Stemming the Rise of Antibiotic Use for Community-Acquired Acute Respiratory Infections during COVID-19 Pandemic
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics and Baseline Characteristics
2.2. Primary and Secondary Outcomes
2.3. ASU Interventions during “Post-Implementation” Period
2.4. Safety Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. ASU’s Intervention
4.3. Study Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARI | Acute respiratory infection |
ASU | Antimicrobial stewardship unit |
CA-ARI | Community acquired acute respiratory infection |
CAP | Community acquired pneumonia |
PAF | Prospective audit and feedback |
RSWs | Respiratory surveillance wards |
References
- Coronavirus Disease 2019 (COVID-19) Situation Report—41; World Health Organization: Geneva, Switzerland, 2020.
- Lee, V.J.; Chiew, C.J.; Khong, W.X. Interrupting transmission of COVID-19: Lessons from containment efforts in Singapore. J Travel. Med. 2020, 27, taaa039. [Google Scholar] [CrossRef] [Green Version]
- Wee, L.E.; Hsieh, J.Y.C.; Phua, G.C.; Tan, Y.; Conceicao, E.P.; Wijaya, L.; Tan, T.T.; Tan, B.H. Respiratory surveillance wards as a strategy to reduce nosocomial transmission of COVID-19 through early detection: The experience of a tertiary-care hospital in Singapore. Infect. Control Hosp. Epidemiol. 2020, 41, 820–825. [Google Scholar] [CrossRef]
- Liew, Y.; Lee, W.H.L.; Tan, L.; Kwa, A.L.H.; Thien, S.Y.; Cherng, B.P.Z.; Chung, S.J. Antimicrobial stewardship programme: A vital resource for hospitals during the global outbreak of coronavirus disease 2019 (COVID-19). Int. J. Antimicrob. Agents 2020, 56, 106145. [Google Scholar] [CrossRef]
- Kamat, I.S.; Ramachandran, V.; Eswaran, H.; Guffey, D.; Musher, D.M. Procalcitonin to distinguish viral from bacterial pneumonia: A systematic review and meta-analysis. Clin. Infect. Dis. 2020, 70, 538–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to Initiate or Discontinue Antibiotics in Acute Respiratory Tract Infections. Cochrane Database Syst. Rev. 2017, 10, CD007498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018, 18, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Bolliger, R.; Merker, M.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Luyt, C.E.; Wolff, M.; Schroeder, S.; Nobre, V.; et al. Procalcitonin-guided antibiotic therapy algorithms for different types of acute respiratory infections based on previous trials. Expert Rev. Anti Infect. 2018, 16, 555–564. [Google Scholar] [CrossRef]
- Self, W.H.; Balk, R.A.; Grijalva, C.G.; Williams, D.J.; Zhu, Y.; Anderson, E.J.; Waterer, G.W.; Courtney, D.M.; Bramley, A.M.; Trabue, C.; et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin. Infect. Dis. 2017, 65, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef]
- Loo, L.W.; Liew, Y.X.; Lee, W.; Lee, L.W.; Chlebicki, P.; Kwa, A.L.-H. Discontinuation of antibiotic therapy within 24 hours of treatment initiation for patients with no clinical evidence of bacterial infection: A 5-year safety and outcome study from singapore general hospital antimicrobial stewardship program. Int. J. Antimicrob. Agents 2019, 53, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Grau, S.; Echeverria-Esnal, D.; Gómez-Zorrilla, S.; Navarrete-Rouco, M.E.; Masclans, J.R.; Espona, M.; Gracia-Arnillas, M.P.; Duran, X.; Comas, M.; Horcajada, J.P.; et al. Evolution of antimicrobial consumption during the first wave of COVID-19 pandemic. Antibiotics 2021, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Murgadella-Sancho, A.; Coloma-Conde, A.; Oriol-Bermúdez, I. Impact of the strategies implemented by an antimicrobial stewardship program on the antibiotic consumption in the coronavirus disease 2019 (COVID-19) pandemic. Infect. Control Hosp. Epidemiol. 2021; 1–2, online ahead of print. [Google Scholar] [CrossRef]
- Borek, A.J.; Maitland, K.; McLeod, M.; Campbell, A.; Hayhoe, B.; Butler, C.C.; Morrell, L.; Roope, L.S.J.; Holmes, A.; Walker, A.S.; et al. Impact of the COVID-19 pandemic on community antibiotic prescribing and stewardship: A qualitative interview study with general practitioners in England. Antibiotics 2021, 10, 1531. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.; Budd, E.L.; Hendrick, A.; Ashiru-Oredope, D.; Beech, E.; Hopkins, S.; Gerver, S.; Muller-Pebody, B.; The AMU COVID-19 Stakeholder Group. Surveillance of antibacterial usage during the COVID-19 pandemic in England, 2020. Antibiotics 2021, 10, 841. [Google Scholar] [CrossRef]
- Gillies, M.B.; Burgner, D.P.; Ivancic, L.; Nassar, N.; Miller, J.E.; Sullivan, S.G.; Todd, I.M.F.; Pearson, S.-A.; Schaffer, A.L.; Zoega, H. Changes in antibiotic prescribing following COVID-19 Restrictions: Lessons for post-pandemic antibiotic stewardship. Br. J. Clin. Pharmacol. 2022, 88, 1143–1151. [Google Scholar] [CrossRef]
- Subramanya, S.; Czyz, D.; Acharya, K.; Humphreys, H. The Potential Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Antibiotic Stewardship. VirusDis. 2021, 32, 330–337. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Rossolini, G.M.; Schultsz, C.; Tacconelli, E.; Murthy, S.; Ohmagari, N.; Holmes, A.; Bachmann, T.; Goossens, H.; Canton, R.; et al. Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1122–1129. [Google Scholar] [CrossRef]
- Clancy, C.J.; Buehrle, D.J.; Nguyen, M.H. PRO: The COVID-19 Pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob. Resist. 2020, 2, dlaa049. [Google Scholar] [CrossRef]
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling Antimicrobial Resistance in the COVID-19 Pandemic. Bull. World Health Organ. 2020, 98, 442. [Google Scholar] [CrossRef]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef] [PubMed]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Pellegrino, M.; Mariconda, A.; Longo, P.; Sinicropi, M.S.; Aquaro, S. COVID-19 at a Glance: An up-to-date overview on variants, drug design and therapies. Viruses 2022, 14, 573. [Google Scholar] [CrossRef] [PubMed]
- Henig, O.; Kehat, O.; Meijer, S.E.; Chikly, A.; Weiss-Meilik, A.; Egoz, E.; Ben-Ami, R.; Paran, Y. Antibiotic use during the COVID-19 Pandemic in a tertiary hospital with an ongoing antibiotic stewardship program. Antibiotics 2021, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Foolad, F.; Nagel, J.L.; Eschenauer, G.; Patel, T.S.; Nguyen, C.T. Disease-based antimicrobial stewardship: A review of active and passive approaches to patient management. J. Antimicrob. Chemother. 2017, 72, 3232–3244. [Google Scholar] [CrossRef] [Green Version]
- Information Technology Can Support Antimicrobial Stewardship Programs: SHEA White Paper Outlines the Role of EHR and “add on” Clinical Decision Support. Available online: https://www.sciencedaily.com/releases/2019/04/190423145526.htm (accessed on 24 March 2022).
- Christensen, I.; Haug, J.B.; Berild, D.; Bjørnholt, J.V.; Jelsness-Jørgensen, L.-P. Hospital physicians’ experiences with procalcitonin—Implications for antimicrobial stewardship; a qualitative study. BMC Infect. Dis. 2020, 20, 515. [Google Scholar] [CrossRef]
- Rodrigues, A.; Roque, F.; Falcao, A.; Figueiras, A.; Herdeiro, M. Understanding physician antibiotic prescribing behaviour: A systematic review of qualitative studies. Int. J. Antimicrob. Agents 2013, 41, 203–212. [Google Scholar] [CrossRef]
- Warreman, E.B.; Lambregts, M.M.C.; Wouters, R.H.P.; Visser, L.G.; Staats, H.; van Dijk, E.; de Boer, M.G.J. Determinants of in-hospital antibiotic prescription behaviour: A systematic review and formation of a comprehensive framework. Clin. Microbiol. Infect. 2019, 25, 538–545. [Google Scholar] [CrossRef]
- Wan, W.Y.; Thoon, K.C.; Loo, L.H.; Chan, K.S.; Oon, L.L.E.; Ramasamy, A.; Maiwald, M. Trends in respiratory virus infections during the COVID-19 pandemic in Singapore, 2020. JAMA Netw. Open 2021, 4, e2115973. [Google Scholar] [CrossRef]
Pre-Implementation Period (22 March 2020–18 April 2020) n = 139 | Post-Implementation Period (21 April 2020–13 July 2020) n = 381 | p-Value | |
---|---|---|---|
Patient demographics, median [IQR] or n(%) | |||
Age in years | 68 (56–81) | 71 (57–82) | 0.270 |
Male | 67 (48.2) | 216 (56.7) | 0.085 |
Charlson’s comorbidity index | 4 (2–6) | 5 (2–7) | <0.001 |
Congestive heart failure | 15 (10.8) | 50 (13.1) | 0.477 |
Chronic kidney disease, stages 4–5 or receiving dialysis | 8 (5.8) | 41 (10.8) | 0.084 |
Lung malignancy | 14 (10.1) | 33 (8.7) | 0.620 |
Underlying structural lung disease (COPD/bronchiectasis) | 19 (13.7) | 51 (13.4) | 0.933 |
Biochemical parameters a, median [IQR] or n (%) | |||
Procalcitonin in µg/L | 0.07 (0.06–0.13) | 0.07 (0.06–0.15) | 0.715 |
Patients with undetectable procalcitonin (<0.06 µg/L) | 56 (40.3) | 137 (36.0) | 0.366 |
C-reactive protein in mg/L | 12.5 (2.30–51.00) | 11.2 (3.05–44.95) | 0.781 |
Patients with C-reactive protein <20 mg/L | 73/117 (62.4) | 212/346 (61.3) | 0.829 |
White blood cells × 109/L | 8.75 (6.26–11.52) | 8.82 (7.04–11.57) | 0.364 |
Patients with white blood cells <10 × 109/L | 79/136 (58.1) | 228/369 (61.8) | 0.450 |
Neutrophil differential in % | 71.9 (62.08–79.90) | 72.7 (63.15–79.85) | 0.452 |
Patients with neutrophils differential <80% | 104/136 (76.5) | 280/369 (75.9) | 0.890 |
Microbiological investigations, n (%) | |||
Laboratory confirmed respiratory viral infection b using respiratory panel RT-PCR assays c | 17 (12.2) | 5 (1.3) | <0.001 |
SARS-CoV-2 | 9 | 1 | |
Influenza A | 1 | 1 | |
Rhinovirus | 3 | 0 | |
Metapneumovirus | 2 | 0 | |
Adenovirus | 1 | 2 | |
Human coronavirus OC43 | 1 | 0 | |
Respiratory syncytial virus | 0 | 1 | |
Positive respiratory cultures | 0 (0.0) | 1 d (0.3) | 1.000 |
Pre-Implementation Period (22 March 2020–18 April 2020) n = 139 | Post-Implementation Period (21 April 2020–13 July 2020) n = 381 | p-Value | |
---|---|---|---|
Primary outcome | |||
Patients with antibiotics discontinued within 4-days, n (%) | 23 (16.5) | 133 (34.9) | <0.001 |
Secondary outcomes | |||
Overall duration of antibiotic therapy in days, median [IQR] | 7 (6–8) | 6 (3–8) | <0.001 |
Patients with IV-to-PO switch of antibiotics, n (%) | 63 (45.3) | 131 (34.4) | <0.05 |
Patients receiving IV antibiotics only, n (%) | 17 (12.2) | 75 (19.7) | <0.05 |
Corresponding duration of therapy in days, median [IQR] | 3 (2–8) | 2 (1–5) | <0.05 |
Corresponding length of hospitalization in days, median [IQR] | 10 (3.5–16) | 5 (3–10) | 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.Y.C.; Zhou, Y.P.; Yii, D.; Chin, D.Z.; Hung, K.C.; Lee, L.W.; Lim, J.L.; Loo, L.W.; Koomanan, N.; Chua, N.G.; et al. Stemming the Rise of Antibiotic Use for Community-Acquired Acute Respiratory Infections during COVID-19 Pandemic. Antibiotics 2022, 11, 846. https://doi.org/10.3390/antibiotics11070846
Lim SYC, Zhou YP, Yii D, Chin DZ, Hung KC, Lee LW, Lim JL, Loo LW, Koomanan N, Chua NG, et al. Stemming the Rise of Antibiotic Use for Community-Acquired Acute Respiratory Infections during COVID-19 Pandemic. Antibiotics. 2022; 11(7):846. https://doi.org/10.3390/antibiotics11070846
Chicago/Turabian StyleLim, Shena Y. C., Yvonne P. Zhou, Daphne Yii, De Zhi Chin, Kai Chee Hung, Lai Wei Lee, Jia Le Lim, Li Wen Loo, Narendran Koomanan, Nathalie Grace Chua, and et al. 2022. "Stemming the Rise of Antibiotic Use for Community-Acquired Acute Respiratory Infections during COVID-19 Pandemic" Antibiotics 11, no. 7: 846. https://doi.org/10.3390/antibiotics11070846
APA StyleLim, S. Y. C., Zhou, Y. P., Yii, D., Chin, D. Z., Hung, K. C., Lee, L. W., Lim, J. L., Loo, L. W., Koomanan, N., Chua, N. G., Liew, Y., Cherng, B. P. Z., Thien, S. Y., Lee, W. H. L., Kwa, A. L. H., & Chung, S. J. (2022). Stemming the Rise of Antibiotic Use for Community-Acquired Acute Respiratory Infections during COVID-19 Pandemic. Antibiotics, 11(7), 846. https://doi.org/10.3390/antibiotics11070846