Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Flow Cytometry
2.3. Culture and Antibiotic Susceptibility Study
2.4. Direct Identification by MALDI-TOF MS
2.5. Direct Detection of Resistance (ESBL and Carbapenemases)
2.6. Communication of Results
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cantón, R.; Loza, E.; Aznar, J.; Castillo, F.J.; Cercenado, E.; Fraile-Ribot, P.A.; González-Romo, F.; López-Hontangas, J.L.; Rodríguez-Lozano, J.; Suárez-Barrenechea, A.I.; et al. Monitoring the antimicrobial susceptibility of Gram-negative organisms involved in intraabdominal and urinary tract infections recovered during the SMART study (Spain, 2016 and 2017). Rev. Española Quimioter. 2019, 32, 145–155. [Google Scholar]
- Merino, I.; Shaw, E.; Horcajada, J.P.; Cercenado, E.; Mirelis, B.; Pallarés, M.A.; Gómez, J.; Xercavins, M.; Martínez-Martínez, L.; De Cueto, M.; et al. CTX-M-15-H30Rx-ST131 subclone is one of the main causes of healthcare-associated ESBL-producing Escherichia coli bacteraemia of urinary origin in Spain. J. Antimicrob. Chemother. 2016, 71, 2125–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.; Sánchez-Juanes, F.; González-Ávila, M.; Cembrero-Fuciños, D.; Herrero-Hernández, A.; González-Buitrago, J.M.; Bellido, J.L.M. Direct Identification of Urinary Tract Pathogens from Urine Samples by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2010, 48, 2110–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- March Rosselló, G.A.; Gutiérrez Rodriguez, M.P.; Ortíz de Lejarazu Leonardo, R.; Orduna Domingo, A.; Bratos Pérez, M.A. Procedure for microbial identification based on Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry from screening-positive urine samples. APMIS 2014, 122, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Zhang, G.; Fan, Y.-Y.; Yang, X.; Sui, W.-J.; Lu, X.-X. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods 2013, 92, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Zboromyrska, Y.; Rubio, E.; Alejo, I.; Vergara, A.; Mons, A.; Campo, I.; Bosch, J.; Marco, F.; Vila, J. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin. Microbiol. Infect. 2016, 22, 561.e1–561.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zboromyrska, Y.; Bosch, J.; Aramburu, J.; Cuadros, J.; García-Riestra, C.; Guzmán-Puche, J.; Martos, C.L.; Loza, E.; Muñoz-Algarra, M.; De Alegría, C.R.; et al. A multicentre study investigating parameters which influence direct bacterial identification from urine. PLoS ONE 2018, 13, e0207822. [Google Scholar] [CrossRef] [PubMed]
- March Rosselló, G.A.; Gutiérrez Rodríguez, M.P.; Ortíz de Lejarazu Leonardo, R.O.; Orduna Domingo, A.; Bratos Pérez, M.Á. New procedure for rapid identification of microorganisms causing urinary tract infection from urine samples by mass spectrometry (MALDI-TOF). Enferm. Infecc. Microbiol. Clin. 2015, 33, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Moussaoui, W.; Jaulhac, B.; Hoffmann, A.-M.; Ludes, B.; Kostrzewa, M.; Riegel, P.; Prévost, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin. Microbiol. Infect. 2010, 16, 1631–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Scola, B.; Raoult, D. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS ONE 2009, 4, e8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, K.; Shigemura, K.; Onuma, K.I.; Nishida, M.; Fujiwara, M.; Kobayashi, S.; Yamasaki, M.; Nakamura, T.; Yamamichi, F.; Shirakawa, T.; et al. Improved bacterial identification directly from urine samples with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Clin. Lab. Anal. 2018, 32, e22301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Juanes, F.; Ruiz, M.S.; Obregón, F.M.; González, M.C.; Egido, S.H.; Serna, M.D.F.; González-Buitrago, J.M.; Muñoz-Bellido, J.L. Pretreatment of Urine Samples with SDS Improves Direct Identification of Urinary Tract Pathogens with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2014, 52, 335–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veron, L.; Mailler, S.; Girard, V.; Muller, B.H.; L’Hostis, G.; Ducruix, C.; Lesenne, A.; Richez, A.; Rostaing, H.; Lanet, V.; et al. Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Direct ID Using MALDI-TOF (Number of Samples) | Average or Maximum Value of Direct ID (Minimum–Maximum) | Culture Result (Number of Samples) |
---|---|---|
Escherichia coli (30) | 2.214 (1.861–2.498) | E. coli (27), E. coli + E. faecalis (1), E. coli + K. pneumoniae complex (1) and E. coli + P. aeruginosa (1) |
Klebsiella pneumoniae complex (10) | 2.189 (1.898–2.430) | K. pneumoniae complex (8), K. pneumoniae complex + P. aeruginosa (1) and K. pneumoniae complex + E. faecium (1) |
Pseudomonas aeruginosa (3) | 2.018 (1.770–2.145) | P. aeruginosa (2) and P. aeruginosa + K. pneumoniae complex (1) |
Klebsiella aerogenes (2) | 2.367 and 2.394 | K. aerogenes (2) |
Klebsiella oxytoca (2) | 2.291 and 2.377 | K. oxytoca (2) |
Proteus mirabilis (2) | 1.857 and 2.232 | P. mirabilis (2) |
Morganella morganii (1) | 2.305 | M. morganii (1) |
Enterobacter cloacae complex (1) | 2.221 | E. cloacae complex (1) |
Enterococcus faecalis (1) | 2.334 | E. faecalis (1) |
Enterococcus faecium (1) | 2.089 | E. faecium + E. faecalis (1) |
Aerococcus urinae (1) | 1.883 | A. urinae (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zboromyrska, Y.; Rico, V.; Pitart, C.; Fernández-Pittol, M.J.; Soriano, Á.; Bosch, J. Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis. Antibiotics 2022, 11, 582. https://doi.org/10.3390/antibiotics11050582
Zboromyrska Y, Rico V, Pitart C, Fernández-Pittol MJ, Soriano Á, Bosch J. Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis. Antibiotics. 2022; 11(5):582. https://doi.org/10.3390/antibiotics11050582
Chicago/Turabian StyleZboromyrska, Yuliya, Verónica Rico, Cristina Pitart, Mariana José Fernández-Pittol, Álex Soriano, and Jordi Bosch. 2022. "Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis" Antibiotics 11, no. 5: 582. https://doi.org/10.3390/antibiotics11050582
APA StyleZboromyrska, Y., Rico, V., Pitart, C., Fernández-Pittol, M. J., Soriano, Á., & Bosch, J. (2022). Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis. Antibiotics, 11(5), 582. https://doi.org/10.3390/antibiotics11050582