Material Interactions. Biomatter 2012, 2, 176–194. [Google Scholar] [CrossRef] [Green Version]
- Moran, E.; Byren, I.; Atkins, B.L. The Diagnosis and Management of Prosthetic Joint Infections. J. Antimicrob. Chemother. 2010, 65 (Suppl. 3), iii45–iii54. [Google Scholar] [CrossRef]
- Im, G.-I. Biomaterials in Orthopaedics: The Past and Future with Immune Modulation. Biomater. Res. 2020, 24, 7. [Google Scholar] [CrossRef] [Green Version]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A Critical Review of Multifunctional Titanium Surfaces: New Frontiers for Improving Osseointegration and Host Response, Avoiding Bacteria Contamination. Acta Biomater. 2018, 79, 1–22. [Google Scholar] [CrossRef]
- Ferraris, S.; Warchomicka, F.; Iranshahi, F.; Rimondini, L.; Cochis, A.; Spriano, S. Electron Beam Structuring of Ti6Al4V: New Insights on the Metal Surface Properties Influencing the Bacterial Adhesion. Materials 2020, 13, 409. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-Y.; Zhao, B.; Su, X.; Zhang, S.; Wang, S.; Keatch, R.; Zhao, Q. Reduction of Bacterial Adhesion on Titanium-Doped Diamond-like Carbon Coatings. Biofouling 2018, 34, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Jäger, M.; Jennissen, H.P.; Dittrich, F.; Fischer, A.; Köhling, H.L. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. Materials 2017, 10, 1302. [Google Scholar] [CrossRef] [Green Version]
- Bistolfi, A.; Giustra, F.; Bosco, F.; Sabatini, L.; Aprato, A.; Bracco, P.; Bellare, A. Ultra-High Molecular Weight Polyethylene (UHMWPE) for Hip and Knee Arthroplasty: The Present and the Future. J. Orthop. 2021, 25, 98–106. [Google Scholar] [CrossRef]
- Affatato, S.; Ruggiero, A.; Jaber, S.A.; Merola, M.; Bracco, P. Wear Behaviours and Oxidation Effects on Different UHMWPE Acetabular Cups Using a Hip Joint Simulator. Materials 2018, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Affatato, S.; Bracco, P.; Costa, L.; Villa, T.; Quaglini, V.; Toni, A. In Vitro Wear Performance of Standard, Crosslinked, and Vitamin-E-Blended UHMWPE. J. Biomed. Mater. Res. A 2012, 100, 554–560. [Google Scholar] [CrossRef]
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. [Google Scholar] [CrossRef]
- Regis, M.; Bracco, P.; Giorgini, L.; Fusi, S.; Dalla Pria, P.; Costa, L.; Schmid, C. Correlation between in Vivo Stresses and Oxidation of UHMWPE in Total Hip Arthroplasty. J. Mater. Sci. Mater. Med. 2014, 25, 2185–2192. [Google Scholar] [CrossRef]
- Di Foggia, M.; Affatato, S.; Taddei, P. Does the Addition of Vitamin E to Conventional UHMWPE Improve the Wear Performance of Hip Acetabular Cups? Micro-Raman Characterization of Differently Processed Polyethylene Acetabular Cups Worn on a Hip Joint Simulator. Braz. J. Med. Biol. Res. 2020, 53, e9930. [Google Scholar] [CrossRef]
- Hatano, N.; Higaki, M.; Otsu, Y.; Otsu, T.; Mikami, S.; Matsumoto, M.; Kono, D.; Matsubara, A.; Tomita, N. Destruction Energy Index (DEI) of Vitamin E Blended UHMWPE for Artificial Joints. Biosurf. Biotribol. 2019, 5, 24–27. [Google Scholar] [CrossRef]
- Taddei, P.; Pavoni, E.; Affatato, S. Comparative Micro-Raman Study on Standard, Cross-Linked and Vitamin E-Blended Polyethylene Acetabular Cups after Long-Term in Vitro Testing and Ageing. J. Raman Spectrosc. 2017, 48, 1065–1074. [Google Scholar] [CrossRef]
- Lambert, B.; Neut, D.; van der Veen, H.C.; Bulstra, S.K. Effects of Vitamin E Incorporation in Polyethylene on Oxidative Degradation, Wear Rates, Immune Response, and Infections in Total Joint Arthroplasty: A Review of the Current Literature. Int. Orthop. 2019, 43, 1549–1557. [Google Scholar] [CrossRef]
- de Andrade Pinto, S.A.; de Nadai Dias, F.J.; Brasil Camargo Cardoso, G.; Dos Santos Junior, A.R.; de Aro, A.A.; Pino, D.S.; Meneghetti, D.H.; Vitti, R.P.; Dos Santos, G.M.T.; de Carvalho Zavaglia, C.A. Polycaprolactone/Beta-Tricalcium Phosphate Scaffolds Obtained via Rotary Jet-Spinning: In Vitro and in Vivo Evaluation. Cells Tissues Organs 2021, 211, 1–15. [Google Scholar] [CrossRef]
- Bharadwaz, A.; Jayasuriya, A.C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110698. [Google Scholar] [CrossRef]
- Petit, C.; Tulliani, J.-M.; Tadier, S.; Meille, S.; Chevalier, J.; Palmero, P. Novel Calcium Phosphate/PCL Graded Samples: Design and Development in View of Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.P.; Chavali, M.S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Vale, A.C.; Cunha, E.P.F.; Paiva, M.C.; Reis, R.L.; Vaquette, C.; Alves, N.M. 3D-Printed Cryomilled Poly(ε-Caprolactone)/Graphene Composite Scaffolds for Bone Tissue Regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 961–972. [Google Scholar] [CrossRef]
- Comini, S.; Sparti, R.; Coppola, B.; Mohammadi, M.; Scutera, S.; Menotti, F.; Banche, G.; Cuffini, A.M.; Palmero, P.; Allizond, V. Novel Silver-Functionalized Poly(ε-Caprolactone)/Biphasic Calcium Phosphate Scaffolds Designed to Counteract Post-Surgical Infections in Orthopedic Applications. Int. J. Mol. Sci. 2021, 22, 10176. [Google Scholar] [CrossRef]
- Mostafavi, A.; Abudula, T.; Russell, C.S.; Mostafavi, E.; Williams, T.J.; Salah, N.; Alshahrie, A.; Harris, S.; Basri, S.M.M.; Mishra, Y.K.; et al. In Situ Printing of Scaffolds for Reconstruction of Bone Defects. Acta Biomater. 2021, 127, 313–326. [Google Scholar] [CrossRef]
- Hejazi, F.; Bagheri-Khoulenjani, S.; Olov, N.; Zeini, D.; Solouk, A.; Mirzadeh, H. Fabrication of Nanocomposite/Nanofibrous Functionally Graded Biomimetic Scaffolds for Osteochondral Tissue Regeneration. J. Biomed. Mater. Res. A 2021, 109, 1657–1669. [Google Scholar] [CrossRef]
- Ferraris, S.; Cochis, A.; Cazzola, M.; Tortello, M.; Scalia, A.; Spriano, S.; Rimondini, L. Cytocompatible and Anti-Bacterial Adhesion Nanotextured Titanium Oxide Layer on Titanium Surfaces for Dental and Orthopedic Implants. Front. Bioeng. Biotechnol. 2019, 7, 103. [Google Scholar] [CrossRef]
- Ferraris, S.; Spriano, S. Antibacterial Titanium Surfaces for Medical Implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 965–978. [Google Scholar] [CrossRef]
- Zhou, C.; Willing, R. Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics. J. Biomech. Eng. 2020, 142, 041006. [Google Scholar] [CrossRef]
- Paterson, T.E.; Shi, R.; Tian, J.; Harrison, C.J.; De Sousa Mendes, M.; Hatton, P.V.; Li, Z.; Ortega, I. Electrospun Scaffolds Containing Silver-Doped Hydroxyapatite with Antimicrobial Properties for Applications in Orthopedic and Dental Bone Surgery. J. Funct. Biomater. 2020, 11, 58. [Google Scholar] [CrossRef]
- Mohammadi, M.; Pascaud-Mathieu, P.; Allizond, V.; Tulliani, J.-M.; Coppola, B.; Banche, G.; Chaput, C.; Cuffini, A.M.; Rossignol, F.; Palmero, P. Robocasting of Single and Multi-Functional Calcium Phosphate Scaffolds and Its Hybridization with Conventional Techniques: Design, Fabrication and Characterization. Appl. Sci. 2020, 10, 8677. [Google Scholar] [CrossRef]
- Cao, H.; Kuboyama, N. A Biodegradable Porous Composite Scaffold of PGA/Beta-TCP for Bone Tissue Engineering. Bone 2010, 46, 386–395. [Google Scholar] [CrossRef]
- Horbert, V.; Xin, L.; Föhr, P.; Huber, R.; Burgkart, R.H.; Kinne, R.W. In Vitro Cartilage Regeneration with a Three-Dimensional Polyglycolic Acid (PGA) Implant in a Bovine Cartilage Punch Model. Int. J. Mol. Sci. 2021, 22, 11769. [Google Scholar] [CrossRef]
- Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1246–1262. [Google Scholar] [CrossRef]
- Kumar, A.; Mir, S.M.; Aldulijan, I.; Mahajan, A.; Anwar, A.; Leon, C.H.; Terracciano, A.; Zhao, X.; Su, T.-L.; Kalyon, D.M.; et al. Load-Bearing Biodegradable PCL-PGA-Beta TCP Scaffolds for Bone Tissue Regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 193–200. [Google Scholar] [CrossRef]
- Sirlin, C.B.; Boutin, R.D.; Brossmann, J.; Pathria, M.N.; Convery, F.R.; Bugbee, W.; Resnick, D. Polydioxanone Biodegradable Pins in the Knee: MR Imaging. AJR Am. J. Roentgenol. 2001, 176, 83–90. [Google Scholar] [CrossRef]
- Zelen, C.M.; Young, N.J. Digital Arthrodesis. Clin. Podiatr. Med. Surg. 2013, 30, 271–282. [Google Scholar] [CrossRef]
- Heene, S.; Thoms, S.; Kalies, S.; Wegner, N.; Peppermüller, P.; Born, N.; Walther, F.; Scheper, T.; Blume, C.A. Vascular Network Formation on Macroporous Polydioxanone Scaffolds. Tissue Eng. Part A 2021, 27, 1239–1249. [Google Scholar] [CrossRef]
- Saska, S.; Pilatti, L.; de S. Silva, E.S.; Nagasawa, M.A.; Câmara, D.; Lizier, N.; Finger, E.; Dyszkiewicz Konwińska, M.; Kempisty, B.; Tunchel, S.; et al. Polydioxanone-Based Membranes for Bone Regeneration. Polymers 2021, 13, 1685. [Google Scholar] [CrossRef]
- Salerno, A.; Fernández-Gutiérrez, M.; San Román del Barrio, J.; Domingo, C. Bio-Safe Fabrication of PLA Scaffolds for Bone Tissue Engineering by Combining Phase Separation, Porogen Leaching and ScCO2 Drying. J. Supercrit. Fluids 2015, 97, 238–246. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Park, S.; Kang, I.-G.; Kim, H.-E.; Han, C.-M. Tantalum-Coated Polylactic Acid Fibrous Membranes for Guided Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111112. [Google Scholar] [CrossRef]
- Bociaga, D.; Komorowski, P.; Batory, D.; Szymanski, W.; Olejnik, A.; Jastrzebski, K.; Jakubowski, W. Silver-Doped Nanocomposite Carbon Coatings (Ag-DLC) for Biomedical Applications–Physiochemical and Biological Evaluation. Appl. Surf. Sci. 2015, 355, 388–397. [Google Scholar] [CrossRef]
- Percival, S.L.; Hill, K.E.; Malic, S.; Thomas, D.W.; Williams, D.W. Antimicrobial Tolerance and the Significance of Persister Cells in Recalcitrant Chronic Wound Biofilms. Wound Repair Regen. 2011, 19, 1–9. [Google Scholar] [CrossRef]
- Dunne, K.; Hagen, F.; Pomeroy, N.; Meis, J.F.; Rogers, T.R. Intercountry Transfer of Triazole-Resistant Aspergillus Fumigatus on Plant Bulbs. Clin. Infect. Dis. 2017, 65, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Liu, Y.; Guo, J.; Wu, H.; Wang, J.; Wu, G. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects. Int. J. Mol. Sci. 2016, 17, 334. [Google Scholar] [CrossRef]
- Zhu, Y.; Goh, C.; Shrestha, A. Biomaterial Properties Modulating Bone Regeneration. Macromol. Biosci. 2021, 21, e2000365. [Google Scholar] [CrossRef]
- Ahadian, S.; Rahal, R.; Ramón-Azcón, J.; Obregón, R.; Hasan, A. Biomaterials in Tissue Engineering. In Tissue Engineering for Artificial Organs; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2017; pp. 35–83. ISBN 978-3-527-68993-4. [Google Scholar]
- Yang, S.; Liang, L.; Liu, L.; Yin, Y.; Liu, Y.; Lei, G.; Zhou, K.; Huang, Q.; Wu, H. Using MgO Nanoparticles as a Potential Platform to Precisely Load and Steadily Release Ag Ions for Enhanced Osteogenesis and Bacterial Killing. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111399. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, G.; Wang, X.; Wang, Y. Strain Rate and Porosity Effect on Mechanical Characteristics and Depolarization of Porous Poled PZT95/5 Ceramics. Materials 2020, 13, 4730. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, X.; Qian, M.; Wang, H.; Wang, F.; Wei, Y.; Midgley, A.C.; He, J.; Tian, H.; Zhao, Q. Nitrate-Functionalized Poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Front. Bioeng. Biotechnol. 2021, 9, 770121. [Google Scholar] [CrossRef]
- Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and Antimicrobial Biomaterials: An Overview. Apmis 2017, 125, 392–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrzębski, K.; Białecki, J.; Jastrzębska, A.; Kaczmarek, A.; Para, M.; Niedzielski, P.; Bociaga, D. Induced Biological Response in Contact with Ag-and Cu-Doped Carbon Coatings for Potential Orthopedic Applications. Materials 2021, 14, 1861. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.S.; Gentile, P.; Pires, R.A.; Reis, R.L.; Hatton, P.V. Multifunctional Bioactive Glass and Glass-Ceramic Biomaterials with Antibacterial Properties for Repair and Regeneration of Bone Tissue. Acta Biomater. 2017, 59, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Vasilev, K.; Sah, V.; Anselme, K.; Ndi, C.; Mateescu, M.; Dollmann, B.; Martinek, P.; Ys, H.; Ploux, L.; Griesser, H.J. Tunable Antibacterial Coatings That Support Mammalian Cell Growth. Nano Lett. 2010, 10, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Greulich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M.; Köller, M. The Toxic Effect of Silver Ions and Silver Nanoparticles towards Bacteria and Human Cells Occurs in the Same Concentration Range. RSC Adv. 2012, 2, 6981–6987. [Google Scholar] [CrossRef]
- Binkley, D.M.; Lee, B.E.J.; Saem, S.; Moran-Mirabal, J.; Grandfield, K. Fabrication of Polycaprolactone Electrospun Nanofibers Doped with Silver Nanoparticles Formed by Air Plasma Treatment. Nanotechnology 2019, 30, 215101. [Google Scholar] [CrossRef]
- Aksakal, B.; Demirel, M. In Vitro Study of Antimicrobial and Cell Viability on Newly Synthesized Bioglass-Based Bone Grafts: Effects of Selenium and Silver Additions. Proc. Inst. Mech. Eng. H 2018, 232, 1039–1047. [Google Scholar] [CrossRef]
- Jaekel, D.J.; Ong, K.L.; Lau, E.C.; Kurtz, S.M. The Epidemiology of Total Joint Arthroplasty Infections. In Infected Total Joint Arthroplasty: The Algorithmic Approach; Trebše, R., Ed.; Springer: London, UK, 2012; pp. 35–54. ISBN 978-1-4471-2482-5. [Google Scholar]
- Seo, N.; Park, C.; Stahl, A.M.; Cho, H.; Park, S.-W.; Yim, S.-H.; Yun, K.-D.; Ji, M.-K.; Kim, H.; Yang, Y.P.; et al. Effect of Zinc Oxide Nanoparticle Addition to Polycaprolactone Periodontal Membranes on Antibacterial Activity and Cell Viability. J. Nanosci. Nanotechnol. 2021, 21, 3683–3688. [Google Scholar] [CrossRef]
- Vrček, I.V.; Žuntar, I.; Petlevski, R.; Pavičić, I.; Dutour Sikirić, M.; Ćurlin, M.; Goessler, W. Comparison of in Vitro Toxicity of Silver Ions and Silver Nanoparticles on Human Hepatoma Cells. Environ. Toxicol. 2016, 31, 679–692. [Google Scholar] [CrossRef]
- Albers, C.E.; Hofstetter, W.; Siebenrock, K.A.; Landmann, R.; Klenke, F.M. In Vitro Cytotoxicity of Silver Nanoparticles on Osteoblasts and Osteoclasts at Antibacterial Concentrations. Nanotoxicology 2013, 7, 30–36. [Google Scholar] [CrossRef]
- Robu, A.; Antoniac, A.; Grosu, E.; Vasile, E.; Raiciu, A.D.; Iordache, F.; Antoniac, V.I.; Rau, J.V.; Yankova, V.G.; Ditu, L.M.; et al. Additives Imparting Antimicrobial Properties to Acrylic Bone Cements. Materials 2021, 14, 7031. [Google Scholar] [CrossRef] [PubMed]
- Badea, M.L.; Iconaru, S.L.; Groza, A.; Chifiriuc, M.C.; Beuran, M.; Predoi, D. Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules 2019, 24, 2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha Spp. Essential Oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntean, D.; Licker, M.; Alexa, E.; Popescu, I.; Jianu, C.; Buda, V.; Dehelean, C.A.; Ghiulai, R.; Horhat, F.; Horhat, D.; et al. Evaluation of Essential Oil Obtained from Mentha×piperita L. against Multidrug-Resistant Strains. Infect. Drug Resist. 2019, 12, 2905–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the Synergistic Action of Mentha Piperita Essential Oil with Common Antimicrobials. PLoS ONE 2018, 13, e0200902. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Almasian, A.; Najafi, F.; Eftekhari, M.; Shams Ardekani, M.R.; Sharifzadeh, M.; Khanavi, M. Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies. Evid.-Based Complement. Altern. Med. 2021, 2021, e6646702. [Google Scholar] [CrossRef]
- Heydari, M.; Zanfardino, A.; Taleei, A.; Bushehri, A.A.S.; Hadian, J.; Maresca, V.; Sorbo, S.; Napoli, M.D.; Varcamonti, M.; Basile, A.; et al. Effect of Heat Stress on Yield, Monoterpene Content and Antibacterial Activity of Essential Oils of Mentha x Piperita Var. Mitcham and Mentha Arvensis Var. Piperascens. Molecules 2018, 23, 1903. [Google Scholar] [CrossRef] [Green Version]
- Viault, G.; Kempf, M.; Ville, A.; Alsabil, K.; Perrot, R.; Richomme, P.; Hélesbeux, J.-J.; Séraphin, D. Semisynthetic Vitamin E Derivatives as Potent Antibacterial Agents against Resistant Gram-Positive Pathogens. ChemMedChem 2021, 16, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Bichara, D.A.; Suhardi, J.; Sheng, P.; Muratoglu, O.K. Effects of Vitamin E-Diffused Highly Cross-Linked UHMWPE Particles on Inflammation, Apoptosis and Immune Response against S. Aureus. Biomaterials 2017, 143, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Fazly Bazzaz, B.S.; Hadizadeh, F.; Roodbari, F.; Soheili, V. New Insight into Vitamins E and K1 as Anti-Quorum-Sensing Agents against Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2021, 65, e01342-20. [Google Scholar] [CrossRef] [PubMed]
- Vergalito, F.; Pietrangelo, L.; Petronio Petronio, G.; Colitto, F.; Alfio Cutuli, M.; Magnifico, I.; Venditti, N.; Guerra, G.; Di Marco, R. Vitamin E for Prevention of Biofilm-Caused Healthcare-Associated Infections. Open Med. 2019, 15, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraris, S.; Spriano, S.; Miola, M.; Bertone, E.; Allizond, V.; Cuffini, A.M.; Banche, G. Surface Modification of Titanium Surfaces through a Modified Oxide Layer and Embedded Silver Nanoparticles: Effect of Reducing/Stabilizing Agents on Precipitation and Properties of the Nanoparticles. Surf. Coat. Technol. 2018, 344, 177–189. [Google Scholar] [CrossRef]
- Afghah, F.; Ullah, M.; Seyyed Monfared Zanjani, J.; Akkus Sut, P.; Sen, O.; Emanet, M.; Saner Okan, B.; Culha, M.; Menceloglu, Y.; Yildiz, M.; et al. 3D Printing of Silver-Doped Polycaprolactone-Poly(Propylene Succinate) Composite Scaffolds for Skin Tissue Engineering. Biomed. Mater. 2020, 15, 035015. [Google Scholar] [CrossRef]
- Shalumon, K.T.; Sheu, C.; Chen, C.-H.; Chen, S.-H.; Jose, G.; Kuo, C.-Y.; Chen, J.-P. Multi-Functional Electrospun Antibacterial Core-Shell Nanofibrous Membranes for Prolonged Prevention of Post-Surgical Tendon Adhesion and Inflammation. Acta Biomater. 2018, 72, 121–136. [Google Scholar] [CrossRef]
- Jackson, J.; Lo, J.; Hsu, E.; Burt, H.M.; Shademani, A.; Lange, D. The Combined Use of Gentamicin and Silver Nitrate in Bone Cement for a Synergistic and Extended Antibiotic Action against Gram-Positive and Gram-Negative Bacteria. Materials 2021, 14, 3413. [Google Scholar] [CrossRef]
- Wekwejt, M.; Michno, A.; Truchan, K.; Pałubicka, A.; Świeczko-Żurek, B.; Osyczka, A.M.; Zieliński, A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. Nanomaterials 2019, 9, 1114. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Fei, D.; Zhang, Y.; Wang, Q. Functionalized Titanium Implant in Regulating Bacteria and Cell Response. Int. J. Nanomed. 2019, 14, 1433–1450. [Google Scholar] [CrossRef] [Green Version]
- Cazzola, M.; Ferraris, S.; Allizond, V.; Bertea, C.M.; Novara, C.; Cochis, A.; Geobaldo, F.; Bistolfi, A.; Cuffini, A.M.; Rimondini, L.; et al. Grafting of the Peppermint Essential Oil to a Chemically Treated Ti6Al4V Alloy to Counteract the Bacterial Adhesion. Surf. Coat. Technol. 2019, 378, 125011. [Google Scholar] [CrossRef]
- Gómez-Barrena, E.; Esteban, J.; Molina-Manso, D.; Adames, H.; Martínez-Morlanes, M.J.; Terriza, A.; Yubero, F.; Puértolas, J.A. Bacterial Adherence on UHMWPE with Vitamin E: An in Vitro Study. J. Mater. Sci. Mater. Med. 2011, 22, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Banche, G.; Bracco, P.; Bistolfi, A.; Allizond, V.; Boffano, M.; Costa, L.; Cimino, A.; Cuffini, A.M.; Del Prever, E.M.B. Vitamin E Blended UHMWPE May Have the Potential to Reduce Bacterial Adhesive Ability. J. Orthop. Res. 2011, 29, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Banche, G.; Allizond, V.; Bracco, P.; Bistolfi, A.; Boffano, M.; Cimino, A.; Brach del Prever, E.M.; Cuffini, A.M. Interplay between Surface Properties of Standard, Vitamin E Blended and Oxidised Ultra High Molecular Weight Polyethylene Used in Total Joint Replacement and Adhesion of Staphylococcus Aureus and Escherichia Coli. Bone Joint J. 2014, 96, 497–501. [Google Scholar] [CrossRef]
- Banche, G.; Bracco, P.; Allizond, V.; Bistolfi, A.; Boffano, M.; Cimino, A.; Brach del Prever, E.M.; Cuffini, A.M. Do Crosslinking and Vitamin E Stabilization Influence Microbial Adhesions on UHMWPE-Based Biomaterials? Clin. Orthop. Relat. Res. 2015, 473, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Bidossi, A.; Bortolin, M.; Toscano, M.; De Vecchi, E.; Romanò, C.L.; Mattina, R.; Drago, L. In Vitro Comparison between α-Tocopheryl Acetate and α-Tocopheryl Phosphate against Bacteria Responsible of Prosthetic and Joint Infections. PLoS ONE 2017, 12, e0182323. [Google Scholar] [CrossRef] [Green Version]
- Massaccesi, L.; Ragone, V.; Papini, N.; Goi, G.; Corsi Romanelli, M.M.; Galliera, E. Effects of Vitamin E-Stabilized Ultra High Molecular Weight Polyethylene on Oxidative Stress Response and Osteoimmunological Response in Human Osteoblast. Front. Endocrinol. 2019, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Knetsch, M.L.W.; Koole, L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Ovington, L.G. The Truth about Silver. Ostomy Wound Manag. 2004, 50, 1S–10S. [Google Scholar]
- Ferraris, S.; Venturello, A.; Miola, M.; Cochis, A.; Rimondini, L.; Spriano, S. Antibacterial and Bioactive Nanostructured Titanium Surfaces for Bone Integration. Appl. Surf. Sci. 2014, 311, 279–291. [Google Scholar] [CrossRef]
- Ferraris, S.; Spriano, S.; Bianchi, C.L.; Cassinelli, C.; Vernè, E. Surface Modification of Ti-6Al-4 v Alloy for Biomineralization and Specific Biological Response: Part II, Alkaline Phosphatase Grafting. J. Mater. Sci. Mater. Med. 2011, 22, 1835–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriano, S.; Ferraris, S.; Pan, G.; Cassinelli, C.; Vernè, E. Multifunctional Titanium: Surface Modification Process and Biological Response. J. Mech. Med. Biol. 2015, 15, 1540001. [Google Scholar] [CrossRef]
- Ferraris, S.; Spriano, S.; Pan, G.; Venturello, A.; Bianchi, C.L.; Chiesa, R.; Faga, M.G.; Maina, G.; Vernè, E. Surface Modification of Ti-6Al-4V Alloy for Biomineralization and Specific Biological Response: Part I, Inorganic Modification. J. Mater. Sci. Mater. Med. 2011, 22, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Kheybari, S.; Samadi, N.; Hosseini, S.V.; Fazeli, A.; Fazeli, M.R. Synthesis and Antimicrobial Effects of Silver Nanoparticles Produced by Chemical Reduction Method. Daru 2010, 18, 168–172. [Google Scholar]
- Amany, A.; El-Rab, S.F.G.; Gad, F. Effect of Reducing and Protecting Agents on Size of Silver Nanoparticles and Their Anti-Bacterial Activity. Dera Pharma Chem. 2012, 4, 53–65. [Google Scholar]
- Kakkar, R.; Sherly, E.D.; Madgula, K.; Devi, K.; Bojja, S. Synergetic Effect of Sodium Citrate and Starch in the Synthesis of Silver Nanoparticles. J. Appl. Polym. Sci. 2012, 126, E154–E161. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Q.; Yang, H.; Cheng, L. Antibacterial and Microstructure Properties of Titanium Surfaces Modified with Ag-Incorporated Nanotube Arrays. Mater. Res. 2016, 19, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Zong, M.; Bai, L.; Liu, Y.; Wang, X.; Zhang, X.; Huang, X.; Hang, R.; Tang, B. Antibacterial Ability and Angiogenic Activity of Cu-Ti-O Nanotube Arrays. Mater. Sci. Eng. C 2017, 71, 93–99. [Google Scholar] [CrossRef]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry Proanthocyanidins Have Anti-Biofilm Properties against Pseudomonas Aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499. [Google Scholar] [CrossRef] [Green Version]
- Savickiene, N.; Jekabsone, A.; Raudone, L.; Abdelgeliel, A.S.; Cochis, A.; Rimondini, L.; Makarova, E.; Grinberga, S.; Pugovics, O.; Dambrova, M.; et al. Efficacy of Proanthocyanidins from Pelargonium Sidoides Root Extract in Reducing, P. Gingivalis Viability While Preserving Oral Commensal, S. Salivarius. Materials 2018, 11, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizaki, T.; Saito, N.; Takai, O. Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir 2010, 26, 8147–8154. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.L.; Vinciguerra, J.; Lerdahl, J.M.; Bloebaum, R.D. Does Vitamin E-Blended UHMWPE Prevent Biofilm Formation? Clin. Orthop. Relat. Res. 2015, 473, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamna, F.; Spriano, S. Vitamin E: A Review of Its Application and Methods of Detection When Combined with Implant Biomaterials. Materials 2021, 14, 3691. [Google Scholar] [CrossRef]
- Bladen, C.L.; Tzu-Yin, L.; Fisher, J.; Tipper, J.L. In Vitro Analysis of the Cytotoxic and Anti-Inflammatory Effects of Antioxidant Compounds Used as Additives in Ultra High-Molecular Weight Polyethylene in Total Joint Replacement Components. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Molina-Manso, D.; Gómez-Barrena, E.; Esteban, J.; Adames, H.; Martínez, M.J.; Cordero, J.; Ferńndez-Roblas, R.; Puértolas, J.A. Bacterial Adherence on UHMWPE Doped with Vitamin E: An in Vitro Study. J. Phys. Conf. Ser. 2010, 252, 012014. [Google Scholar] [CrossRef]
- Dwivedi, P.; Narvi, S.S.; Tewari, R.P. Application of Polymer Nanocomposites in the Nanomedicine Landscape: Envisaging Strategies to Combat Implant Associated Infections. J. Appl. Biomater. Funct. Mater. 2013, 11, e129–e142. [Google Scholar] [CrossRef]
- Kędziora, A.; Wieczorek, R.; Speruda, M.; Matolínová, I.; Goszczyński, T.M.; Litwin, I.; Matolín, V.; Bugla-Płoskońska, G. Comparison of Antibacterial Mode of Action of Silver Ions and Silver Nanoformulations With Different Physico-Chemical Properties: Experimental and Computational Studies. Front. Microbiol. 2021, 12, 659614. [Google Scholar] [CrossRef]
- Guillaume, O.; Garric, X.; Lavigne, J.-P.; Van Den Berghe, H.; Coudane, J. Multilayer, Degradable Coating as a Carrier for the Sustained Release of Antibiotics: Preparation and Antimicrobial Efficacy in Vitro. J. Control. Release 2012, 162, 492–501. [Google Scholar] [CrossRef]
- Teo, E.Y.; Ong, S.-Y.; Chong, M.S.K.; Zhang, Z.; Lu, J.; Moochhala, S.; Ho, B.; Teoh, S.-H. Polycaprolactone-Based Fused Deposition Modeled Mesh for Delivery of Antibacterial Agents to Infected Wounds. Biomaterials 2011, 32, 279–287. [Google Scholar] [CrossRef]
- Melo, S.F.; Neves, S.C.; Pereira, A.T.; Borges, I.; Granja, P.L.; Magalhães, F.D.; Gonçalves, I.C. Incorporation of Graphene Oxide into Poly(ε-Caprolactone) 3D Printed Fibrous Scaffolds Improves Their Antimicrobial Properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110537. [Google Scholar] [CrossRef] [PubMed]
- Tardajos, M.G.; Cama, G.; Dash, M.; Misseeuw, L.; Gheysens, T.; Gorzelanny, C.; Coenye, T.; Dubruel, P. Chitosan Functionalized Poly-ε-Caprolactone Electrospun Fibers and 3D Printed Scaffolds as Antibacterial Materials for Tissue Engineering Applications. Carbohydr. Polym. 2018, 191, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Motealleh, B.; Zahedi, P.; Rezaeian, I.; Moghimi, M.; Abdolghaffari, A.H.; Zarandi, M.A. Morphology, Drug Release, Antibacterial, Cell Proliferation, and Histology Studies of Chamomile-Loaded Wound Dressing Mats Based on Electrospun Nanofibrous Poly(ε-Caprolactone)/Polystyrene Blends. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Afewerki, S.; Bassous, N.; Harb, S.; Palo-Nieto, C.; Ruiz-Esparza, G.U.; Marciano, F.R.; Webster, T.J.; Furtado, A.S.A.; Lobo, A.O. Advances in Dual Functional Antimicrobial and Osteoinductive Biomaterials for Orthopaedic Applications. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102143. [Google Scholar] [CrossRef]
- Coppo, E.; Marchese, A. Antibacterial Activity of Polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 380–390. [Google Scholar] [CrossRef]
- Eckhard, L.H.; Sol, A.; Abtew, E.; Shai, Y.; Domb, A.J.; Bachrach, G.; Beyth, N. Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus Faecalis. PLoS ONE 2014, 9, e109413. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-Y.; Che, Y.-J.; Lu, S.-J. Preparation and Application of Collagen Scaffold-Encapsulated Silver Nanoparticles and Bone Morphogenetic Protein 2 for Enhancing the Repair of Infected Bone. Biotechnol. Lett. 2015, 37, 467–473. [Google Scholar] [CrossRef]
- Du, H.; Wang, Y.; Yao, X.; Luo, Q.; Zhu, W.; Li, X.; Shen, Z. Injectable Cationic Hydrogels with High Antibacterial Activity and Low Toxicity. Polym. Chem. 2016, 7, 5620–5624. [Google Scholar] [CrossRef]
Material | Orthopedic Application | References |
---|---|---|
Ti and Ti alloys | Prosthesis stems; Fixation pins. | [8,16,27,28,30,31,49,50] |
UHWMPE | Liner of acetabular cups in total hip arthroplasties; Tibial insert and patellar components in total knee arthroplasties; Artificial joints in shoulder arthroplasties; Spacer in intervertebral artificial disc replacement. | [8,27,32,33,34,35,36,37,38,39,40,51] |
PCL+CaPs PGA+CaPs | Bioabsorbable devices for bone regeneration and drug delivery; Scaffolds for tissue engineering of cartilage and bone; Fibers for bone grafting. | [41,42,43,44,46,47,48,52,53,54,55,56,57] |
PGO | Fixation pins and biodegradable fixation pins; Implants for arthrodesis; Scaffolds/membranes for tissue engineering of cartilage and bone. | [58,59,60,61] |
PLA | Biodegradable devices for bone regeneration and delivery of growth factors; Scaffolds for tissue engineering of bone; Fibrous membranes guiding bone regeneration. | [42,62,63,64] |
Antimicrobial Compounds | Antimicrobial and Anti-Adhesive Properties | References |
---|---|---|
Silver | Anti-adhesive and antibiofilm properties against S. aureus strain (ATCC 29213) | [99] |
Anti-adhesive and antibiofilm properties against S. aureus (ATCC 43300) | [16] | |
Antibacterial effect against E. coli (CICC23657) and S. aureus (CICC10384) | [52] | |
Anti-adhesive and antibacterial properties against S. aureus (ATCC 29213) | [53] | |
Anti-adhesive and antibacterial properties against S. aureus (ATCC 29213) | [46] | |
Antibacterial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans | [100] | |
Antibacterial effect against E. coli (BCRC 11634) and S. aureus (BCRC 10451) | [101] | |
Antibacterial activity against S. aureus (Xen36) and P. aeruginosa (PA01) | [102] | |
Anti-adhesive action on S. aureus, S. epidermidis, Enterococcus faecalis, Enterobacter cloacae, and P. aeruginosa | [103] | |
Antibiofilm properties against S. aureus (ATCC25923) and Streptococcus mutans (UA159) | [104] | |
MgO–Ag nanocomposites | Antibacterial effect against E. coli and S. aureus | [73] |
Diamond-like carbon coating plus silver or copper | Reduction of E. coli adhesion and biofilm formation; antibacterial effect against E. coli | [75] |
Diamond-like carbon coating | Reduction of adhesion of E. coli (WTF 1693) and P. aeruginosa (ATCC 33347) | [30] |
ZnO nanoparticles | Reduction of MRSA adhesion and proliferation | [47] |
Essential oils (Mentha piperita) | Reduction of S. aureus (ATCC 29213) adhesion and biofilm formation | [105] |
Antibacterial effect on S. aureus ATCC 25923 and on P. aeruginosa ATCC 27853, and reduction of the capacity of the bacterial strains to adhere and generate biofilm. Anti-adhesive and antibiofilm properties against C. albicans (ATCC 10231) | [85] | |
Antibacterial effect on E. coli (ATCC 25922 and C5), P. aeruginosa (ATCC 27853), S. aureus (MRSA 388, ATCC 25923 and ATCC 6538), E. faecium (DSM 13590), and on fungal strain of C. parapsilosis (ATCC 22019). | [86] | |
Vitamin E | Reduction of S. epidermidis (ATCC 35984), S. aureus (ATCC 15981) adhesion. Variable results for the clinical strains tested | [106] |
Reduction of S. epidermidis (ATCC 35984, 12228 and a clinical biofilm-producing strain) adhesion and biofilm formation | [107] | |
Reduction of S. aureus (ATCC 29213) and E. coli (ATCC 25922) adhesion | [108] | |
Reduction of S. epidermidis (ATCC 35984), S. aureus (ATCC 29213), E. coli (ATCC 25922), and C. albicans (ATCC 10231) adhesion and biofilm formation | [109] | |
Anti-adhesive, antibacterial, and antibiofilm properties against S. aureus, S. epidermidis, and P. aeruginosa | [110] |
Antimicrobial Compounds | Biocompatibility | References |
---|---|---|
Silver | Ag+ ions did not affect cytocompatibility towards osteoblast (hFOB 1.19, ATCC CRL-11372) | [16] |
Rat mesenchymal stem cells and mouse 3T3 fibroblasts did not display reduced viability in silver’s presence | [52] | |
The addition of silver revealed a reduction in osteoblast-like human cells (SaOS-2, ATCC HTB-85) viability | [46] | |
Human dermal fibroblasts (HDF, ATCC PCS-201-030) were viable and maintained the proper morphology at lowest Ag+ concentrations | [100] | |
NIH/3T3 mouse embryonic fibroblasts (ATCC-CRL1658) showed good cell compatibility and low levels of cytotoxicity | [101] | |
MC3T3-E1 pre-osteoblasts were affected into cell area, length, width, and fluorescence intensity in Ag presence | [104] | |
MgO–Ag nanocomposites | Osteoblast-like human cells (SaOS-2) were able to proliferate and differentiate (at low Ag+ concentrations) | [73] |
Diamond-like carbon coating plus silver or copper | Osteoblast-like human cells (SaOS-2, ATCC) showed high proliferation levels (but depending on Ag/Cu dose) and human endothelial cells (EA.hy926, ATCC) showed depletion in viability | [75] |
ZnO nanoparticles | Human mesenchymal stem cells were supported in osteodifferentiation | [47] |
Essential oils (Mentha piperita) | Human MG-63 cell line (ATCC CRL-1427) had highest proliferation rates in samples with EOs compared to the control | [85] |
Vitamin E | Improved the ability of SaOS-2 to respond to oxidative stress | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allizond, V.; Comini, S.; Cuffini, A.M.; Banche, G. Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics 2022, 11, 529. https://doi.org/10.3390/antibiotics11040529
Allizond V, Comini S, Cuffini AM, Banche G. Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics. 2022; 11(4):529. https://doi.org/10.3390/antibiotics11040529
Chicago/Turabian StyleAllizond, Valeria, Sara Comini, Anna Maria Cuffini, and Giuliana Banche. 2022. "Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability" Antibiotics 11, no. 4: 529. https://doi.org/10.3390/antibiotics11040529
APA StyleAllizond, V., Comini, S., Cuffini, A. M., & Banche, G. (2022). Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics, 11(4), 529. https://doi.org/10.3390/antibiotics11040529