Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Mycobacterium avium-intracellulare Complex Isolates
4.2. Antibiotics and Potential Antibiofilm Agents
4.3. Minimum Inhibitory Concentration
4.4. Fractional Inhibitory Concentration Index
4.5. Biofilm Formation
4.6. Minimum Biofilm Eradication Concentrations and Minimum Biofilm Inhibition Concentrations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishiuchi, Y.; Iwamoto, T.; Maruyama, F. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex. Front. Med. 2017, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, E.; Pennington, K.; de Moraes, A.G.; Escalante, P. Characteristics of Mycobacterium avium complex (MAC) pulmonary disease in previously treated lung cancer patients. Respir. Med. Case Rep. 2017, 22, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72 (Suppl. S2), ii1–ii64. [Google Scholar] [CrossRef] [Green Version]
- Larsson, L.-O.; Polverino, E.; Hoefsloot, W.; Codecasa, L.R.; Diel, R.; Jenkins, S.G.; Loebinger, M.R. Pulmonary disease by non-tuberculous mycobacteria–clinical management, unmet needs and future perspectives. Expert Rev. Respir. Med. 2017, 11, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.; García-Coca, M. Mycobacterium Biofilms. Front. Microbiol. 2018, 8, 2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, J.P.; Ojha, A.K. Mycobacterial Biofilms. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Alam, A.; Rani, M.; Ehtesham, N.Z.; Hasnain, S.E. Biofilms: Survival and defense strategy for pathogens. Int. J. Med. Microbiol. 2017, 307, 481–489. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- de la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013, 16, 580–589. [Google Scholar] [CrossRef]
- Muñoz-Egea, M.-C.; Carrasco-Antón, N.; Esteban, J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin. Pharmacother. 2020, 21, 969–981. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Kroesen, V.M.; Rodríguez-Martínez, P.; García, E.; Rosales, Y.; Díaz, J.; Martín-Céspedes, M.; Tapia, G.; Sarrias, M.R.; Cardona, P.-J.; Vilaplana, C. A Beneficial Effect of Low-Dose Aspirin in a Murine Model of Active Tuberculosis. Front. Immunol. 2018, 9, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilaplana, C.; Marzo, E.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P.-J. Ibuprofen Therapy Resulted in Significantly Decreased Tissue Bacillary Loads and Increased Survival in a New Murine Experimental Model of Active Tuberculosis. J. Infect. Dis. 2013, 208, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Egea, M.-C.; García-Pedrazuela, M.; Mahillo-Fernandez, I.; Esteban, J. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria. Microb. Drug Resist. 2016, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Minrovic, B.M.; Melander, R.J.; Melander, C. Identification of Anti-Mycobacterial Biofilm Agents Based on the 2-Aminoimidazole Scaffold. ChemMedChem 2019, 14, 927–937. [Google Scholar] [CrossRef]
- Li, X.-H.; Lee, J.-H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 2017, 55, 753–766. [Google Scholar] [CrossRef]
- Rozhin, A.; Batasheva, S.; Kruychkova, M.; Cherednichenko, Y.; Rozhina, E.; Fakhrullin, R. Biogenic Silver Nanoparticles: Synthesis and Application as Antibacterial and Antifungal Agents. Micromachines 2021, 12, 1480. [Google Scholar] [CrossRef]
- Wu, M.-L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM drug discovery: Status, gaps and the way forward. Drug Discov. Today 2018, 23, 1502–1519. [Google Scholar] [CrossRef]
- Rose, S.J.; Neville, M.E.; Gupta, R.; Bermudez, L.E. Delivery of Aerosolized Liposomal Amikacin as a Novel Approach for the Treatment of Nontuberculous Mycobacteria in an Experimental Model of Pulmonary Infection. PLoS ONE 2014, 9, e108703. [Google Scholar] [CrossRef] [Green Version]
- Alni, R.H.; Ghorban, K.; Dadmanesh, M. Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech 2020, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-R.; Ma, Y.-K.; Xie, X.-B.; Shi, Q.-S.; Wen, X.; Sun, T.-L.; Peng, H. Diallyl Disulfide from Garlic Oil Inhibits Pseudomonas aeruginosa Quorum Sensing Systems and Corresponding Virulence Factors. Front. Microbiol. 2019, 9, 3222. [Google Scholar] [CrossRef] [PubMed]
- Hollander, J.G.D.; Mouton, J.W.; Verbrugh, H.A. Use of Pharmacodynamic Parameters to Predict Efficacy of Combination Therapy by Using Fractional Inhibitory Concentration Kinetics. Antimicrob. Agents Chemother. 1998, 42, 744–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portell-Buj, E.; López-Gavín, A.; González-Martín, J.; Tudó, G. In Vitro Biofilm Formation in Mycobacterium avium-intracellulare Complex. Arch. De Bronconeumol. 2020, 57, 140–141. [Google Scholar] [CrossRef]
- Yazici, A.; Örtücü, S.; Taşkin, M. Screening and characterization of a novel Antibiofilm polypeptide derived from filamentous Fungi. J. Proteom. 2020, 233, 104075. [Google Scholar] [CrossRef]
- Macia, M.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolates | MICs of Planktonic Forms (µg/mL) | |||||||||
AMK | CLR | EMB | MXF | ASA | DADS | IBP | NALC | PCM | Tween 80 | |
M. avium | ||||||||||
MIC90 | 16 | 4 | 8 | 2 | >64 | >64 | >64 | >64 | >64 | >64 |
M. intracellulare | ||||||||||
MIC90 | 16 | 2 | 8 | 2 | >64 | >64 | >64 | >64 | >64 | >64 |
M. avium ATCC | ||||||||||
MIC | 8 | 2 | 4 | 1 | >64 | >64 | >64 | >64 | >64 | >64 |
Isolates | MBECs and MBICs of Biofilm Forming Forms (µg/mL) | |||||||||
AMK | CLR | EMB | MXF | ASA | DADS | IBP | NALC | PCM | Tween 80 | |
M. avium | ||||||||||
MBEC90 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 |
MBIC90 | 2048 | 2048 | 2048 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 |
M. intracellulare | ||||||||||
MBEC90 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 |
MBIC90 | 4096 | 4096 | 2048 | 1024 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 |
M. avium ATCC | ||||||||||
MBEC | 1024 | 512 | 2048 | 256 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 |
MBIC | 1024 | 256 | 256 | 512 | 4096 | 4096 | 4096 | 4096 | 4096 | 4096 |
Isolates | CICs and FICIs of Planktonic Forms (µg/mL) | |||||
CIC90 CLR/AMK | FICI90 CLR/AMK | CIC90 AMK/MXF | FICI90 AMK/MXF | CIC90 CLR/EMB | FICI90 CLR/EMB | |
M. avium | 4 | 2.25 | 4 | 2.5 | 4 | 2.5 |
M. intracellulare | 4 | 2.5 | 4 | 2.25 | 4 | 3 |
M. avium ATCC | 4 | 2.5 | 2 | 2.25 | 4 | 3 |
Isolates | MBECs and MBICs of Biofilm Forming Forms (µg/mL) | |||||
CLR/AMK | FICI90 CLR/AMK | AMK/MXF | FICI90 AMK/MXF | CLR/EMB | FICI90 CLR/EMB | |
M. avium | ||||||
MBEC90 | 256 | 0.25 * | 256 | 1.12 | 512 | 0.5 |
MBIC90 | 1024 | ND | 2048 | ND | 2048 | ND |
M. intracellulare | ||||||
MBEC90 | 512 | 0.25 * | 512 | 0.25 * | 512 | 0.75 |
MBIC90 | 512 | ND | 2048 | ND | 512 | ND |
M. avium ATCC | ||||||
MBEC | 256 | 0.75 | 256 | 1.12 | 256 | 0.625 |
MBIC | 1024 | ND | 1024 | ND | 2048 | ND |
Isolates | MBIC (µg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C/K/A | FICI90 C/K/A | C/K/D | FICI90 C/K/D | C/K/I | FICI90 C/K/I | C/K/N | FICI90 C/K/N | C/K/P | FICI90 C/K/P | C/K/T80 | FICI90 C/K/T80 | |
M. avium | ||||||||||||
MBEC90 | 128 | 0.15 * | 128 | 0.3 * | 128 | 0.15 * | 256 | 0.3 * | 128 | 0.15 * | 256 | 0.3 * |
MBIC90 | 128 | ND | 128 | ND | 128 | ND | 256 | ND | 128 | ND | 256 | ND |
M. intracellulare | ||||||||||||
MBEC90 | 128 | 0.12 * | 128 | 0.0.9 * | 256 | 0.18 * | 128 | 0.18 * | 256 | 0.37 | 256 | 0.18 * |
MBIC90 | 128 | ND | 128 | ND | 256 | ND | 128 | ND | 256 | ND | 256 | ND |
M. avium ATCC | ||||||||||||
MBEC90 | 128 | 0.40 | 128 | 0.40 | 128 | 0.40 | 256 | 0.81 | 128 | 0.40 | 256 | 0.81 |
MBIC90 | 128 | ND | 128 | ND | 128 | ND | 256 | ND | 128 | ND | 512 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portell-Buj, E.; González-Criollo, C.; López-Gavín, A.; Fernández-Pittol, M.; Busquets, M.A.; Estelrich, J.; Garrigó, M.; Rubio, M.; Tudó, G.; Gonzalez-Martin, J. Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections. Antibiotics 2022, 11, 589. https://doi.org/10.3390/antibiotics11050589
Portell-Buj E, González-Criollo C, López-Gavín A, Fernández-Pittol M, Busquets MA, Estelrich J, Garrigó M, Rubio M, Tudó G, Gonzalez-Martin J. Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections. Antibiotics. 2022; 11(5):589. https://doi.org/10.3390/antibiotics11050589
Chicago/Turabian StylePortell-Buj, Elena, Cecibel González-Criollo, Alexandre López-Gavín, Mariana Fernández-Pittol, Maria Antònia Busquets, Joan Estelrich, Montserrat Garrigó, Marc Rubio, Griselda Tudó, and Julian Gonzalez-Martin. 2022. "Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections" Antibiotics 11, no. 5: 589. https://doi.org/10.3390/antibiotics11050589
APA StylePortell-Buj, E., González-Criollo, C., López-Gavín, A., Fernández-Pittol, M., Busquets, M. A., Estelrich, J., Garrigó, M., Rubio, M., Tudó, G., & Gonzalez-Martin, J. (2022). Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections. Antibiotics, 11(5), 589. https://doi.org/10.3390/antibiotics11050589