Real-World Effectiveness and Optimal Dosage of Favipiravir for Treatment of COVID-19: Results from a Multicenter Observational Study in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection and Study Definition
2.4. Statistical Analysis
3. Results
3.1. Hospital Course and Treatment Outcomes
3.2. Factors Associated with Day-7 Clinical Improvement
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 17 May 2022).
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Preliminary Report. N. Engl. J. Med. 2020, 383, 1813–1836. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Mahase, E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021, 375, n2713. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.A., 2nd; Eron, J.J., Jr.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R.; et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med. 2022, 14, eabl7430. [Google Scholar] [CrossRef]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B 2017, 93, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.Q.; Mu, J.S.; Kargbo, D.; Song, Y.B.; Niu, W.K.; Nie, W.M.; Kanu, A.; Liu, W.W.; Wang, Y.P.; Dafae, F.; et al. Clinical and Virological Characteristics of Ebola Virus Disease Patients Treated With Favipiravir (T-705)-Sierra Leone, 2014. Clin. Infect. Dis. 2016, 63, 1288–1294. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering 2020, 6, 1192–1198. [Google Scholar] [CrossRef]
- Chen, C.; Huang, J.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y.; Zhang, J.; et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv 2020. e-pub ahead of print. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, Y.; Huang, J.; Yin, P.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; et al. Favipiravir Versus Arbidol for Clinical Recovery Rate in Moderate and Severe Adult COVID-19 Patients: A Prospective, Multicenter, Open-Label, Randomized Controlled Clinical Trial. Front. Pharmacol. 2021, 12, 683296. [Google Scholar] [CrossRef]
- Chuah, C.H.; Chow, T.S.; Hor, C.P.; Cheng, J.T.; Ker, H.B.; Lee, H.G.; Lee, K.S.; Nordin, N.; Ng, T.K.; Zaid, M.; et al. Efficacy of Early Treatment with Favipiravir on Disease Progression among High Risk COVID-19 Patients: A Randomized, Open-Label Clinical Trial. Clin. Infect. Dis. 2021, 19, ciab962. [Google Scholar] [CrossRef]
- Dabbous, H.M.; El-Sayed, M.H.; El Assal, G.; Elghazaly, H.; Ebeid, F.F.S.; Sherief, A.F.; Elgaafary, M.; Fawzy, E.; Hassany, S.M.; Riad, A.R.; et al. Safety and efficacy of favipiravir versus hydroxychloroquine in management of COVID-19: A randomised controlled trial. Sci. Rep. 2021, 11, 18983. [Google Scholar] [CrossRef] [PubMed]
- Udwadia, Z.F.; Singh, P.; Barkate, H.; Patil, S.; Rangwala, S.; Pendse, A.; Kadam, J.; Wu, W.; Caracta, C.F.; Tandon, M. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int. J. Infect. Dis. 2021, 103, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, C.; Zhu, Q.; Chen, X.; Chen, G.; Sun, W.; Xiao, Z.; Du, W.; Yao, J.; Li, G.; et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: A multicenter, open-label, randomized trial. Int. Immunopharmacol. 2021, 97, 107702. [Google Scholar] [CrossRef] [PubMed]
- Bosaeed, M.; Alharbi, A.; Mahmoud, E.; Alrehily, S.; Bahlaq, M.; Gaifer, Z.; Alturkistani, H.; Alhagan, K.; Alshahrani, S.; Tolbah, A.; et al. Efficacy of favipiravir in adults with mild COVID-19: A randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2022, 28, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Hibino, M.; Hase, R.; Yamamoto, M.; Kasamatsu, Y.; Hirose, M.; Mutoh, Y.; Homma, Y.; Terada, M.; Ogawa, T.; et al. A Prospective, Randomized, Open-Label Trial of Early versus Late Favipiravir Therapy in Hospitalized Patients with COVID-19. Antimicrob. Agents Chemother. 2020, 64, e01897-20. [Google Scholar] [CrossRef]
- Manaf, A.; Nitya, K.; Dhuha, A.; Abdulkarim, A.; Fatema, A.; Mohammed, A.F.; Faisal, A.; Fatima, A.; Sawsan, S.; Amal, A.; et al. Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease. Sci. Rep. 2022, 12, 4925. [Google Scholar] [CrossRef]
- Pavan, K.R.; Saiprasad, P.; Akash, K.; Akash, B.; Aneesh, R.; Mrunalini, K.; Raghavendra, R.; Ravindra, S.; Jayanthi, C.; Abhinandan, M.; et al. Evaluation of the Safety and Efficacy of Favipiravir in Adult Indian Patients with Mild-to-Moderate COVID-19 in a Real-World Setting. Int. J. Gen. Med. 2022, 15, 4551–4563. [Google Scholar] [CrossRef]
- Hung, D.T.; Ghula, S.; Aziz, J.M.A.; Makram, A.M.; Tawfik, G.M.; Abozaid, A.A.; Pancharatnam, R.A.; Ibrahim, A.M.; Shabouk, M.B.; Turnage, M.; et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and meta-analysis of published clinical trials and observational studies. Int. J. Infect. Dis. 2022, 120, 217–227. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, G.; Salam, A.; Horby, P.; Hayden, F.G.; Chen, C.; Pan, J.; Zheng, J.; Lu, B.; Guo, L.; et al. Comparative Effectiveness of Combined Favipiravir and Oseltamivir Therapy Versus Oseltamivir Monotherapy in Critically Ill Patients With Influenza Virus Infection. J. Infect. Dis. 2020, 221, 1688–1698. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Guedj, J.; Anglaret, X.; Laouenan, C.; Madelain, V.; Taburet, A.M.; Baize, S.; Sissoko, D.; Pastorino, B.; Rodallec, A.; et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLOS Negl. Trop. Dis. 2017, 11, e0005389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 63) | Day-7 Clinical Improvement | p-Value | |
---|---|---|---|---|
Yes (n = 42) | No (n = 21) | |||
Age, median (range), year | 48 (22–85) | 47 (23–72) | 59 (22–85) | 0.02 |
Male sex | 39 (61.9%) | 25 (59.5%) | 14 (66.7%) | 0.78 |
Body weight, median (range), kg | 69 (45–125) | 68 (51–125) | 76 (45–120) | 0.08 |
Body mass index median (range), kg/m2 | 26.1 (19.0–43.8) | 25.0 (19.0–43.8) | 27.9 (20.8–39.2) | 0.04 |
Duration between, median (range), day | ||||
Symptom onset and admission date | 6 (0–28) | 6 (0–28) | 8 (0–15) | 0.08 |
Admission date and Day 1 of favipiravir therapy | 1 (−8–10) | 1 (−3–10) | 0 (-8–5) | 0.002 |
Symptom onset and Day 1 of favipiravir therapy | 8 (0–28) | 8 (2–28) | 8 (0–11) | 0.60 |
Exposure risk | ||||
Contact with confirmed COVID-19 cases | 26 (41.3%) | 19 (45.2%) | 7 (33.3%) | 0.42 |
Travel abroad | 7 (11.1%) | 5 (11.2%) | 2 (9.5%) | 1.00 |
Contact with a foreigner | 11 (17.5%) | 8 (19.1%) | 3 (14.3%) | 0.74 |
Travel to a local area with clustered cases | 38 (60.3%) | 28 (66.7%) | 10 (47.6%) | 0.18 |
Underlying diseases | ||||
Heart disease and hypertension | 9 (14.3%) | 7 (16.7%) | 2 (9.5%) | 0.71 |
Diabetes mellitus | 17 (27.0%) | 11 (26.2%) | 6 (28.6%) | 1.00 |
Chronic lung disease | 4 (6.4%) | 2 (7.1%) | 1 (4.8%) | 1.00 |
Chronic kidney disease | 4 (6.4%) | 3 (7.1%) | 1 (4.8%) | 1.00 |
Chronic liver disease | 3 (4.8%) | 3 (7.1%) | 0 (0%) | 0.55 |
Solid cancer | 4 (6.4%) | 2 (7.1%) | 1 (4.8%) | 1.00 |
Others | 4 (6.4%) | 2 (7.1%) | 2 (9.5%) | 0.60 |
Clinical presentation upon admission | ||||
Fever or body temperature of >37.5 °C | 55 (87.3%) | 36 (85.7%) | 19 (90.5%) | 0.71 |
Sore throat | 44 (69.8%) | 27 (64.3%) | 17 (81.0%) | 0.25 |
Rhinorrhea | 16 (25.4%) | 13 (31.0%) | 3 (14.3%) | 0.22 |
Cough | 47 (74.6%) | 30 (71.4%) | 17 (81.0%) | 0.54 |
Headache | 11 (17.5%) | 8 (19.1%) | 3 (14.3%) | 0.74 |
Myalgia | 17 (27.0%) | 12 (28.6%) | 5 (23.8%) | 0.77 |
Diarrhea | 8 (12.7%) | 6 (14.3%) | 2 (9.5%) | 0.71 |
Shortness of breath | 27 (42.9%) | 14 (33.3%) | 13 (61.9%) | 0.06 |
Illness severity at the time of favipiravir initiation | ||||
NEWS2 score, median (range) | 5 (0–16) | 4 (0–11) | 5 (0–16) | 0.003 |
Six-point disease severity scale, median (range) | 2.5 (1–5) | 2 (1–4) | 3 (2–5) | <0.001 |
1—No O2 supplementation with O2 saturation >94% | 4 (6.4%) | 4 (6.4%) | 0 (0) | <0.001 |
2—No O2 supplementation with O2 saturation ≤94% | 23 (36.4%) | 21 (50.0%) | 2 (9.5%) | |
3—Requiring O2 supplementation | 28 (44.4%) | 16 (40.1%) | 12 (57.1%) | |
4—Requiring high-flow O2 supplementation or non-invasive mechanical ventilation | 4 (6.4%) | 1 (2.4%) | 3 (14.3%) | |
5—Requiring invasive mechanical ventilation and/or extracorporeal membrane oxygenation | 4 (6.4%) | 0 (0%) | 4 (19.1%) | |
Baseline laboratory values * | ||||
Hemoglobin, median (range), (mg/dl) | 14.0 (8.0–18.0) | 14.0 (9.0–17.0) | 13.5 (8.0–18.0) | 0.48 |
White blood cell count, median (range), (cell/mm3) | 5735 (2910–41300) | 5420 (2910–41300) | 6810 (3180–15750) | 0.03 |
Serum creatinine, median (range), (mg/dl) | 0.9 (0.3–22.9) (n = 58) | 0.9 (0.4–22.9) (n = 27) | 0.9 (0.33–5.1) (n = 21) | 0.67 |
Serum albumin, median (range), (mg/dl) | 4.0 (1.8–4.9) (n = 53) | 4.2 (1.8–5.0) (n = 33) | 3.5 (2.6–4.1) (n = 20) | 0.002 |
Serum lactate dehydrogenase, median (range), (mg/dl) | 404 (145–1094) (n = 30) | 382 (145–567) (n = 17) | 453 (313–1094) (n = 13) | 0.03 |
Indication of favipiravir therapy | ||||
Abnormal chest imaging only | 26 (41.3%) | 24 (57.1%) | 2 (9.5%) | <0.001 |
Required O2 supplementation only | 3 (4.7%) | 2 (4.7%) | 1 (4.8%) | |
Abnormal chest X-ray and required O2 supplementation | 34 (54.0%) | 16 (38.1%) | 18 (85.7%) | |
Favipiravir regimen | ||||
Dose per body weight, median (range), mg/kg/day | ||||
Loading dose | 47.4 (29.1–71.1) | 49.2 (29.1–62.7) | 45.7 (29.6–71.1) | 0.47 |
Maintenance dose | 17.9 (10.9–26.7) | 18.5 (10.9–23.5) | 17.1 (11.1–26.7) | 0.37 |
Potentially sub-therapeutic dose | ||||
Loading dose of ≤45 MKD | 21 (33.3%) | 11 (26.2%) | 10 (47.6%) | 0.10 |
Maintenance dose of ≤15 MKD | 48 (76.2%) | 33 (78.6%) | 15 (71.4%) | 0.55 |
Duration of therapy, median (range), day | 12 (2–17) | 11.5 (2–16) | 12 (2–17) | 0.02 |
Other medications used ** | ||||
Any chloroquine-based agent | 62 (98.4%) | 41 (97.6%) | 21 (100%) | 1.00 |
Hydroxychloroquine | 54 (85.7%) | 36 (85.7%) | 18 (85.7%) | 1.00 |
Chloroquine | 14 (22.2%) | 8 (19.1%) | 6 (28.6%) | 0.52 |
Any protease inhibitor | 61 (96.8%) | 40 (95.2%) | 21 (100,0%) | 0.55 |
Darunavir/ritonavir | 51 (81.0%) | 35 (83.3%) | 16 (76.2%) | 0.51 |
Lopinavir/ritonavir | 22 (34.9%) | 13 (31.0%) | 9 (42.9%) | 0.26 |
Azithromycin | 31 (49.2%) | 17 (40.5%) | 14 (66.7%) | 0.06 |
Steroid | 8 (12.7%) | 5 (11.9%) | 3 (14.3%) | 1.00 |
Tocilizumab | 4 (6.4%) | 1 (2.4%) | 3 (14.3%) | 0.10 |
Variables | All Patients (n = 63) |
---|---|
Clinical improvement | |
Day-7 clinical improvement | 42 (66.7%) |
Patients who did not require O2 supplementation (n = 27) | 25 (92.6%) |
Patients who required O2 supplementation (n = 36) | 17 (47.2%) |
Day-14 clinical improvement | 54 (85.7%) |
Patients who did not require O2 supplementation (n = 27) | 27 (100.0%) |
Patients who required O2 supplementation (n = 36) | 27 (75.0%) |
Day-28 clinical improvement | 57 (90.5%) |
Patients who did not require O2 supplementation (n = 27) | 27 (100.0%) |
Patients who required O2 supplementation (n = 36) | 30 (83.3%) |
ICU duration, median (range), day | 0 (0–46) |
Required IMV * or ECMO ** during hospitalization | 8 (12.7%) |
Required IMV * or ECMO ** before initiation of favipiravir | 4 (6.3%) |
Required IMV * or ECMO ** after initiation of favipiravir | 4 (6.3%) |
14-day mortality rate | 1 (1.6%) |
28-day mortality rate | 3 (4.8%) |
In-hospital mortality rate | 5 (7.9%) |
Length of hospital stay, median (range), day | 15 (2–47) |
Adverse drug reactions | 39 (61.9%) |
Diarrhea | 34 (54.0%) |
Hepatitis | 4 (6.4%) |
QT interval prolongation | 4 (6.4%) |
Nausea and vomiting | 5 (7.9%) |
Superimposed bacterial infection | 8 (12.7%) |
Variables | Unadjusted Odd Ratio [95%CI; p-Value] | Adjusted Odd Ratio [95%CI; p-Value] |
---|---|---|
Age, year | 0.95 [0.92–099; p = 0.02] | 0.94 [0.89–0.99; p = 0.04] |
Baseline NEWS2 score | 0.77 [ 0.65–0.92; p = 0.004] | 0.64 [0.47–0.88; p = 0.006] |
Low loading dose of favipiravir | 0.39 [0.13–1.17; p = 0.09] | 0.04 [0.005–0.41; p = 0.006] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattanaumpawan, P.; Jirajariyavej, S.; Lerdlamyong, K.; Palavutitotai, N.; Saiyarin, J. Real-World Effectiveness and Optimal Dosage of Favipiravir for Treatment of COVID-19: Results from a Multicenter Observational Study in Thailand. Antibiotics 2022, 11, 805. https://doi.org/10.3390/antibiotics11060805
Rattanaumpawan P, Jirajariyavej S, Lerdlamyong K, Palavutitotai N, Saiyarin J. Real-World Effectiveness and Optimal Dosage of Favipiravir for Treatment of COVID-19: Results from a Multicenter Observational Study in Thailand. Antibiotics. 2022; 11(6):805. https://doi.org/10.3390/antibiotics11060805
Chicago/Turabian StyleRattanaumpawan, Pinyo, Supunnee Jirajariyavej, Kanokorn Lerdlamyong, Nattawan Palavutitotai, and Jatuporn Saiyarin. 2022. "Real-World Effectiveness and Optimal Dosage of Favipiravir for Treatment of COVID-19: Results from a Multicenter Observational Study in Thailand" Antibiotics 11, no. 6: 805. https://doi.org/10.3390/antibiotics11060805
APA StyleRattanaumpawan, P., Jirajariyavej, S., Lerdlamyong, K., Palavutitotai, N., & Saiyarin, J. (2022). Real-World Effectiveness and Optimal Dosage of Favipiravir for Treatment of COVID-19: Results from a Multicenter Observational Study in Thailand. Antibiotics, 11(6), 805. https://doi.org/10.3390/antibiotics11060805