Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia
Abstract
:1. Introduction
2. Results
2.1. Contamination Rates of Campylobacter spp. in Chicken Carcasses
2.2. Antimicrobial Resistance: Phenotypic Patterns
2.3. Detection of Antimicrobial Resistance Genes
2.4. Prevalence of Virulence Determinants in Campylobacter Isolates
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation of Campylobacter and Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Molecular Detection of Antimicrobial Resistance and Virulence Genes
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo, N.; Carroll, A.; McNamara, E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: Virulence, antimicrobial resistance and phylogeny in Ireland. PLoS ONE 2019, 14, 9088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyati, K.K.; Nyati, R. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update. BioMed Res. Int. 2013, 2013, 852195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Campylobacter. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 11 June 2022).
- Repérant, E.; Laisney, M.; Nagard, B.; Quesne, S.; Rouxel, S.; Le Gall, F.; Chemaly, M.; Denis, M. Influence of enrichment and isolation media on the detection of Campylobacter spp. in naturally contaminated chicken samples. J. Microbiol. Methods 2016, 128, 42–47. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, L.; Melero, B.; Rovira, J. Campylobacter in the Food Chain. Adv. Food Nutr. Res. 2018, 86, 215–252. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, M.; Zhou, Q.; Zhang, J.; Yang, X.; Gao, Y. Prevalence and Characteristics of Campylobacter Throughout the Slaughter Process of Different Broiler Batches. Front. Microbiol. 2018, 9, 2092. [Google Scholar] [CrossRef]
- Bolton, D.J. Campylobacter virulence and survival factors. Food Microbiol. 2015, 48, 99–108. [Google Scholar] [CrossRef]
- Giacomelli, M.; Salata, C.; Martini, M.; Montesissa, C.; Piccirillo, A. Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli from Poultry in Italy. Microb. Drug Resist. 2014, 20, 181–188. [Google Scholar] [CrossRef]
- Machowska, A.; Lundborg, C.S. Drivers of Irrational Use of Antibiotics in Europe. Int. J. Environ. Res. Public Health 2018, 16, 27. [Google Scholar] [CrossRef] [Green Version]
- WHO. Tunisia: National Action Plan to Fight against Antimicrobial Resistance. Available online: https://www.who.int/publications/m/item/tunisia-national-action-plan-to-fight-against-antimicrobial-resistance (accessed on 11 June 2022).
- WHO Regional Office for the Eastern Mediterranean. Antimicrobial Resistance in the Region. Available online: http://www.emro.who.int/health-topics/drug-resistance/regional-situation.html (accessed on 11 June 2022).
- Di Giannatale, E.; Calistri, P.; Di Donato, G.; Decastelli, L.; Goffredo, E.; Adriano, D.; Mancini, M.E.; Galleggiante, A.; Neri, D.; Antoci, S.; et al. Thermotolerant Campylobacter spp. in chicken and bovine meat in Italy: Prevalence, level of contamination and molecular characterization of isolates. PLoS ONE 2019, 14, e0225957. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Park, H.; Kim, J.; Kim, J.H.; Jung, J.I.; Cho, S.; Ryu, S.; Jeon, B. Comparative Analysis of Aerotolerance, Antibiotic Resistance, and Virulence Gene Prevalence in Campylobacter jejuni Isolates from Retail Raw Chicken and Duck Meat in South Korea. Microorganisms 2019, 7, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, M.; Béjaoui, A.; Ben Hamda, C.; Jouini, A.; Ghedira, K.; Zrelli, C.; Hamrouni, S.; Aouadhi, C.; Bessoussa, G.; Ghram, A.; et al. Prevalence and Antibiotic Resistance Patterns of Campylobacter spp. Isolated from Broiler Chickens in the North of Tunisia. BioMed. Res. Int. 2018, 2018, 7943786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyarzabal, O.A.; Backert, S.; Nagaraj, M.; Miller, R.; Hussain, S.K.; Oyarzabal, E.A. Efficacy of supplemented buffered peptone water for the isolation of Campylobacter jejuni and C. coli from broiler retail products. J. Microbiol. Methods 2007, 69, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sampers, I.; Habib, I.; De Zutter, L.; Dumoulin, A.; Uyttendaele, M. Survival of Campylobacter spp. in poultry meat preparations subjected to freezing, refrigeration, minor salt concentration, and heat treatment. Int. J. Food Microbiol. 2010, 137, 147–153. [Google Scholar] [CrossRef]
- Narvaez-Bravo, C.; Taboada, E.N.; Mutschall, S.K.; Aslam, M. Epidemiology of antimicrobial resistant Campylobacter spp. isolated from retail meats in Canada. Int. J. Food Microbiol. 2017, 253, 43–47. [Google Scholar] [CrossRef]
- Nilsson, A.; Johansson, C.; Skarp, A.; Kaden, R.; Bertilsson, S.; Rautelin, H. Survival of Campylobacter jejuni and Campylobacter coli water isolates in lake and well water. J. Pathol. Microbiol. Immunol. 2018, 126, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Oh, E.; McMullen, L.; Jeon, B. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Front. Microbiol. 2015, 6, 295. [Google Scholar] [CrossRef]
- Adzitey, F.; Rusul, G.; Huda, N.; Cogan, T.; Corry, J. Prevalence, antibiotic resistance and RAPD typing of Campylobacter species isolated from ducks, their rearing and processing environments in Penang, Malaysia. Int. J. Food Microbiol. 2012, 154, 197–205. [Google Scholar] [CrossRef]
- Chen, X.; Naren, G.-W.; Wu, C.-M.; Wang, Y.; Dai, L.; Xia, L.-N.; Luo, P.-J.; Zhang, Q.; Shen, J.-Z. Prevalence and antimicrobial resistance of Campylobacter isolates in broilers from China. Vet. Microbiol. 2010, 144, 133–139. [Google Scholar] [CrossRef]
- Zbrun, M.; Rossler, E.; Soto, L.; Rosmini, M.; Sequeira, G.; Frizzo, L.; Signorini, M. Molecular epidemiology of Campylobacter jejuni isolates from the broiler production chain: First report of MLST profiles in Argentina. Rev. Argent. Microbiol. 2021, 53, 59–63. [Google Scholar] [CrossRef]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Antibiotic Resistance of Campylobacter Recovered from Faeces and Carcasses of Healthy Livestock. BioMed. Res. Int. 2017, 2017, 4091856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter from Chicken and Pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef] [PubMed]
- Payot, S.; Bolla, J.M.; Corcoran, D.; Fanning, S.; Mégraud, F.; Zhang, Q. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect. 2006, 8, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Pumbwe, L.; Piddock, L.J. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol. Lett. 2002, 206, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Messad, S.; Hamdi, T.-M.; Bouhamed, R.; Ramdani-Bouguessa, N.; Tazir, M. Frequency of contamination and antimicrobial resistance of thermotolerant Campylobacter isolated from some broiler farms and slaughterhouses in the region of Algiers. Food Control 2014, 40, 324–328. [Google Scholar] [CrossRef]
- Wysok, B.; Wojtacka, J.; Wiszniewska-Łaszczych, A.; Szteyn, J. Antimicrobial Resistance and Virulence Properties of Campylobacter spp. Originating from Domestic Geese in Poland. Animals 2020, 10, 742. [Google Scholar] [CrossRef]
- Elhadidy, M.; Miller, W.G.; Arguello, H.; Alvarez-Ordóñez, A.; Duarte, A.; Dierick, K.; Botteldoorn, N. Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated from Broiler Carcasses in Belgium. Front. Microbiol. 2018, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
- Whelan, M.; Ardill, L.; Koide, K.; Nakajima, C.; Suzuki, Y.; Simpson, J.C.; Cróinín, T. Acquisition of fluoroquinolone resistance leads to increased biofilm formation and pathogenicity in Campylobacter jejuni. Sci. Rep. 2019, 9, 18216. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dong, Y.; Deng, F.; Liu, D.; Yao, H.; Zhang, Q.; Shen, J.; Liu, Z.; Gao, Y.; Wu, C.; et al. Species shift and multidrug resistance of Campylobacter from chicken and swine, China, 2008–2014. J. Antimicrob. Chemother. 2015, 71, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Mazi, W.; Senok, A.; Al-Mahmeed, A.; Arzese, A.; Bindayna, K.; Botta, G. Trends in antibiotic sensitivity pattern and molecular detection of tet(O)-mediated tetracycline resistance in Campylobacter jejuni isolates from human and poultry sources. Jpn. J. Infect. Dis. 2008, 61, 82–84. [Google Scholar]
- Nguyen, T.N.M.; Hotzel, H.; Njeru, J.; Mwituria, J.; El-Adawy, H.; Tomaso, H.; Neubauer, H.; Hafez, H.M. Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya. Gut Pathog. 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachesoo, B.A.; Khoshbakht, R.; Yazdi, H.S.; Tabatabaei, M.; Hosseinzadeh, S.; Asasi, K. Tetracycline Resistance Genes in Campylobacter jejuni and C. coli Isolated from Poultry Carcasses. Jundishapur J. Microbiol. 2014, 7, e12129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francesco, A.; Salvatore, D.; Sakhria, S.; Catelli, E.; Lupini, C.; Abbassi, M.; Bessoussa, G.; Ben Yahia, S.; Ben Chehida, N. High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia. Animals 2021, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhao, W.; Jiao, D.; Schwarz, S.; Zhang, R.; Li, X.-S.; Du, X.-D. Global distribution, dissemination and overexpression of potent multidrug efflux pump RE-CmeABC in Campylobacter jejuni. J. Antimicrob. Chemother. 2020, 76, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.; Bulach, D.; McLure, A.; Varrone, L.; Jennsion, A.V.; Valcanis, M.; Smith, J.; Polkinghorne, B.; Glass, K.; Kirk, M. Status of antimicrobial resistance in clinical isolates of Campylobacter jejuni and Campylobacter coli in Australia. J. Clin. Microbiol. 2019, 82, 2126–2134. [Google Scholar] [CrossRef]
- Griggs, D.J.; Peake, L.; Johnson, M.M.; Ghori, S.; Mott, A.; Piddock, L.J.V. β-Lactamase-Mediated β-Lactam Resistance in Campylobacter Species: Prevalence of Cj0299 (blaOXA-61) and Evidence for a Novel β-Lactamase in C. jejuni. Antimicrob. Agents Chemother. 2009, 53, 3357–3364. [Google Scholar] [CrossRef] [Green Version]
- Alaboudi, A.R.; Malkawi, I.M.; Osaili, T.M.; Abu-Basha, E.A.; Guitian, J. Prevalence, antibiotic resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from chickens in Irbid governorate, Jordan. Int. J. Food Microbiol. 2020, 327, 108656. [Google Scholar] [CrossRef]
- Nisar, M.; Ahmad, M.U.D.; Mushtaq, M.H.; Shehzad, W.; Hussain, A.; Muhammad, J.; Nagaraja, K.V.; Goyal, S.M. Prevalence and antimicrobial resistance patterns of Campylobacter spp. isolated from retail meat in Lahore, Pakistan. Food Control 2017, 80, 327–332. [Google Scholar] [CrossRef]
- Fabre, A.; Oleastro, M.; Nunes, A.; Santos, A.; Sifré, E.; Ducournau, A.; Bénéjat, L.; Buissonnière, A.; Floch, P.; Mégraud, F.; et al. Whole-Genome Sequence Analysis of Multidrug-Resistant Campylobacter Isolates: A Focus on Aminoglycoside Resistance Determinants. J. Clin. Microbiol. 2018, 56, e00390-18. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). Scientific Opinion on Chloramphenicol in food and feed. EFSA J. 2014, 12, 3907. [Google Scholar] [CrossRef]
- Khan, J.A.; Rathore, R.S.; Abulreesh, H.H.; Qais, F.A.; Ahmad, I. Prevalence and Antibiotic Resistance Profiles of Campylobacter jejuni Isolated from Poultry Meat and Related Samples at Retail Shops in Northern India. Foodborne Pathog. Dis. 2018, 15, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Udo, E.E.; Boswihi, S.S.; Mathew, B.; Noronha, B.; Verghese, T. Resurgence of Chloramphenicol Resistance in Methicillin-Resistant Staphylococcus aureus Due to the Acquisition of a Variant Florfenicol Exporter (fexAv)-Mediated Chloramphenicol Resistance in Kuwait Hospitals. Antibiotics 2021, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- Quino, W.; Caro-Castro, J.; Hurtado, V.; Flores-León, D.; Gonzalez-Escalona, N.; Gavilan, R.G. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front. Microbiol. 2022, 12, 802404. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.; Béjaoui, A.; Ben Hamda, C.; Ghedira, K.; Ghram, A.; Maaroufi, A. Distribution of virulence and antibiotic re-sistance genes in Campylobacter jejuni and Campylobacter coli isolated from broiler chickens in Tunisia. J. Microbiol. Immunol. Infect. 2021. [Google Scholar] [CrossRef]
- Frazão, M.R.; Medeiros, M.I.C.; Duque, S.D.S.; Falcão, J.P. Pathogenic potential and genotypic diversity of Campylobacter jejuni: A neglected food-borne pathogen in Brazil. J. Med. Microbiol. 2017, 66, 350–359. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, Q.; Chen, Y.; Li, T.; Wen, G.; Zhang, R.; Luo, L.; Lu, Q.; Ai, D.; Wang, H.; et al. Molecular epidemiology, virulence determinants and antimicrobial resistance of Campylobacter spreading in retail chicken meat in Central China. Gut Pathog. 2016, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Talukder, K.A.; Aslam, M.; Islam, Z.; Azmi, I.J.; Dutta, D.K.; Hossain, S.; Nur-E-Kamal, A.; Nair, G.B.; Cravioto, A.; Sack, D.A.; et al. Prevalence of Virulence Genes and Cytolethal Distending Toxin Production in Campylobacter jejuni Isolates from Diarrheal Patients in Bangladesh. J. Clin. Microbiol. 2008, 46, 1485–1488. [Google Scholar] [CrossRef] [Green Version]
- Bang, D.; Scheutz, F.; Pedersen, K.; Handberg, K.; Madsen, M. PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates. J. Appl. Microbiol. 2003, 94, 1003–1014. [Google Scholar] [CrossRef]
- Ngobese, B.; Zishiri, O.T.; EL Zowalaty, M.E. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa. J. Integr. Agric. 2020, 19, 1656–1670. [Google Scholar] [CrossRef]
- Han, X.; Guan, X.; Zeng, H.; Li, J.; Huang, X.; Wen, Y.; Zhao, Q.; Huang, X.; Yan, Q.; Huang, Y.; et al. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse. Food Control 2019, 104, 157–166. [Google Scholar] [CrossRef]
- Khoshbakht, R.; Tabatabaei, M.; Hosseinzadeh, S.; Shekarforoush, S.S.; Aski, H.S. Distribution of Nine Virulence-Associated Genes in Campylobacter jejuni and C. coli Isolated from Broiler Feces in Shiraz, Southern Iran. Foodborne Pathog. Dis. 2013, 10, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Guirado, P.; Paytubi, S.; Miró, E.; Iglesias-Torrens, Y.; Navarro, F.; Cerdà-Cuéllar, M.; Attolini, C.S.-O.; Balsalobre, C.; Madrid, C. Differential Distribution of the wlaN and cgtB Genes, Associated with Guillain-Barré Syndrome, in Campylobacter jejuni Isolates from Humans, Broiler Chickens, and Wild Birds. Microorganisms 2020, 8, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapierre, L.; Gatica, M.A.; Riquelme, V.; Vergara, C.; Yañez, J.M.; Martín, B.S.; Sáenz, L.; Vidal, M.; Martínez, M.C.; Araya, P.; et al. Characterization of Antimicrobial Susceptibility and Its Association with Virulence Genes Related to Adherence, Invasion, and Cytotoxicity in Campylobacter jejuni and Campylobacter coli Isolates from Animals, Meat, and Humans. Microb. Drug Resist. 2016, 22, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Linton, D.; Owen, R.; Stanley, J. Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Res. Microbiol. 1996, 147, 707–718. [Google Scholar] [CrossRef]
- Denis, M.; Soumet, C.; Rivoal, K.; Ermel, G.; Blivet, D.; Salvat, G.; Colin, P. Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. Lett. Appl. Microbiol. 1999, 29, 406–410. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2017. Available online: http://mic.eucast.org (accessed on 16 May 2017).
- Alonso, R.; Mateo, E.; Churruca, E.; Martinez, I.; Girbau, C.; Fernández-Astorga, A. MAMA-PCR assay for the detection of point mutations associated with high-level erythromycin resistance in Campylobacter jejuni and Campylobacter coli strains. J. Microbiol. Methods 2005, 63, 99–103. [Google Scholar] [CrossRef]
- Zirnstein, G.; Li, Y.; Swaminathan, B.; Angulo, F. Ciprofloxacin Resistance in Campylobacter jejuni Isolates: Detection of gyrA Resistance Mutations by Mismatch Amplification Mutation Assay PCR and DNA Sequence Analysis. J. Clin. Microbiol. 1999, 37, 3276–3280. [Google Scholar] [CrossRef] [Green Version]
- Zirnstein, G.; Helsel, L.; Li, Y.; Swaminathan, B.; Besser, J. Characterization of gyrA mutations associated with fluoroquinolone resistance in Campylobacter coli by DNA sequence analysis and MAMA PCR. FEMS Microbiol. Lett. 2000, 190, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pratt, A.; Korolik, V. Tetracycline resistance of Australian Campylobacter jejuni and Campylobacter coli isolates. J. Antimicrob. Chemother. 2005, 55, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Olah, P.A.; Doetkott, C.; Fakhr, M.K.; Logue, C.M. Prevalence of the Campylobacter multi-drug efflux pump (CmeABC) in Campylobacter spp. Isolated from freshly processed Turkeys. Food Microbiol. 2006, 23, 453–460. [Google Scholar] [CrossRef]
- Obeng, A.; Rickard, H.; Sexton, M.; Pang, Y.; Peng, H.; Barton, M. Antimicrobial susceptibilities and resistance genes in Campylobacter strains isolated from poultry and pigs in Australia. J. Appl. Microbiol. 2012, 113, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Niwa, H.; Itoh, K. Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J. Med. Microbiol. 2003, 52, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Konkel, M.; Monteville, M.R.; Rivera-Amill, V.; Joens, A.L. The pathogenesis of Campylobacter jejuni-mediated enteritis. Curr. Issues Intest. Microbiol. 2001, 2, 55–71. [Google Scholar] [PubMed]
- Hickey, T.E.; McVeigh, A.L.; Scott, D.A.; Michielutti, R.E.; Bixby, A.; Carroll, S.A.; Bourgeois, A.L.; Guerry, P. Campylobacter jejuni Cytolethal Distending Toxin Mediates Release of Interleukin-8 from Intestinal Epithelial Cells. Infect. Immun. 2000, 68, 6535–6541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linton, D.; Gilbert, M.; Hitchen, P.G.; Dell, A.; Morris, H.R.; Wakarchuk, W.W.; Gregson, N.A.; Wren, B.W. Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol. Microbiol. 2002, 37, 501–514. [Google Scholar] [CrossRef]
- Gonzalez, I.; Grant, A.K.; Richardson, P.T.; Park, S.F.; Collins, M.D. Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative virulence determinant. J. Clin. Microbiol. 1997, 35, 759–763. [Google Scholar] [CrossRef] [Green Version]
Sources | No. of Samples | No. of Campylobacter Isolates (%) | ||
---|---|---|---|---|
C. jejuni | C. coli | Total | ||
Abattoirs | 142 | 22 (68.7%) | 10 (31.2%) | 32 (22.5%) |
Stores | 115 | 11 (68.7%) | 5 (31.2%) | 16 (13.9%) |
Total | 257 | 33 (68.7%) | 15 (31.2%) | 48 (18.7%) |
Sources | Species | No. | Antimicrobial Resistance Rates (n*) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ERY | AMP | AMC | CIP | NAL | CHL | TET | GEN | |||
Abattoirs | C. jejuni | 22 | 100% (22) | 81.8% (18) | 22.7% (5) | 86.4% (19) | 94.4% (21) | 72.7% (16) | 100% (22) | 27.3% (6) |
C. coli | 10 | 100% (10) | 60% (6) | 10% (1) | 100% (10) | 90% (9) | 80% (8) | 100% (10) | 30% (3) | |
Stores | C. jejuni | 11 | 90.9% (10) | 100% (11) | 36.4% (4) | 36.4% (4) | 72.7% (8) | 72.7% (8) | 100% (11) | 36.4% (4) |
C. coli | 5 | 100% (5) | 100% (5) | 20% (1) | 60% (3) | 60% (3) | 80% (4) | 100% (5) | - | |
Total | 48 | 97.9% (47) | 83.3% (40) | 22.9% (11) | 73% (35) | 85.4% (41) | 75% (36) | 100% (48) | 27.1 (13) |
ATB Profiles | Antimicrobial Groups | Isolates (n = 48) | Cj (n = 33) | Cc (n = 15) |
---|---|---|---|---|
ERY AMP AMC CIP NAL CHL TET GEN | 6 | 3 (6.25%) | 3 | - |
ERY AMP AMC NAL CHL TET GEN | 6 | 1 | 1 | - |
ERY AMP CIP NAL CHL TET GEN | 6 | 4 (8.3%) | 2 | 2 |
ERY AMP NAL CHL TET GEN | 6 | 1 | 1 | - |
AMP CIP NAL CHL TET GEN | 5 | 1 | 1 | - |
ERY AMP CIP NAL CHL TET | 5 | 13 (27.1%) | 8 | 5 |
ERY AMP NAL CHL TET | 5 | 3 (6.25%) | 2 | 1 |
ERY AMP AMC NAL CHL TET | 5 | 1 | 1 | - |
ERY AMP AMC CIP NAL CHL TET | 5 | 1 | 1 | - |
ERY CIP NAL CHL TET GEN | 5 | 1 | - | 1 |
ERY AMP AMC CHL TET GEN | 5 | 1 | 1 | - |
ERY AMP NAL TET | 4 | 1 | 1 | - |
ERY AMP CHL TET | 4 | 2 | 1 | 1 |
ERY AMP CIP NAL TET | 4 | 5 (10.4%) | 4 | 1 |
ERY AMP AMC CIP NAL TET | 4 | 1 | 1 | - |
ERY NAL CHL TET | 4 | 1 | 1 | - |
ERY AMC CIP NAL TET | 4 | 2 | 1 | 1 |
ERY CIP CHL TET | 4 | 2 | 1 | 1 |
ERY CIP NAL TET GEN | 4 | 1 | 1 | - |
ERY AMP AMC CIP TET | 4 | 1 | - | 1 |
ERY AMP TET | 3 | 1 | 1 | - |
ERY CIP NAL TET | 3 | 1 | - | 1 |
Strain | AMR Genotypes | Virolotypes | |
---|---|---|---|
1 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11, cgtB |
2 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11, cgtB |
3 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11, cgtB |
4 | C. jejuni | cmeB, Ery74, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11, cgtB |
5 | C. jejuni | cmeB, tet(O), tet(B), C257T, blaOXA-61, aphA-3 | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11, cgtB |
6 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
7 | C. jejuni | cmeB, ermB, ery75, Ery74, tet(O), tet(A), tet(B), tet(L), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
8 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T, aphA-3 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
9 | C. jejuni | cmeB, ermB, Ery75, Ery74, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, ceuE, cgtB |
10 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, ceuE |
11 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, ceuE, virB11 |
12 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), tet(B), tet(L), C257T, blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
13 | C. jejuni | cmeB, Ery75, Ery74, tet(O), tet(A), C257T | flaA, cadF, ceuE |
14 | C. jejuni | cmeB, Ery75, tet(O) | flaA, cadF, ceuE |
15 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, ceuE |
16 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), tet(B), C257T | flaA, cadF, cdtA, cdtB, cdtC |
17 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtC |
18 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
19 | C. jejuni | cmeB, Ery75, tet(O), tet(A), C257T, blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
20 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, ceuE |
21 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11, cgtB |
22 | C. jejuni | cmeB, Ery74, tet(O), aphA-3 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
23 | C. jejuni | cmeB, Ery75, tet(O), tet(A), tet(B), C257T, blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
24 | C. jejuni | CmeB, ermB, Ery75, tet(O), tet(A), tet(B) | flaA, cadF, ceuE |
25 | C. jejuni | cmeB, ermB, Ery75, tet(O), tet(A) | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
26 | C. jejuni | cmeB, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
27 | C. jejuni | cmeB, ermB, Ery74, tet(O), tet(A), tet(B), C257T, blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
28 | C. jejuni | cmeB, Ery75, tet(O), tet(A) | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
29 | C. jejuni | cmeB, Ery75, Ery74, tet(O), tet(A) | flaA, cadF, cdtA, cdtB, cdtC, ceuE virB11 |
30 | C. jejuni | cmeB, tet(O), blaOXA-61, aphA-3 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
31 | C. jejuni | cmeB, Ery75, tet(O), tet(A), tet(B) | flaA, cadF, cdtA, cdtC, ceuE, virB11 |
32 | C. jejuni | cmeB, ermB, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
33 | C. jejuni | cmeB, tet(O), tet(A), C257T, blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE, virB11 |
34 | C. coli | cmeB, Ery75, tet(O), tet(A), C257T, aphA-3 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
35 | C. coli | cmeB, ermB, tet(O), tet(A), C257T, aphA-3 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
36 | C. coli | cmeB, Ery75, Ery74, tet(O), tet(A), C257T | FlaA, cadF, cdtA, cdtB, cdtC |
37 | C. coli | cmeB, ermB, Ery75, tet(O), C257T | flaA, cadF, cdtA, cdtB, cdtC |
38 | C. coli | cmeB, ermB, Ery75, tet(O), tet(A) C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
39 | C. coli | cmeB, ermB, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC |
40 | C. coli | cmeB, ermB, Ery75, tet(O), tet(A), tet(B), C257T | flaA, cadF, cdtA, cdtB, cdtC, virB11 |
41 | C. coli | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
42 | C. coli | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC, virB11 |
43 | C. coli | cmeB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC |
44 | C. coli | cmeB, ermB, Ery75, tet(O), tet(A), C257T | flaA, cadF, cdtA, cdtB, cdtC |
45 | C. coli | cmeB, ermB, tet(O), tet(A), tet(B), C257T | flaA, cadF, cdtA, cdtB, cdtC |
46 | C. coli | cmeB, Ery75, Ery74, tet(O), tet(A), tet(B) | flaA, cadF, cdtA, cdtB, cdtC |
47 | C. coli | cmeB, Ery75, tet(O), tet(A), blaOXA-61 | flaA, cadF, cdtA, cdtB, cdtC, ceuE |
48 | C. coli | cmeB, ermB, tet(O), tet(A) | flaA, cadF, cdtA, cdtB, cdtC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Béjaoui, A.; Gharbi, M.; Bitri, S.; Nasraoui, D.; Ben Aziza, W.; Ghedira, K.; Rfaik, M.; Marzougui, L.; Ghram, A.; Maaroufi, A. Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics 2022, 11, 830. https://doi.org/10.3390/antibiotics11070830
Béjaoui A, Gharbi M, Bitri S, Nasraoui D, Ben Aziza W, Ghedira K, Rfaik M, Marzougui L, Ghram A, Maaroufi A. Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics. 2022; 11(7):830. https://doi.org/10.3390/antibiotics11070830
Chicago/Turabian StyleBéjaoui, Awatef, Manel Gharbi, Sarra Bitri, Dorsaf Nasraoui, Wassim Ben Aziza, Kais Ghedira, Maryem Rfaik, Linda Marzougui, Abdeljelil Ghram, and Abderrazek Maaroufi. 2022. "Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia" Antibiotics 11, no. 7: 830. https://doi.org/10.3390/antibiotics11070830
APA StyleBéjaoui, A., Gharbi, M., Bitri, S., Nasraoui, D., Ben Aziza, W., Ghedira, K., Rfaik, M., Marzougui, L., Ghram, A., & Maaroufi, A. (2022). Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics, 11(7), 830. https://doi.org/10.3390/antibiotics11070830