Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach
Abstract
:1. Introduction
2. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) as Antimicrobial Agents
Drug | Drug in Combination | Kind of Study | Bacterial Inhibition | Strains Tested | Refs. |
---|---|---|---|---|---|
Acetylsalicylic acid | - | In vitro | XTT reduction (%) by biofilms after 48 h ranging from 29.02 to 54.12 | C. albicans (ATCC 10231, ATCC 10231, ATCC 90028, ATCC 24433, 17a18), C. glabrata (ATCC 15126, 18a10) C. guilliermondii (ATCC 6260, a83, a410) | [35] |
Acetylsalicylic acid | Anidulafungin | In vitro | XTT reduction (%) by biofilms after 48 h ranging from 41.54 to 82.81 | C. albicans (ATCC 10231, ATCC 10231, ATCC 90028, ATCC 24433, 17a18), C. glabrata (ATCC 15126, 18a10) C. guilliermondii (ATCC 6260, a83, a410) | [35] |
Diclofenac | - | In vitro | XTT reduction (%) by biofilms after 48 h ranging from 44.54 to 60.98 | C. albicans (ATCC 10231, ATCC 10231, ATCC 90028, ATCC 24433, 17a18), C. glabrata (ATCC 15126, 18a10) C. guilliermondii (ATCC 6260, a83, a410) | [35] |
Diclofenac | Anidulafungin | In vitro | XTT reduction (%) by biofilms after 48 h ranging from 54.28 to 71.04 | C. albicans (ATCC 10231, ATCC 10231, ATCC 90028, ATCC 24433, 17a18), C. glabrata (ATCC 15126, 18a10) C. guilliermondii (ATCC 6260, a83, a410) | [35] |
Diclofenac | Anidulafungin | In vitro | MIC values ranging from 1.02 μg/mL to 2.05 μg/mL | C. albicans (ATCC 10231, ATCC 90028, A18, 10A12, 810), C. glabrata ATCC 15126, C. tropicalis (ATCC 750, 810) C. kefyr ATCC 204093, C. krusei (ATCC 6258, 31A29), C. parapsilosis (11A13, 1A1, 911, 910) | [36] |
Diclofenac | M. piperita Essential Oil | In vitro | MIC values ranging from 0.05 μg/mL to 0.51 μg/mL | C. albicans (ATCC 10231, ATCC 90028, A18, 10A12, 810), C. glabrata ATCC 15126, C. tropicalis (ATCC 750, 810) C. kefyr ATCC 204093, C. krusei (ATCC 6258, 31A29), C. parapsilosis (11A13, 1A1, 911, 910) | [36] |
Diclofenac | P. graveolens Essential Oil | In vitro | MIC values ranging from 0.05 μg/mL to 0.41 μg/mL | C. albicans (ATCC 10231, ATCC 90028, A18, 10A12, 810), C. glabrata ATCC 15126, C. tropicalis (ATCC 750, 810) C. kefyr ATCC 204093, C. krusei (ATCC 6258, 31A29), C. parapsilosis (11A13, 1A1, 911, 910) | [36] |
Diclofenac | In vitro | MIC values ranging from 0.05 μg/mL to 0.82 μg/mL | C. albicans (ATCC 10231, ATCC 90028, A18, 10A12, 810), C. glabrata ATCC 15126, C. tropicalis (ATCC 750, 810) C. kefyr ATCC 204093, C. krusei (ATCC 6258, 31A29), C. parapsilosis (11A13, 1A1, 911, 910) | [36] | |
1.25% Diclofenac solution | In vitro | Reduction biofilm percentage of colony-forming units amounting to 84.71% | E. faecalis ATCC 29212 | [37] | |
2.5% Diclofenac solution | In vitro | Reduction percentage of colony-forming units amounting to 90.42% | E. faecalis ATCC 29212 | [37] | |
5% Diclofenac solution | In vitro | Reduction percentage of colony-forming units amounting to 98.62% | E. faecalis ATCC 29212 | [37] | |
Ibuprofen | In vitro | XTT reduction (%) by biofilms after 48 h ranging from 16.26 to 64.43 | P. aeruginosa (PAO1, M5715, T63547, H25815), B. cenocepacia K562, B. multivorans SH2, B. cepacia 1753, B. cenocepacia HI4277 | [38] | |
Ibuprofen | In vitro | XTT reduction (%) by biofilms after 48 h ranging from 51.31 to 64.22 | P. aeruginosa (PAO1, M5715, T63547, H25815), B. cenocepacia K562, B. multivorans SH2, B. cepacia 1753, B. cenocepacia HI4277 | [38] | |
Ibuprofen | Number of log CFU/mL after treatment with IBU at 100 µg/mL ranging from 1.08 E to 7.94 E | P. aeruginosa (PAO1, M5715, T63547, H25815), B. cenocepacia K562, B. multivorans SH2, B. cepacia 1753, B. cenocepacia HI4277 | [38] | ||
Ibuprofen | In vivo | Oral delivery of ibuprofen achieves therapeutic concentrations in serum (124.22 ± 15.40 µg/mL at 1 h post-treatment), reduces the bacterial burden (in lung and spleen), and improves survival in P. aeruginosa PAO1-infected mice | P. aeruginosa PAO1 | [38] | |
Ibuprofen incorporated in epichlorohydrin-crosslinked chitosan microspheres | In vitro | Inhibition using 1 × 10−4 mol/L of microspheres | E. coli, S. aureus | [39] | |
Celecoxib | In vitro | Impairs immune memory and affects CD4 T-cell phenotype, reduces IFNγ expression, and decreases protective capacity upon adoptive transfer in treated mice | M. tuberculosis ATCC 35801 | [40] |
3. Antidepressants and Antipsychotics
Drug | Drug in Combination | Kind of Study | Bacterial Inhibition | Strains Tested | Refs. |
---|---|---|---|---|---|
Sertraline | In vitro | Diameter of inhibitory zones up to 26 mm 4–20 μg/mL | S. aureus ATCC 6538, E. coli ATCC 8739, P. aeruginosa ATCC 9027 A. niger, A. fumigatus, A. flavus, F. solani C. auris 70, H. pylori | [44,47,48] | |
Fluoxetine | In vitro | Diameter of inhibitory zones 12–34 mm | S. aureus ATCC 25923, E. coli ATCC 25922, C. albicans ATCC 10231 | [45] | |
Fluoxetine | Fluconazole | In vitro | 0.78125 μg/mL | S. aureus ATCC 25923, E. coli ATCC 25922, C. albicans ATCC 10231 | [45] |
Fluoxetine | In vitro | 102–256 μg/mL | E. coli ATCC 25922, S. aureus ATCC 6538, P. aeruginosa ATCC 25923 and multi-resistant strains E. coli 06, S. aureus 10, P. aeruginosa 24 | [46] | |
Fluoxetine | In vitro | 32–512 μg/mL | E. coli (ATCC 35218, ATCC 25922), K. pneumoniae ATCC 700603, P. aeruginosa ATCC 27853, S. aureus (ATCC 25923, ATCC 29213), E. faecalis (ATCC 29212, ATCC 51288), S. epidermidis ATCC 12228, M. luteus ATCC 7468 and B. cereus ATCC 14579, 5 MDR clinical isolates | [49] | |
Paroxetine | In vitro | 32–512 μg/mL | E. coli (ATCC 35218, ATCC 25922), K. pneumoniae ATCC 700603, P. aeruginosa ATCC 27853, S. aureus (ATCC 25923, ATCC 29213), E. faecalis (ATCC 29212, ATCC 51288), S. epidermidis ATCC 12228, M. luteus ATCC 7468 and B. cereus ATCC 14579, 5 MDR clinical isolates | [49] | |
Amitriptyline | In vitro | 32–512 μg/mL | 11 ATCC standard strains, 15 clinical isolates of KPC, 25 of SCoN | [50] | |
Amitriptyline | Ciprofloxacin | In vitro | 64–256 μg/mL | 11 ATCC standard strains, 15 clinical isolates of KPC, 25 of SCoN | [50] |
Amitriptyline | Sulfametoxazole + trimethoprim | In vitro | 64–512 μg/mL | 11 ATCC standard strains, 15 clinical isolates of KPC, 25 of SCoN | [50] |
Thioridazine | In vitro | 1–16 μg/mL | 3 ATCC rapidly growing mycobacteria (M. abscessus CIP 104536, M. fortuitum ATCC 6841, M. peregrinum ATCC 700686, M. avium (ATCC 70089816, B1610670, 74B16107, 2282B161, 0557732, B1701907), M. chimaera (DSM 4462316, B160155388, B160184894, B17072535), M. intracellulare (DSM 432234, B161255242, B1611688316, B16029695), M. simiae ATCC 252211, M. xenopi ATCC 192504 | [54] | |
Thioridazine-irradiated solution | In vitro | 0.25–50 μg/mL | S. aureus (ATCC 25923, ATCC 25923_EtBr), S. epidermidis (ATCC 12228, ATCC 12228_EtBr, SM1) E. faecalis ATCC 29212, E. coli ATCC 25922, Salmonella enterica serotype Enteritidis NCTC 13349, Klebsiella aerogenes ATCC 15038 | [58] | |
Chlorpromazine-irradiated solution | In vitro | 6.25–100 μg/mL | S. aureus ATCC 6538, MRSA1, MRSA2, E. faecalis ATCC 29212, P. aeruginosa ATCC 27853, P. aeruginosa clinic1, P. aeruginosa clinic2, E. coli ATCC 8739, C. parapsilosis ATCC 22019 | [55] |
4. Statins as Antimicrobial Agents
Drug | Drug in Combination | Kind of Study | Bacterial Inhibition | Strains Tested | Refs. |
---|---|---|---|---|---|
Atorvastatin | In vitro | 15.62–229.17 μg/mL | E. coli ATTC 35218, P. aeruginosa ATTC 9027, MSSA ATTC 25213, MRSA ATTC 43300, S. pneumoniae ATTC 25923, VSE ATTC 19433, VRE ATTC 51299, A. baumannii ATTC, 17978, K. pneumoniae ATTC 13883, 80 clinical isolates | [64] | |
Atorvastatin | amoxicillin, clarithromycin, bismuth, and esomeprazole | In vivo | eradication rate: 65.45–78.18% | Patients with H. pylori infection | [70] |
Simvastatin | In vitro | 26.04–291.67 μg/mL | Patients with H. pylori infection | [70] | |
Simvastatin | In vitro | 15.65–31.25 μg/mL | 5 ATCC standard strains of S. aureus and 5 clinical isolates of sputum and blood, culture | [62] | |
Simvastatin | In vitro | 64 μg/mL | S. aureus ATCC 29213 | [65] | |
Simvastatin niosomal formulation | In vitro | 7.78–31.12 μg/mL | S. aureus ATCC 6538 and E. coli ATCC 25922 | [66] | |
Simvastatin poly (lactide-co-glycolide) (PLGA) submicron particles with Ag+ | In vitro | 100–150 μg/mL | E. faecalis ATCC 29212 | [67] | |
Simvastatin silver nanoparticles synthesized with Fusarium oxysporum (AgNP-Bio) | In vitro | 0.062 to 0.25 μg/mL | S. aureus MSSA (ATCC 25923, ATCC 29213), E. coli ATCC 25922, and extended-spectrum beta-lactamases E. coli-producing (ESBL 176) | [68] | |
Simvastatin | TZC complex {[1-(4-bromophenyl)-3-phenyltriazene N3- oxide-κ2 N1,O4](dimethylbenzylamine-κ2 C1,N4)palladium(II)} (Pd(DMBA)LBr) | In vitro | 16–512 μg/mL | Bacillus cereus ATCC 14579, Enterobacter hormaechei ATCC 700323, Enterococcus casseliflavus ATCC 700327, E. faecalis (ATCC 29212, ATCC 51299), E. coli (ATCC 25922, ATCC 35218), Klebsiella pneumoniae ATCC 700603, Micrococcus luteus ATCC 7468, P. aeruginosa ATCC 27853, Salmonella typhimurium ATCC 14028, Salmonella spp. ATCC 52117, S. aureus (ATCC 25923, ATCC 29213. BAA 1026, BAA 976, BAA 977), S. epidermidis ATCC 12228 and against 10 coagulase-negative staphylococci isolates in new-born blood cultures in 2014 | [69] |
Rosuvastatin | In vitro | 104.17–500 μg/mL | E. coli ATTC 35218, P. aeruginosa ATTC 9027, MSSA ATTC 25213, MRSA ATTC 43300, S. pneumoniae ATTC 25923, VSE ATTC 19433, VRE ATTC 51299, A. baumannii ATTC 17978, K. pneumoniae ATTC 13883, 80 clinical isolates | [64] | |
Pitavastatin | // | 128 μg/mL | S. aureus ATCC 29213 | [65] |
5. Other Compounds
Drug | Drug in Combination | Kind of Study | Bacterial Inhibition | Strains Tested | Refs. |
---|---|---|---|---|---|
Auranofin | In vitro | 0.125–0.5 mg/L | E. coli ATCC 25922, S. aureus (ATCC 25923, USA 300), S. epidermidis (ATCC 12228, ATCC 35984 (biofilm producer)), 5 MRSA | [73] | |
Niclosamide | - | In vitro | 0.125–64 µg/mL | S. aureus (MRSA MW2, Newman, RN4220, RN6390, USA100, USA300, USA400), S. epidermidis 9142, E. faecium E007, K. pneumoniae ATCC 77326, A. baumannii ATCC 17978, P. aeruginosa PA14, E. aerogenes EAE 2625 and 44 S. aureus clinical | [79] |
Niclosamide | In vitro | 0.25 µg/mL | H. pylori 60190 ATCC 49503 | [80] | |
Niclosamide 4µM | Colistin | In vitro | MIC values ranging from <0.03 μg/mL to 0.125 μg/mL | Reference colistin-susceptible (Col-S) A. baumannii ATCC 17978 strain, and 13 clinical colistin-resistant (Col-R) A, reference Col-S K. pneumoniae CECT 997 strain, 1 Col-S and 2 Col-R clinical K. pneumoniae strains | [81] |
Metformin | TX-100 | In vitro | 20 mg/mL | E. faecalis ATCC 29212 | [86] |
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Jarada, T.N.; Rokne, J.G.; Alhajj, R. A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. J. Cheminform. 2020, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Cavalla, D. Predictive methods in drug repurposing: Gold mine or just a bigger haystack? Drug Discov. Today 2013, 18, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges, and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Barbarossa, A.; Iacopetta, D.; Sinicropi, M.S.; Franchini, C.; Carocci, A. Recent Advances in the Development of Thalidomide-Related Compounds as Anticancer Drugs. Curr. Med. Chem. 2022, 29, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, V.; Gupta, V. Utilizing drug repurposing against COVID-19–Efficacy, limitations, and challenges. Life Sci. 2020, 259, 118275. [Google Scholar] [CrossRef]
- Mungmunpuntipantip, R.; Wiwanitkit, V. Remdesivir, COVID-19, and Clinical Outcomes. Infect. Dis. Clin. Pract. 2022, 30, e1118. [Google Scholar] [CrossRef]
- Low, Z.Y.; Yip, A.J.W.; Lal, S.K. Repositioning Ivermectin for COVID-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim. Biophys. Acta—Mol. Basis Dis. 2022, 1868, 166294. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Cantón, R.; Gijón, D.; Ruiz-Garbajosa, P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Curr. Opin. Crit. Care 2020, 26, 433–441. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Rossolini, G.M.; Schultsz, C.; Tacconelli, E.; Murthy, S.; Ohmagari, N.; Holmes, A.; Bachmann, T.; Goossens, H.; Canton, R.; et al. Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2021, 25, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Balaban, N.Q.; Baquero, F.; Courvalin, P.; Glaser, P.; Gophna, U.; Kishony, R.; Molin, S.; Tønjum, T. Antibiotic resistance: Turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 2020, 44, 171–188. [Google Scholar] [CrossRef]
- Livermore, R.M. On behalf of the British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating antibacterial drug discovery and development. J. Antimicrob. Chemother. 2011, 66, 1914–1941. [Google Scholar]
- Chong, C.R.; Sullivan, D.J. New uses for old drugs. Nature 2007, 448, 645–646. [Google Scholar] [CrossRef] [PubMed]
- Savoia, D. New antimicrobial approaches: Reuse of old drugs. Curr. Drug Targets 2016, 17, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Lagadinou, M.; Onisor, M.O.; Rigas, A.; Musetescu, D.V.; Gkentzi, D.; Assimakopoulos, S.F.; Marangos, M. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics 2020, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Thakare, R.; Kaul, G.; Shukla, M.; Kesharwani, P.; Srinivas, N.; Dasgupta, A.; Chopra, S. Repurposing Nonantibiotic Drugs as Antibacterials. In Drug Discovery Targeting Drug-Resistant Bacteria; Academic Press: Cambridge, MA, USA, 2020; pp. 105–138. [Google Scholar]
- Areej, S.; Sattar, A.; Javeed, A.; Raza, S. Diphenhydramine and levofloxacin combination therapy against antimicrobial resistance in respiratory tract infections. Future Microbiol. 2021, 16, 409–420. [Google Scholar] [CrossRef]
- Maji, H.S.; Maji, S.; Bhattacharya, M. An exploratory study on the antimicrobial activity of cetirizine dihydrochloride. Indian J. Pharm. Sci. 2017, 79, 751–757. [Google Scholar] [CrossRef]
- El-Banna, T.; Sonbol, F.; El-Aziz, A.; Al-Fakharany, O. Modulation of antibiotic efficacy against Klebsiella pneumoniae by antihistaminic drugs. J. Med. Microb. Diagn. 2016, 5, 1000225. [Google Scholar] [CrossRef] [Green Version]
- Ronco, T.; Jørgensen, N.S.; Holmer, I.; Kromann, S.; Sheikhsamani, E.; Permin, A.; Svenningsen, S.W.; Christensen, J.B.; Olsen, R.H. A novel promazine derivative shows high in vitro and in vivo antimicrobial activity against Staphylococcus aureus. Front. Microbiol. 2020, 11, 2353. [Google Scholar] [CrossRef]
- Dutta, N.K.; Mazumdar, K.; Dastidar, S.G.; Chakrabarty, A.N.; Shirataki, Y.; Motohashi, N. In vitro and in vivo antimycobacterial activity of an antihypertensive agent methyl-L-DOPA. In Vivo 2005, 19, 539–545. [Google Scholar] [PubMed]
- Basu, L.R.; Mazumdar, K.; Dutta, N.K.; Karak, P.; Dastidar, S.G. Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiol. Res. 2005, 160, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Thanacoody, H.K.R. Thioridazine: Resurrection as an antimicrobial agent? Br. J. Clin. Pharmacol. 2007, 64, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Jeyaseeli, L.; Dasgupta, A.; Dastidar, S.G.; Molnar, J.; Amaral, L. Evidence of significant synergism between antibiotics and the antipsychotic, antimicrobial drug flupenthixol. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Palchoudhuri, S.; Chatterjee, N.; Sinharoy, D.; Bhowmick, S.; Pal, T.K.; Das, S.; Dastidar, S.G. Experimental evaluation of synergistic action between antibiotics and the antipsychotic antimicrobial triflupromazine. Int. J. Microbiol. Res. 2013, 5, 430–434. [Google Scholar]
- Leão, C.; Borges, A.; Simões, M. NSAIDs as a Drug Repurposing Strategy for Biofilm Control. Antibiotics 2020, 9, 591. [Google Scholar] [CrossRef]
- Silva, A.; Silva, P.M. Non-antibiotic compounds: The activity of the NSAID diclofenac on bacteria—A review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 340–351. [Google Scholar] [CrossRef]
- Varrassi, G.; Pergolizzi, J.V.; Dowling, P.; Paladini, A. Ibuprofen safety at the golden anniversary: Are all NSAIDs the same? A narrative review. Adv. Ther. 2020, 37, 61–82. [Google Scholar] [CrossRef] [Green Version]
- Haley, R.M.; von Recum, H.A. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp. Biol. Med. 2019, 244, 433–444. [Google Scholar] [CrossRef]
- Obad, J.; Šušković, J.; Kos, B. Antimicrobial activity of ibuprofen: New perspectives on an “Old” non-antibiotic drug. Eur. J. Pharm. Sci. 2015, 71, 93–98. [Google Scholar] [CrossRef]
- Han, M.İ.; Küçükgüzel, Ş.G. Anticancer and antimicrobial activities of naproxen and naproxen derivatives. Mini Rev. Med. Chem. 2020, 20, 1300–1310. [Google Scholar] [CrossRef]
- Shah, P.N.; Marshall-Batty, K.R.; Smolen, J.A.; Tagaev, J.A.; Chen, Q.; Rodesney, C.A.; Le, H.H.; Gordon, V.D.; Greenberg, D.E.; Cannon, C.L. Antimicrobial activity of ibuprofen against cystic fibrosis-associated gram-negative pathogens. Antimicrob. Agents Chemother. 2018, 62, e01574-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.E.; Gomes, F.; Rodrigues, C.F. Candida spp./bacteria mixed biofilms. J. Fungi 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosato, A.; Catalano, A.; Carocci, A.; Carrieri, A.; Carone, A.; Caggiano, G.; Franchini, C.; Corbo, F.; Montagna, M.T. In vitro interactions between anidulafungin and nonsteroidal anti-inflammatory drugs on biofilms of Candida spp. Bioorg. Med. Chem. 2016, 24, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Altini, E.; Sblano, S.; Salvagno, L.; Maggi, F.; de Michele, G.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp. Antibiotics 2021, 10, 688. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Luque, C.M.; Baca, P.; Solana, C.; Rodríguez-Archilla, A.; Arias-Moliz, M.T.; Ruiz-Linares, M. Antibiofilm Activity of Diclofenac and Antibiotic Solutions in Endodontic Therapy. J. Endod. 2021, 47, 1138–1143. [Google Scholar] [CrossRef]
- Chen, H.; Lin, T.; Chen, W. The combined toxicity of UV/chlorinated products from binary ibuprofen (IBP) and tyrosine (Tyr) on Escherichia coli: Emphasis on their occurrence and underlying mechanism. Chemosphere 2018, 210, 503–510. [Google Scholar] [CrossRef]
- Pereira, A.K.D.S.; Reis, D.T.; Barbosa, K.M.; Scheidt, G.N.; da Costa, L.S.; Santos, L.S.S. Antibacterial effects and ibuprofen release potential using chitosan microspheres loaded with silver nanoparticles. Carbohydr. Res. 2020, 488, 107891. [Google Scholar] [CrossRef]
- Mortensen, R.; Clemmensen, H.S.; Woodworth, J.S.; Therkelsen, M.L.; Mustafa, T.; Tonby, K.; Jenum, S.; Agger, E.M.; Dyrhol-Riise, A.M.; Andersen, P. Cyclooxygenase inhibitors impair CD4 T cell immunity and exacerbate Mycobacterium tuberculosis infection in aerosol-challenged mice. Commun. Biol. 2019, 2, 288. [Google Scholar] [CrossRef] [Green Version]
- Caldara, M.; Marmiroli, N. Antimicrobial Properties of Antidepressants and Antipsychotics—Possibilities and Implications. Pharmaceuticals 2021, 14, 915. [Google Scholar] [CrossRef]
- McGovern, A.S.; Hamlin, A.S.; Winter, G. A review of the antimicrobial side of antidepressants and its putative implications on the gut microbiome. Aust. N. Z. J. Psychiatry 2019, 53, 1151–1166. [Google Scholar] [CrossRef]
- Bottega, A.; Serafin, M.B.; da Rosa, T.F.; Foletto, V.S.; Machado, C.D.S.; Coelho, S.S. Antimicrobial and antineoplastic properties of sertraline. Am. J. Ther. 2020, 27, e632–e635. [Google Scholar] [CrossRef]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.U.; Ullah, F.; Ullah, I.; Ali, G.; Syed, N.I.H.; Hussain, S. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J. Biol. Res. 2015, 22, 4. [Google Scholar] [CrossRef] [Green Version]
- Hadera, M.; Mehari, S.; Basha, N.S.; Amha, N.D.; Berhane, Y. Study on antimicrobial potential of selected non-antibiotics and its interaction with conventional antibiotics. Pharm. Biosci. J. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- De Sousa, A.K.; Rocha, J.E.; de Souza, T.G.; de Freitas, T.S.; Ribeiro-Filho, J.; Coutinho, H.D.M. New roles of fluoxetine in pharmacology: Antibacterial effect and modulation of antibiotic activity. Microb. Pathog. 2018, 123, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Gowri, M.; Jayashree, B.; Jeyakanthan, J.; Girija, E.K. Sertraline as a promising antifungal agent: Inhibition of growth and biofilm of Candida auris with special focus on the mechanism of action in vitro. J. Appl. Microbiol. 2020, 128, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Krzyżek, P.; Franiczek, R.; Krzyżanowska, B.; Łaczmański, Ł.; Migdał, P.; Gościniak, G. In vitro Activity of Sertraline, an Antidepressant, Against Antibiotic-Susceptible and Antibiotic-Resistant Helicobacter pylori Strains. Pathogens 2019, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Foletto, V.S.; Serafin, M.B.; Bottega, A.; da Rosa, T.F.; Machado, C.D.S.; Coelho, S.S.; Hörner, R. Repositioning of fluoxetine and paroxetine: Study of potential antibacterial activity and its combination with ciprofloxacin. Med. Chem. Res. 2020, 29, 556–563. [Google Scholar] [CrossRef]
- Machado, C.D.S.; Da Rosa, T.F.; Serafin, M.B.; Bottega, A.; Coelho, S.S.; Foletto, V.S.; Rampelotto, R.F.; Lorenzoni, V.V.; de L. Marion, S.; Hörner, R. In vitro evaluation of the antibacterial activity of amitriptyline and its synergistic effect with ciprofloxacin, sulfamethoxazole–trimethoprim, and colistin as an alternative in drug repositioning. Med. Chem. Res. 2020, 29, 166–177. [Google Scholar] [CrossRef]
- De Andrade Neto, J.B.; Josino, M.A.A.; da Silva, C.R.; de Sousa Campos, R.; do Nascimento, F.B.S.A.; Sampaio, L.S.; do Amaral Valente Sa, L.G.; de Sá Carneiro, I.; Dias Barroso, F.D.; da Silva, L.J.; et al. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb. Pathog. 2019, 127, 335–340. [Google Scholar] [CrossRef]
- De Keijzer, J.; Mulder, A.; de Haas, P.E.; de Ru, A.H.; Heerkens, E.M.; Amaral, L.; van Soolingen, D.; van Veelen, P.A. Thioridazine alters the cell-envelope permeability of Mycobacterium tuberculosis. J. Proteome Res. 2016, 15, 1776–1786. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.; Viveiros, M. Thioridazine: A non-antibiotic drug highly effective, in combination with first line anti-tuberculosis drugs, against any form of antibiotic resistance of Mycobacterium tuberculosis due to its multi-mechanisms of action. Antibiotics 2017, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Ruth, M.M.; Pennings, L.J.; Koeken, V.A.; Schildkraut, J.A.; Hashemi, A.; Wertheim, H.F.; Hoefsloot, W.; van Ingen, J. Thioridazine is an efflux pump inhibitor in Mycobacterium avium complex but of limited clinical relevance. Antimicrob. Agents Chemother. 2020, 64, e00181-20. [Google Scholar] [CrossRef]
- Nistorescu, S.; Gradisteanu Pircalabioru, G.; Udrea, A.M.; Simon, A.; Pascu, M.L.; Chifiriuc, M.C. Laser-Irradiated Chlorpromazine as a Potent Anti-Biofilm Agent for Coating of Biomedical Devices. Coatings 2020, 10, 1230. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Q.; Dai, X.; Wei, X.; Yu, Y.; Chen, X.; Li, C.; Cao, Z.; Zhang, X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. Adv. Mater. 2019, 31, 1806024. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, T.; Staicu, A.; Pascu, A.I.; Radu, E.; Stoicu, A.; Nastasa, V.V.; Dinache, A.C.; Boni, M.; Amaral, L.; Pascu, M.L. Characterization of mixtures of compounds produced in chlorpromazine aqueous solutions by ultraviolet laser irradiation: Their applications in antimicrobial assays. J. Biomed. Opt. 2014, 20, 051002. [Google Scholar] [CrossRef] [PubMed]
- Tozar, T.; Nastasa, V.; Stoicu, A.; Chifiriuc, M.C.; Popa, M.; Kamerzan, C.; Pascu, M.L. In vitro antimicrobial efficacy of laser exposed chlorpromazine against Gram-positive bacteria in planktonic and biofilm growth state. Microb. Pathog. 2019, 129, 250–256. [Google Scholar] [CrossRef]
- Sidrim, J.J.; Amando, B.R.; Gomes, F.I.; do Amaral, M.S.; de Sousa, P.C.; Ocadaque, C.J.; Brilhante, R.S.; de A Cordeiro, R.; Rocha, M.F.; de SCM Castelo-Branco, D. Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections. Future Microbiol. 2019, 14, 1023–1034. [Google Scholar] [CrossRef]
- Tozar, T.; Santos Costa, S.; Udrea, A.M.; Nastasa, V.; Couto, I.; Viveiros, M.; Pascu, M.L.; Romanitan, M.O. Anti-staphylococcal activity and mode of action of thioridazine photoproducts. Sci. Rep. 2020, 10, 18043. [Google Scholar] [CrossRef]
- Jerwood, S.; Cohen, J. Unexpected antimicrobial effect of statins. J. Antimicrob. Chemother. 2008, 61, 362–364. [Google Scholar] [CrossRef]
- Graziano, T.S.; Cuzzullin, M.C.; Franco, G.C.; Schwartz-Filho, H.O.; de Andrade, E.D.; Groppo, F.C.; Cogo-Mueller, K. Statins and antimicrobial effects: Simvastatin as a potential drug against Staphylococcus aureus biofilm. PLoS ONE 2015, 10, e0128098. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.; Sobreira, T.J.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci. Rep. 2016, 6, 22571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masadeh, M.; Mhaidat, N.; Alzoubi, K.; Al-Azzam, S.; Alnasser, Z. Antibacterial activity of statins: A comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann. Clin. Microbiol. 2012, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, H.H.; Lareu, R.R.; Dix, B.R.; Hughes, J.D. In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1125–1135. [Google Scholar] [CrossRef]
- Akbarzadeh, I.; Keramati, M.; Azadi, A.; Afzali, E.; Shahbazi, R.; Norouzian, D.; Bakhshandeh, H. Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem. Phys. Lipids 2021, 234, 105019. [Google Scholar] [CrossRef]
- Fan, W.; Duan, M.; Sun, Q.; Fan, B. Simvastatin enhanced antimicrobial effect of Ag+ against E. faecalis infection of dentine through PLGA co-delivery submicron particles. J. Biomater. Sci. Polym. Ed. 2020, 31, 2331–2346. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, E.P.; Ribeiro, J.M.; Nishio, E.K.; Scandorieiro, S.; Costa, A.F.; Cardozo, V.F.; Oliveira, A.G.; Durán, N.; Panagio, L.A.; Kobayashi, R.K.T.; et al. New approach for simvastatin as an antibacterial: Synergistic effect with bio-synthesized silver nanoparticles against multidrug-resistant bacteria. Int. J. Nanomedicine 2019, 14, 7975. [Google Scholar] [CrossRef] [Green Version]
- Rampelotto, R.F.; Lorenzoni, V.V.; Silva, D.D.C.; Moraes, G.A.D.; Serafin, M.B.; Tizotti, M.K. Synergistic antibacterial effect of statins with the complex {[1-(4-bromophenyl)-3-phenyltriazene N3-oxide-κ2 N1, O4](dimethylbenzylamine-κ2 C1, N4) palladium (II)}. Braz. J. Pharm. Sci. 2018, 54, e17369. [Google Scholar] [CrossRef] [Green Version]
- Sarkeshikian, S.S.; Ghadir, M.R.; Alemi, F.; Jalali, S.M.; Hormati, A.; Mohammadbeigi, A. Atorvastatin in combination with conventional antimicrobial treatment of Helicobacter pylori eradication: A randomized controlled clinical trial. J. Gastroenterol. Hepatol. 2020, 35, 71. [Google Scholar] [CrossRef]
- Saputo, S.; Faustoferri, R.C.; Quivey, R.G., Jr. A drug repositioning approach reveals that Streptococcus mutans is susceptible to a diverse range of established antimicrobials and nonantibiotics. Antimicrob. Agents Chemother. 2018, 62, e01674-17. [Google Scholar] [CrossRef] [Green Version]
- Dalecki, A.G.; Haeili, M.; Shah, S.; Speer, A.; Niederweis, M.; Kutsch, O.; Wolschendorf, F. Disulfiram and copper ions kill Mycobacterium tuberculosis in a synergistic manner. Antimicrob. Agents Chemother. 2015, 59, 4835–4844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassetta, M.I.; Marzo, T.; Fallani, S.; Novelli, A.; Messori, L. Drug repositioning: Auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections. Biometals 2014, 27, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Taylor, P.; Dornan, J.; Robinson, S.P.; Walkinshaw, M.D.; Sadler, P.J. First crystal structure of a medicinally relevant gold protein complex: Unexpected binding of [Au(PEt3)]+ to histidine. Angew. Chem. Int. Ed. 2000, 39, 2931–2934. [Google Scholar] [CrossRef]
- Angelucci, F.; Sayed, A.A.; Williams, D.L.; Boumis, G.; Brunori, M.; Dimastrogiovanni, D.; Miele, A.E.; Pauly, F.; Bellelli, A. Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: Structural and kinetic aspects. J. Biol. Chem. 2009, 284, 28977–28985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejman-Yarden, N.; Miyamoto, Y.; Leitsch, D.; Santini, J.; Debnath, A.; Gut, J.; McKerrow, J.H.; Reed, S.L.; Eckmann, L. A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob. Agents Chemother. 2013, 57, 2029–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Boradia, V.M.; Thakare, R.; Singh, A.K.; Gani, Z.; Das, S.; Patidar, A.; Dasgup-ta, A.; Chopra, S.; Raje, M.; et al. Repurposing Ethyl Bromopyruvate as a Broad-Spectrum Antibacterial. J. Antimicrob. Chemother. 2019, 74, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Al-Hadiya, B.M.H. Niclosamide: Comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol. 2005, 32, 67–96. [Google Scholar] [PubMed]
- Rajamuthiah, R.; Fuchs, B.B.; Conery, A.L.; Kim, W.; Jayamani, E.; Kwon, B.; Ausubel, F.M.; Mylonakis, E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS ONE 2015, 10, e0124595. [Google Scholar] [CrossRef] [Green Version]
- Tharmalingam, N.; Port, J.; Castillo, D.; Mylonakis, E. Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci. Rep. 2018, 8, 3701. [Google Scholar] [CrossRef] [Green Version]
- Ayerbe-Algaba, R.; Gil-Marqués, M.L.; Jiménez-Mejías, M.E.; Sánchez-Encinales, V.; Parra-Millan, R.; Pachón-Ibáñez, M.; Pachon, J.; Smani, Y. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Mook, R.A., Jr.; Premont, R.T.; Wang, J. Niclosamide: Beyond an antihelminthic drug. Cell. Signal. 2018, 41, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Marupuru, S.; Senapati, P.; Pathadka, S.; Miraj, S.S.; Unnikrishnan, M.K.; Manu, M.K. Protective effect of metformin against tuberculosis infections in diabetic patients: An observational study of south Indian tertiary healthcare facility. Braz. J. Infect. Dis. 2017, 21, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Degner, N.R.; Wang, J.Y.; Golub, J.E.; Karakousis, P.C. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin. Infect. Dis. 2018, 66, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Pang, Y.; Shu, W.; Liu, Y.H.; Ge, Q.P.; Du, J.; Li, L.; Gao, W.W. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: Experiences from 3-year follow-up. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Jin, S.; Fan, W.; Fan, B. Synergistic In vitro Antimicrobial Activity of Triton X-100 and Metformin against Enterococcus faecalis in Normal and High-Glucose Conditions. Microorganisms 2022, 10, 124. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbarossa, A.; Rosato, A.; Corbo, F.; Clodoveo, M.L.; Fracchiolla, G.; Carrieri, A.; Carocci, A. Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics 2022, 11, 816. https://doi.org/10.3390/antibiotics11060816
Barbarossa A, Rosato A, Corbo F, Clodoveo ML, Fracchiolla G, Carrieri A, Carocci A. Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics. 2022; 11(6):816. https://doi.org/10.3390/antibiotics11060816
Chicago/Turabian StyleBarbarossa, Alexia, Antonio Rosato, Filomena Corbo, Maria Lisa Clodoveo, Giuseppe Fracchiolla, Antonio Carrieri, and Alessia Carocci. 2022. "Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach" Antibiotics 11, no. 6: 816. https://doi.org/10.3390/antibiotics11060816
APA StyleBarbarossa, A., Rosato, A., Corbo, F., Clodoveo, M. L., Fracchiolla, G., Carrieri, A., & Carocci, A. (2022). Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics, 11(6), 816. https://doi.org/10.3390/antibiotics11060816