Prevention of Surgical Site Infections in Neonates and Children: Non-Pharmacological Measures of Prevention
Abstract
:1. Introduction
2. Methods
2.1. RAND/UCLA Appropriateness Method
2.2. Recruitment of Panelists
2.3. Generation of Scenarios
2.4. Two-Round Consensus Process
3. Epidemiology and Risk Factors
3.1. Pediatric Population
3.2. Neonatal Population
3.3. Overall Burden of SSIs in Children and Neonates
3.4. Etiology of SSIs in Children and Neonates
4. Preoperative Measures
4.1. SCENARIO #1—Preoperative Showering
4.2. SCENARIO #2—Hair Removal
4.3. SCENARIO #3—Patient and Staff Theatre Wear
5. Intraoperative Measures
5.1. SCENARIO #4—Antisepsis of Hands and Arms of the Operating Team
5.2. SCENARIO #5—Surgical Clothing
5.3. SCENARIO #6—Preparation of the Operating Field
5.4. SCENARIO #7—Normothermia
5.5. SCENARIO #8—Glycemic Control
5.6. SCENARIO #9—Tissue Oxygenation
5.7. SCENARIO #10—Normovolemia
5.8. SCENARIO #11. Wound Irrigation
5.9. SCENARIO #12—Antimicrobial-Coated Sutures
5.10. SCENARIO #13—Prophylactic Negative Pressure Wound Therapy
6. Postoperative Measures
6.1. SCENARIO #14—Evaluation of Different Surgical Dressings
6.2. SCENARIO #15—Surgical Dressing Management
7. Implementation of Surgical Site Infections Prevention Measures
7.1. SCENARIO #16—Surveillance
7.2. SCENARIO #17—Checklists
7.3. SCENARIO #18—Bundles
7.4. Staff Training, Staff Meetings and Feedback
7.5. SCENARIO #20—Use of Technological Means
8. Information about the Patient
8.1. SCENARIO #21—Information of the Patient: Role of Family and Caregivers
8.2. SCENARIO #22—Role of Team of Experts in SSIs Prevention
8.3. SCENARIO #23—Impact of Socioeconomic Status on Preoperative SSIs Prevention Protocol Adherence
9. Ventilation System in the Operating Room
9.1. SCENARIO #24—Ventilation System in Patients Undergoing Any Type of Surgery
9.2. SCENARIO #25—Ventilation System in Patients with Transmissible Infectious Disease Undergoing Any Type of Surgery
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.J.; Podgorny, K.; Berríos-Torres, S.I.; Bratzler, D.W.; Dellinger, E.P.; Greene, L.; Nyquist, A.C.; Saiman, L.; Yokoe, D.S.; Maragakis, L.L.; et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 2014, 35, 605–627. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Guidelines for the Prevention of Surgical Site Infection. 2018, 2nd ed. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536404/ (accessed on 1 March 2022).
- National Healthcare Safety Network, Centers for Disease Control and Prevention. Surgical site infection (SSI) Event. 2022. Available online: http://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf (accessed on 1 March 2022).
- National Institute of Health and Clinical Excellence. Surgical Site Infections: Prevention and Treatment. NICE 2019 [Update 2020]. Clinical Guideline NG 125. Available online: https://www.nice.org.uk/guidance/ng125 (accessed on 1 March 2022).
- Health Protection Scotland. Preventing Surgical Site Infections (SSI). HPS 2018. Available online: https://www.hps.scot.nhs.uk/web-resources-container/preventing-surgical-site-infections-ssi/ (accessed on 1 March 2022).
- Bianchini, S.; Morini, C.; Nicoletti, L.; Monaco, S.; Rigotti, E.; Caminiti, C.; Conti, G.; De Luca, M.; Donà, D.; Maglietta, G.; et al. Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Eye Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, S.; Nicoletti, L.; Monaco, S.; Rigotti, E.; Corbelli, A.; Colombari, A.; Auriti, C.; Caminiti, C.; Conti, G.; De Luca, M.; et al. Peri-Operative Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Cardiac and Thoracic Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 554. [Google Scholar] [CrossRef]
- Esposito, S.; Sgarzani, R.; Bianchini, S.; Monaco, S.; Nicoletti, L.; Rigotti, E.; Di Pietro, M.; Opri, R.; Caminiti, C.; Ciccia, M.; et al. Surgical Antimicrobial Prophylaxis in Pediatric Patients Undergoing Plastic Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, E.; Bianchini, S.; Nicoletti, L.; Monaco, S.; Carrara, E.; Opri, F.; Opri, R.; Caminiti, C.; Donà, D.; Giuffré, M.; et al. Antimicrobial Prophylaxis in Neonates and Children Undergoing Dental, Maxillo-Facial or Ear-Nose-Throat (ENT) Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 382. [Google Scholar] [CrossRef]
- Esposito, S.; Rigotti, E.; Argentiero, A.; Caminiti, C.; Castagnola, E.; Lancella, L.; Venturini, E.; De Luca, M.; La Grutta, S.; Lima, M.; et al. Antimicrobial Prophylaxis for Urologic Procedures in Paediatric Patients: A RAND/UCLA Appropriateness Method Consensus Study in Italy. Antibiotics 2022, 11, 296. [Google Scholar] [CrossRef]
- Opri, F.; Bianchini, S.; Nicoletti, L.; Monaco, S.; Opri, R.; Di Pietro, M.; Carrara, E.; Rigotti, E.; Auriti, C.; Caminiti, C.; et al. Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Undergoing Orthopedic and Hand Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 289. [Google Scholar] [CrossRef]
- Bianchini, S.; Rigotti, E.; Monaco, S.; Nicoletti, L.; Auriti, C.; Castagnola, E.; Conti, G.; Galli, L.; Giuffrè, M.; La Grutta, S.; et al. Surgical Antimicrobial Prophylaxis in Abdominal Surgery for Neonates and Paediatrics: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 279. [Google Scholar] [CrossRef]
- Bianchini, S.; Rigotti, E.; Nicoletti, L.; Monaco, S.; Auriti, C.; Castagnola, E.; Gattinara, G.C.; De Luca, M.; Galli, L.; Garazzino, S.; et al. Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 246. [Google Scholar] [CrossRef]
- Fitch, K.; Bernstein, S.J.; Aguilar, M.D. The RAND/UCLA Adeguateness Method User’s Manual; The RAND Corporation: Santa Monica, CA, USA, 2001. [Google Scholar]
- Hicks, N.R. Some observations on attempts to measure appropriateness of care. BMJ 1994, 309, 730–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Li, X.; Si, W.; Cui, Y.; Xia, H.; Sun, X.; Song, X.; Liang, H. Preoperative and operation-related risk factors for postoperative nosocomial infections in pediatric patients: A retrospective cohort study. PLoS ONE 2019, 14, e0225607. [Google Scholar] [CrossRef] [Green Version]
- Kulaylat, A.N.; Rocourt, D.V.; Tsai, A.Y.; Martin, K.L.; Engbrecht, B.W.; Santos, M.C.; Cilley, R.E.; Hollenbeak, C.S.; Dillon, P.W. Understanding readmissions in children undergoing surgery: A pediatric NSQIP analysis. J. Pediatr. Surg. 2018, 53, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Zingg, W.; Hopkins, S.; Gayet-Ageron, A.; Holmes, A.; Sharland, M.; Suetens, C.; Almeida, M.; Asembergiene, J.; Borg, M.A.; Budimir, A.; et al. Health-care-associated infections in neonates, children, and adolescents: An analysis of paediatric data from the European Centre for Disease Prevention and Control point-prevalence survey. Lancet Infect. Dis. 2017, 17, 381–389. [Google Scholar] [CrossRef]
- Blackwood, B.P.; Gause, C.D.; Harris, J.C.; Theodorou, C.M.; Helenowski, I.; Lautz, T.B.; Grabowski, J.; Hunter, C.J. Overweight and Obese Pediatric Patients Have an Increased Risk of Developing a Surgical Site Infection. Surg. Infect. 2017, 18, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Elward, A.; Yegge, J.; Recktenwald, A.; Jadwisiak, L.; Kieffer, P.; Hohrein, M.; Hopkins-Broyles, D.; Woeltje, K.F. Risk Factors for Craniotomy or Spinal Fusion Surgical Site Infection. Pediatr. Infect. Dis. J. 2015, 34, 1323–1328. [Google Scholar] [CrossRef]
- Canadian Nosocomial Infection Surveillance Program. Device-associated infections in Canadian acute-care hospitals from 2009 to 2018. Can. Commun. Dis. Rep. 2020, 46, 387–397. [Google Scholar] [CrossRef]
- Woodward, C.; Taylor, R.; Son, M.; Taeed, R.; Husain, S.A. Efforts to Reduce Infections in Delayed Sternal Closure Patients: A Survey of Pediatric Practice. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 310–315. [Google Scholar] [CrossRef]
- Sochet, A.A.; Nyhan, A.; Spaeder, M.; Cartron, A.M.; Song, X.; Klugman, D.; Brown, A.T. Fluid Overload and Cumulative Thoracostomy Output Are Associated with Surgical Site Infection After Pediatric Cardiothoracic Surgery. Pediatr. Crit. Care Med. 2017, 18, 770–778. [Google Scholar] [CrossRef]
- Katayanagi, T. Nasal Methicillin-Resistant S. Aureus is a Major Risk for Mediastinitis in Pediatric Cardiac Surgery. Ann. Thorac. Cardiovasc. Surg. 2015, 21, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.T.; Krishnamurthy, G.; Corda, R.; Turcotte, R.F.; Jia, H.; Bacha, E.; Saiman, L. Surgical site infections and bloodstream infections in infants after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2014, 148, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pough, K.; Bhakta, R.; Maples, H.; Honeycutt, M.; Vijayan, V. Evaluation of Pediatric Surgical Site Infections Associated with Colorectal Surgeries at an Academic Children’s Hospital. Healthcare 2020, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, J.M.; Graham, D.A.; Morrow, D.F.; Morrow, J.; Potter-Bynoe, G.; Sandora, T.J.; Pigula, F.A.; Laussen, P.C. Risk Factors for Surgical Site Infection After Cardiac Surgery in Children. Ann. Thorac. Surg. 2010, 89, 1833–1842, discussion 1841–1842. [Google Scholar] [CrossRef]
- Shibamura-Fujiogi, M.; Ormsby, J.; Breibart, M.; Zalieckas, J.; Sandora, T.J.; Priebe, G.P.; Yuki, K. The Role of Anesthetic Management in Surgical Site Infections After Pediatric Intestinal Surgery. J. Surg. Res. 2020, 259, 546–554. [Google Scholar] [CrossRef]
- Boomer, L.A.; Cooper, J.N.; Deans, K.J.; Minneci, P.C.; Leonhart, K.; Diefenbach, K.A.; Kenney, B.D.; Besner, G.E. Does delay in appendectomy affect surgical site infection in children with appendicitis? J. Pediatr. Surg. 2014, 49, 1026–1029, discussion 1029. [Google Scholar] [CrossRef] [PubMed]
- Butler, E.K.; Mills, B.M.; Arbabi, S.; Groner, J.I.; Vavilala, M.S.; Rivara, F.P. Laparoscopy Compared with Laparotomy for the Management of Pediatric Blunt Abdominal Trauma. J. Surg. Res. 2020, 251, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Tipper, G.A.; Chiwera, L.; Lucas, J. Reducing Surgical Site Infection in Pediatric Scoliosis Surgery: A Multidisciplinary Improvement Program and Prospective 4-Year Audit. Glob. Spine J. 2019, 10, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Furdock, R.; Luhmann, S.J. The value of preoperative labs in identifying “at-risk” patients for developing surgical site infections after pediatric neuromuscular spine deformity surgery. Spine Deform. 2020, 8, 517–522. [Google Scholar] [CrossRef]
- Malik, A.T.; Tamer, R.; Yu, E.; Kim, J.; Khan, S.N. The Impact of Body Mass Index (BMI) on 30-day Outcomes Following Posterior Spinal Fusion in Neuromuscular Scoliosis. Spine 2019, 44, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Uchida, K.; Ichikawa, T.; Nagano, Y.; Matsushita, K.; Koike, Y.; Okita, Y.; Toiyama, Y.; Araki, T.; Kusunoki, M. Contaminated or dirty wound operations and methicillin-resistant Staphylococcus aureus (MRSA) colonization during hospitalization may be risk factors for surgical site infection in neonatal surgical patients. Pediatr. Surg. Int. 2018, 34, 1209–1214. [Google Scholar] [CrossRef]
- Bartz-Kurycki, M.A.; Green, C.; Anderson, K.T.; Alder, A.C.; Bucher, B.T.; Cina, R.A.; Jamshidi, R.; Russell, R.T.; Williams, R.F.; Tsao, K. Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm. Am. J. Surg. 2018, 216, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Clements, K.E.; Fisher, M.; Quaye, K.; O’Donnell, R.; Whyte, C.; Horgan, M.J. Surgical site infections in the NICU. J. Pediatr. Surg. 2016, 51, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.A.; Wong-McLoughlin, J.; Patel, S.; Coffin, S.E.; Zaoutis, T.E.; Perlman, J.; DeLaMora, P.; Alba, L.; Ferng, Y.H.; Saiman, L. Surgical site infections in a longitudinal cohort of neonatal intensive care unit patients. J. Perinatol. 2016, 36, 300–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejus, C.; Dumont, R.; Gall, C.L.; Guillaud, C.; Guen, C.G.; Leclair, M.D.; Asehnoune, K. A preoperative stay in an intensive care unit is associated with an increased risk of surgical site infection in neonates. J. Pediatr. Surg. 2013, 48, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Weiner-Lastinger, L.M.; Abner, S.; Benin, A.L.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; et al. Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.G.; Weiner, L.M.; Milstone, A.M.; Saiman, L.; Magill, S.S.; See, I. Pathogen Distribution and Antimicrobial Resistance among Pediatric Healthcare-Associated Infections Reported to the National Healthcare Safety Network, 2011–2014. Infect. Control. Hosp. Epidemiol. 2018, 39, 1–11. [Google Scholar] [CrossRef]
- Esposito, S.; Terranova, L.; Macchini, F.; Bianchini, S.; Biffi, G.; Viganò, M.; Pelucchi, C.; Leva, E.; Principi, N. Staphylococcus aureus colonization and risk of surgical site infection in children undergoing clean elective surgery. Medicine 2018, 97, e11097. [Google Scholar] [CrossRef]
- Woltmann, J.; Schaffzin, J.K.; Washam, M.; Connelly, B.L. Pathogen and Procedure Trends Among Surgical-Site Infections at a Children’s Hospital: A 20-Year Experience. Infect. Control Hosp. Epidemiol. 2017, 38, 380–382. [Google Scholar] [CrossRef] [Green Version]
- Afonso, E.; Llauradó, M.; Gallart, E. The value of chlorhexidine gluconate wipes and prepacked washcloths to prevent the spread of pathogens—A systematic review. Aust. Crit. Care 2013, 26, 158–166. [Google Scholar] [CrossRef]
- Webster, J.; Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst. Rev. 2015, CD004985. [Google Scholar] [CrossRef] [Green Version]
- Berrondo, C.; Ahn, J.J.; Shnorhavorian, M. Pre-operative skin antisepsis with chlorhexidine gluconate baths and wipes does not prevent postoperative surgical site infection in outpatient pediatric urologic inguinal and scrotal surgery. J. Pediatr. Urol. 2019, 15, 652.e1–652.e7. [Google Scholar] [CrossRef] [PubMed]
- Schaffzin, J.K.; Simon, K.; Connelly, B.L.; Mangano, F.T. Standardizing preoperative preparation to reduce surgical site infections among pediatric neurosurgical patients. J. Neurosurg. Pediatr. 2017, 19, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolakowski, L.; Lai, J.K.; Duvall, G.T.; Jauregui, J.J.; Dubina, A.G.; Jones, D.L.; Williams, K.M.; Hasan, S.A.; Henn, R.F., 3rd; Gilotra, M.N. Neer Award 2018: Benzoyl peroxide effectively decreases preoperative Cutibacterium acnes shoulder burden: A prospective randomized controlled trial. J. Shoulder Elb. Surg. 2018, 27, 1539–1544. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.; Melen, K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst. Rev. 2021, 8, CD004122. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.P.; Marti, W.R.; Zwahlen, M.; Misteli, H.; Rosenthal, R.; Reck, S.; Fueglistaler, P.; Bolli, M.; Trampuz, A.; Oertli, D.; et al. The Timing of Surgical Antimicrobial Prophylaxis. Ann. Surg. 2008, 247, 918–926. [Google Scholar] [CrossRef]
- Pereira, L.; Lee, G.; Wade, K. An evaluation of five protocols for surgical handwashing in relation to skin condition and microbial counts. J. Hosp. Infect. 1997, 36, 49–65. [Google Scholar] [CrossRef]
- Allegranzi, B.; Bischoff, P.; de Jonge, S.; Kubilay, N.Z.; Zayed, B.; Gomes, S.M.; Abbas, M.; Atema, J.J.; Gans, S.; van Rijen, M.; et al. New WHO recommendations on preoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e276–e2877. [Google Scholar] [CrossRef]
- Maiwald, M.; Widmer, A.F. WHO’s recommendation for surgical skin antisepsis is premature. Lancet Infect. Dis. 2017, 17, 1023–1024. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.-H.; Wang, Y.-C.; Loh, E.-W.; Tam, K.-W. Antiseptic efficacies of waterless hand rub, chlorhexidine scrub, and povidone-iodine scrub in surgical settings: A meta-analysis of randomized controlled trials. J. Hosp. Infect. 2018, 101, 370–379. [Google Scholar] [CrossRef]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R.; The Hospital Infection Control Practices Advisory Committee. Guideline for Prevention of Surgical Site Infection, 1999. Infect. Control Hosp. Epidemiol. 1999, 20, 247–280, quiz 279–280. [Google Scholar] [CrossRef]
- Al-Habdan, I.; Corea, J.R.; Sadat-Ali, M. Double or Single Gloves. J. Pediatr. Orthop. 2006, 26, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Aitken, J.; Williams, F.L.R. A systematic review of thyroid dysfunction in preterm neonates exposed to topical iodine. Arch. Dis. Child.-Fetal Neonatal Ed. 2013, 99, F21–F28. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, M.; Niola, M.; Graziano, V. Avoiding Chlorhexidine Burns in Preterm Infants. J. Obstet. Gynecol. Neonatal Nurs. 2017, 46, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Vanzi, V.; Pitaro, R. Skin Injuries and Chlorhexidine Gluconate-Based Antisepsis in Early Premature Infants. J. Périnat. Neonatal Nurs. 2018, 32, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Espuny, X.B.; Soria, X.; Solé, E.; Garcia, J.; Marco, J.J.; Ortega, J.; Ortiz, M.; Pueyo, A. Chlorhexidine-Methanol Burns in Two Extreme Preterm Newborns. Pediatr. Dermatol. 2010, 27, 676–678. [Google Scholar] [CrossRef]
- Chapman, A.K.; Aucott, S.W.; Milstone, A.M. Safety of chlorhexidine gluconate used for skin antisepsis in the preterm infant. J. Perinatol. 2011, 32, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Neri, I.; Ravaioli, G.M.; Faldella, G.; Capretti, M.G.; Arcuri, S.; Patrizi, A. Chlorhexidine-Induced Chemical Burns in Very Low Birth Weight Infants. J. Pediatr. 2017, 191, 262–265.e2. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Mascha, E.; Na, J.; Sessler, D.I. The Effects of Mild Perioperative Hypothermia on Blood Loss and Transfusion Requirement. Anesthesiology 2008, 108, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Melling, A.C.; Ali, B.; Scott, E.M.; Leaper, D.J. Effects of preoperative warming on the incidence of wound infection after clean surgery: A randomised controlled trial. Lancet 2001, 358, 876–880. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wan, S.Y.K.; Tay, C.L.; Tan, Z.H.; Wong, I.; Chua, M.; Allen, J.C. Perioperative Temperature Management in Children: What Matters? Pediatr. Qual. Saf. 2020, 5, e350. [Google Scholar] [CrossRef]
- Nemeth, M.; Miller, C.; Bräuer, A. Perioperative Hypothermia in Children. Int. J. Environ. Res. Public Health 2021, 18, 7541. [Google Scholar] [CrossRef] [PubMed]
- Ata, A.; Lee, J.; Bestle, S.L.; Desemone, J.; Stain, S.C. Postoperative Hyperglycemia and Surgical Site Infection in General Surgery Patients. Arch. Surg. 2010, 145, 858–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, L.S.; Phatak, U.R. Glycemic Control and Prevention of Surgical Site Infection. Surg. Infect. 2013, 14, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Kotagal, M.; Symons, R.G.; Hirsch, I.B.; Umpierrez, G.E.; Dellinger, E.P.; Farrokhi, E.T.; Flum, D.R. Perioperative Hyperglycemia and Risk of Adverse Events Among Patients with and without Diabetes. Ann. Surg. 2015, 261, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, J.E.; Hutchinson, J.; Mukherjee, K.; Jahangir, A.A.; Mir, H.R.; Evans, J.M.; Perdue, A.M.; Obremskey, W.T.; Sethi, M.K.; May, A.K. Stress hyperglycemia and surgical site infection in stable nondiabetic adults with orthopedic injuries. J. Trauma Acute Care Surg. 2014, 76, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, J.J.; Brand, J.B.; van de Polder, M.M.; Joosten, K.F.M. Management of hyperglycemia in the pediatric intensive care unit; implementation of a glucose control protocol. Pediatr. Crit. Care Med. 2009, 10, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Preissig, C.M.; Hansen, I.; Roerig, P.-L.; Rigby, M.R. A protocolized approach to identify and manage hyperglycemia in a pediatric critical care unit. Pediatr. Crit. Care Med. 2008, 9, 581–588. [Google Scholar] [CrossRef]
- Preissig, C.M.; Rigby, M.R.; Maher, K.O. Glycemic Control for Postoperative Pediatric Cardiac Patients. Pediatr. Cardiol. 2009, 30, 1098–1104. [Google Scholar] [CrossRef]
- Vlasselaers, D.; Milants, I.; Desmet, L.; Wouters, P.J.; Vanhorebeek, I.; Heuvel, I.V.D.; Mesotten, D.; Casaer, M.; Meyfroidt, G.; Ingels, C.; et al. Intensive insulin therapy for patients in paediatric intensive care: A prospective, randomised controlled study. Lancet 2009, 373, 547–556. [Google Scholar] [CrossRef]
- Gaies, M.G.; Langer, M.; Alexander, J.; Steil, G.M.; Ware, J.; Wypij, D.; Laussen, P.C.; Newburger, J.W.; Goldberg, C.S.; Pigula, F.A.; et al. Design and rationale of safe pediatric euglycemia after cardiac surgery: A randomized controlled trial of tight glycemic control after pediatric cardiac surgery. Pediatr. Crit. Care Med. 2013, 14, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Agus, M.S.; Asaro, L.; Steil, G.M.; Alexander, J.L.; Silverman, M.; Wypij, D.; Gaies, M.G. Tight glycemic control after pediatric cardiac surgery in high-risk patient populations: A secondary analysis of the safe pediatric euglycemia after cardiac surgery trial. Circulation 2014, 129, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Greif, R.; Akça, O.; Horn, E.P.; Kurz, A.; Sessler, D.I.; Outcomes Research Group. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N. Engl. J. Med. 2000, 342, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Mayzler, O.; Weksler, N.; Domchik, S.; Klein, M.; Mizrahi, S.; Gurman, G.M. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005, 71, 21–25. [Google Scholar] [PubMed]
- Kabon, B.; Kurz, A. Optimal perioperative oxygen administration. Curr. Opin. Anaesthesiol. 2006, 19, 11–18. [Google Scholar] [CrossRef]
- Al-Niaimi, A.; Safdar, N. Supplemental perioperative oxygen for reducing surgical site infection: A meta-analysis. J. Eval. Clin. Pract. 2009, 15, 360–365. [Google Scholar] [CrossRef]
- Togioka, B.; Galvagno, S.; Sumida, S.; Murphy, J.; Ouanes, J.P.; Wu, C. The role of perioperative high inspired oxygen therapy in reducing surgical site infection: A meta-analysis. Anesth. Analg. 2012, 114, 334–342. [Google Scholar] [CrossRef]
- Wanta, B.T.; Hanson, K.T.; Hyder, J.A.; Stewart, T.M.; Curry, T.B.; Berbari, E.F.; Habermann, E.; Kor, D.J.; Brown, M.J. Intra-Operative Inspired Fraction of Oxygen and the Risk of Surgical Site Infections in Patients with Type 1 Surgical Incisions. Surg. Infect. 2018, 19, 403–409. [Google Scholar] [CrossRef]
- Hopf, H.W.; Hunt, T.K.; Rosen, N. Supplemental Oxygen and Risk of Surgical Site Infection. JAMA 2004, 291, 1956, author reply 1958–1959. [Google Scholar] [CrossRef]
- Allen, D.B.; Maguire, J.J.; Mahdavian, M.; Wicke, C.; Marcocci, L.; Scheuenstuhl, H.; Chang, M.; Le, A.X.; Hopf, H.; Hunt, T.K. Wound Hypoxia and Acidosis Limit Neutrophil Bacterial Killing Mechanisms. Arch. Surg. 1997, 132, 991–996. [Google Scholar] [CrossRef]
- Habre, W.; Peták, F. Perioperative use of oxygen: Variabilities across age. Br. J. Anaesth. 2014, 113 (Suppl. S2), ii26–ii36. [Google Scholar] [CrossRef] [Green Version]
- Sola, A.A.; Golombek, S.S.; Bueno, M.T.M.M.; Lemus-Varela, L.L.; Zuluaga, C.C.; Domínguez, F.F.; Baquero, H.; Sarmiento, A.A.Y.; Natta, D.D.; Perez, J.J.R.; et al. Safe oxygen saturation targeting and monitoring in preterm infants: Can we avoid hypoxia and hyperoxia? Acta Paediatr. 2014, 103, 1009–1018. [Google Scholar] [CrossRef]
- Dalfino, L.; Giglio, M.T.; Puntillo, F.; Marucci, M.; Brienza, N. Haemodynamic goal-directed therapy and postoperative infections: Earlier is better. A systematic review and meta-analysis. Crit. Care 2011, 15, R154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, S.; Spencer, M.; Graham, D.; Johnson, H.B. Surgical wound irrigation: A call for evidence-based standardization of practice. Am. J. Infect. Control 2014, 42, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.L.; Schwend, R.M.; Flynn, J.M.; Hedequist, D.J.; Karlin, L.I.; Emans, J.B.; Snyder, B.D.; Hresko, M.T.; Anderson, J.T.; Leamon, J.; et al. Why Irrigate for the Same Contamination Rate: Wound Contamination in Pediatric Spinal Surgery Using Betadine Versus Saline. J. Pediatr. Orthop. 2020, 40, e994–e998. [Google Scholar] [CrossRef]
- Van Herwijnen, B.; Evans, N.R.; Dare, C.J.; Davies, E.M. An intraoperative irrigation regimen to reduce the surgical site infection rate following adolescent idiopathic scoliosis surgery. Ann. R. Coll. Surg. Engl. 2016, 98, 320–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, J.G.D.; Ho, A.L.; Mohole, J.; Pendharkar, A.V.; Sussman, E.S.; Cheshier, S.H.; Grant, G.A. Topical vancomycin for surgical prophylaxis in non-instrumented pediatric spinal surgeries. Child’s Nerv. Syst. 2018, 35, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Mohole, J.; Ho, A.L.; Cannon, J.G.; Pendharkar, A.V.; Sussman, E.S.; Hong, D.S.; Cheshier, S.H.; Grant, G.A. Topical Vancomycin for Surgical Prophylaxis in Pediatric Craniofacial Surgeries. J. Craniofacial Surg. 2019, 30, 2163–2167. [Google Scholar] [CrossRef]
- Wu, X.; Kubilay, N.Z.; Ren, J.; Allegranzi, B.; Bischoff, P.; Zayed, B.; Pittet, D.; Li, J. Antimicrobial-coated sutures to decrease surgical site infections: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. 2016, 36, 19–32. [Google Scholar] [CrossRef]
- Leaper, D.; Assadian, O.; Hubner, N.-O.; McBain, A.; Barbolt, T.; Rothenburger, S.; Wilson, P. Antimicrobial sutures and prevention of surgical site infection: Assessment of the safety of the antiseptic triclosan. Int. Wound J. 2011, 8, 556–566. [Google Scholar] [CrossRef]
- Ford, H.R.; Jones, P.; Gaines, B.; Reblock, K.; Simpkins, D.L. Intraoperative Handling and Wound Healing: Controlled Clinical Trial Comparing Coated VICRYL® Plus Antibacterial Suture (Coated Polyglactin 910 Suture with Triclosan) with Coated VICRYL® Suture (Coated Polyglactin 910 Suture). Surg. Infect. 2005, 6, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Matl, F.D.; Zlotnyk, J.; Obermeier, A.; Friess, W.; Vogt, S.; Büchner, H.; Schnabelrauch, H.; Stemberger, A.; Kühn, K.-D. New Anti-infective Coatings of Surgical Sutures Based on a Combination of Antiseptics and Fatty Acids. J. Biomater. Sci. Polym. Ed. 2009, 20, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Obermeier, A.; Schneider, J.; Wehner, S.; Matl, F.D.; Schieker, M.; Von Eisenhart-Rothe, R.; Stemberger, A.; Burgkart, R. Novel High Efficient Coatings for Anti-Microbial Surgical Sutures Using Chlorhexidine in Fatty Acid Slow-Release Carrier Systems. PLoS ONE 2014, 9, e101426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, J.; Liu, H.; Liu, X.; Zhou, L.; Sun, Y.; Shi, P.; Hao, W.; Su, H.; Wang, X. Vacuum Sealing Drainage as Treatment of Severe Buttocks and Perianal Infection: A Case Report and Review of the Literature (Care-Compliant). Medicine 2015, 94, e1766. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.-M.; Kong, F.-B.; Wang, X.-T.; Li, D.-G.; Li, Y.-B.; Sun, P.-L.; Huang, H.-Y.; Liu, C.-Q.; Wei, M. Efficacy of Vacuum Sealing Drainage after Incision of Perianal Abscess: Preliminary Experience. Am. Surg. 2015, 81, 379–382. [Google Scholar] [CrossRef]
- Cedidi, C.; Berger, A.; Ingianni, G. The two-stage concept with temporary subcutaneous implantation of a vacuum sealing system: An alternative surgical approach in infected partial abdominal defects after lapratomy or abdominoplasty. Eur. J. Med Res. 2002, 7, 399–403. [Google Scholar]
- Murphy, P.B.; Knowles, S.; Chadi, S.A.; Vogt, K.; Brackstone, M.; Koughnett, J.A.V.; Ott, M.C. Negative Pressure Wound Therapy Use to Decrease Surgical Nosocomial Events in Colorectal Resections (NEPTUNE): A Randomized Controlled Trial. Ann. Surg. 2019, 270, 38–42. [Google Scholar] [CrossRef]
- Chen, B.; Hao, F.; Yang, Y.; Shang, Q.; Guo, C. Prophylactic vacuum sealing drainage (VSD) in the prevention of postoperative surgical site infections in pediatric patients with contaminated laparotomy incisions. Medicine 2017, 96, e6511. [Google Scholar] [CrossRef]
- Phillips, M.R.; English, S.L.; Reichard, K.; Vinocur, C.; Berman, L. The safety and efficacy of using negative pressure incisional wound VACs in pediatric and neonatal patients. J. Pediatr. Surg. 2020, 55, 1470–1474. [Google Scholar] [CrossRef]
- Jiang, N.; Rao, F.; Xiao, J.; Yang, J.; Wang, W.; Li, Z.; Huang, R.; Liu, Z.; Guo, T. Evaluation of different surgical dressings in reducing postoperative surgical site infection of a closed wound: A network meta-analysis. Int. J. Surg. 2020, 82, 24–29. [Google Scholar] [CrossRef]
- British Medical Association and Royal Pharmaceutical Society of Great Britain. British National Formulary (BNF): Wound management products and elasticated garments. Available online: https://bnf.nice.org.uk/wound-management/ (accessed on 1 March 2022).
- Dumville, J.C.; Walter, C.J.; Sharp, C.A.; Page, T. Dressings for the prevention of surgical site infection. Cochrane Database Syst. Rev. 2011, CD003091. [Google Scholar] [CrossRef]
- Dumville, J.C.; Gray, T.A.; Walter, C.J.; Sharp, C.A.; Page, T. Dressings for the prevention of surgical site infection. Cochrane Database Syst. Rev. 2014, CD003091. [Google Scholar] [CrossRef] [Green Version]
- Dumville, J.C.; A Gray, T.; Walter, C.J.; A Sharp, C.; Page, T.; Macefield, R.; Blencowe, N.; Milne, T.K.; Reeves, B.C.; Blazeby, J. Dressings for the prevention of surgical site infection. Cochrane Database Syst. Rev. 2016, 12, CD003091. [Google Scholar] [CrossRef] [Green Version]
- Rowley, S. Theory to practice. Aseptic non-touch technique. Nurs. Times 2001, 97, VI–VIII. [Google Scholar] [PubMed]
- Toon, C.D.; Lusuku, C.; Ramamoorthy, R.; Davidson, B.R.; Gurusamy, K.S. Early versus delayed dressing removal after primary closure of clean and clean-contaminated surgical wounds. Cochrane Database Syst. Rev. 2015, 2015, CD010259. [Google Scholar] [CrossRef] [PubMed]
- Toon, C.D.; Sinha, S.; Davidson, B.R.; Gurusamy, K.S. Early versus delayed post-operative bathing or showering to prevent wound complications. Cochrane Database Syst. Rev. 2015, 2015, CD010075. [Google Scholar] [CrossRef]
- Copeland-Halperin, L.R.; Reategui Via YRada, M.L.; Levy, J.; Shank, N.; Funderburk, C.D.; Shin, J.H. Does the timing of postoperative showering impact infection rates? A systematic review and meta-analysis. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 1306–1311. [Google Scholar] [CrossRef]
- Ban, K.A.; Minei, J.P.; Laronga, C.; Harbrecht, B.G.; Jensen, E.; Fry, D.E.; Itani, K.M.; Dellinger, E.P.; Ko, C.Y.; Duane, T.M. Executive Summary of the American College of Surgeons/Surgical Infection Society Surgical Site Infection Guidelines—2016 Update. Surg. Infect. 2017, 18, 379–382. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). TECHNICAL DOCUMENT; Surveillance of Surgical Site Infections and Prevention Indicators in European Hospitals; HAI-Net SSI Protocol, Version 2.2. 2017. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/HAI-Net-SSI-protocol-v2.2.pdf (accessed on 1 March 2022).
- United Kingdom Health Security Agency. Protocol for the Surveillance of Surgical Site Infection; Version 6. 2013. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1048707/Protocol_for_the_Surveillance_of_Surgical_Site_Infection.pdf (accessed on 1 March 2022).
- Emori, T.; Culver, D.H.; Horan, T.C.; Jarvis, W.R.; White, J.W.; Olson, D.R.; Banerjee, S.; Edwards, J.R.; Martone, W.J.; Gaynes, R.P.; et al. National nosocomial infections surveillance system (NNIS): Description of surveillance methods. Am. J. Infect. Control 1991, 19, 19–35. [Google Scholar] [CrossRef]
- Skarsgard, E.D.; Bedford, J.; Chan, T.; Whyte, S.; Afshar, K. ACS national surgical quality improvement program: Targeting quality improvement in Canadian pediatric surgery. J. Pediatr. Surg. 2014, 49, 682–687. [Google Scholar] [CrossRef]
- Anderson, K.T.; Appelbaum, R.; Bartz-Kurycki, M.A.; Tsao, K.; Browne, M. Advances in perioperative quality and safety. Semin. Pediatr. Surg. 2018, 27, 92–101. [Google Scholar] [CrossRef]
- Saito, J.M.; Chen, L.E.; Hall, B.L.; Kraemer, K.; Barnhart, D.C.; Byrd, C.; Cohen, M.E.; Fei, C.; Heiss, K.F.; Huffman, K.; et al. Risk-Adjusted Hospital Outcomes for Children’s Surgery. Pediatrics 2013, 132, e677–e688. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.C.; Aires-Neto, T.; Azevedo, G.D.; Vilar, M.J.P.; Pinheiro, L.A.M.; Brandão-Neto, J. Surgical site infection in a university hospital in northeast Brazil. Braz. J. Infect. Dis. 2005, 9, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durando, P.; Icardi, G.; Ansaldi, F.; Crimi, P.; Sticchi, C.; Compagnino, F.; Fabbri, P.; Baldelli, I.; Bellina, D.; Sacco, R.; et al. Surveillance of hospital-acquired infections in Liguria, Italy: Results from a regional prevalence study in adult and paediatric acute-care hospitals. J. Hosp. Infect. 2009, 71, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Suljagić, V.; Jevtic, M.; Djordjevic, B.; Jovelic, A. Surgical site infections in a tertiary health care center: Prospective cohort study. Surg. Today 2010, 40, 763–771. [Google Scholar] [CrossRef]
- So, J.P.; Aleem, I.S.; Tsang, D.S.; Matlow, A.G.; Wright, J.G.; SickKids Surgical Site Infection Task Force. Increasing Compliance with an Antibiotic Prophylaxis Guideline to Prevent Pediatric Surgical Site Infection: Before and After Study. Ann. Surg. 2015, 262, 403–408. [Google Scholar] [CrossRef]
- Schröder, C.; Schwab, F.; Behnke, M.; Breier, A.-C.; Maechler, F.; Piening, B.; Dettenkofer, M.; Geffers, C.; Gastmeier, P. Epidemiology of healthcare associated infections in Germany: Nearly 20 years of surveillance. Int. J. Med Microbiol. 2015, 305, 799–806. [Google Scholar] [CrossRef]
- Núñez-Núñez, M.; Navarro, M.; Palomo, V.; Rajendran, N.; del Toro, M.; Voss, A.; Sharland, M.; Sifakis, F.; Tacconelli, E.; Rodríguez-Baño, J.; et al. The methodology of surveillance for antimicrobial resistance and healthcare-associated infections in Europe (SUSPIRE): A systematic review of publicly available information. Clin. Microbiol. Infect. 2018, 24, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Arnoldo, L.; Smaniotto, C.; Celotto, D.; Brunelli, L.; Cocconi, R.; Tignonsini, D.; Faruzzo, A.; Brusaferro, S.; Collazzo, R.; Mansutti, M.; et al. Monitoring healthcare-associated infections and antimicrobial use at regional level through repeated point prevalence surveys: What can be learnt? J. Hosp. Infect. 2018, 101, 447–454. [Google Scholar] [CrossRef]
- Seidelman, J.L.; Smith, B.; Wood, B.; Adcock, L.; Shelton, B.; Huslage, K.; Baker, A.; Akinboyo, I.C.; Anderson, D.J.; Sexton, D.J.; et al. Shifting surgical site infection denominators and implications for National Health Safety Network reporting. Infect. Control Hosp. Epidemiol. 2019, 40, 1316–1317. [Google Scholar] [CrossRef] [Green Version]
- Di Leo, A.; Piffer, S.; Ricci, F.; Manzi, A.; Poggi, E.; Porretto, V.; Fambri, P.; Piccini, G.; Patrizia, T.; Fabbri, L.; et al. Surgical Site Infections in an Italian Surgical Ward: A Prospective Study. Surg. Infect. 2009, 10, 533–538. [Google Scholar] [CrossRef]
- Wong, J.; Ho, C.; Scott, G.; Machin, J.T.; Briggs, T. Getting It Right First Time: The national survey of surgical site infection rates in NHS trusts in England. Ann. R. Coll. Surg. Engl. 2019, 101, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Saliba, E.A.; Sharma, S.; Mahadik, V.K.; Shah, H.; Lundborg, C.S. Incidence and factors associated with surgical site infections in a teaching hospital in Ujjain, India. Am. J. Infect. Control 2014, 42, e11–e15. [Google Scholar] [CrossRef] [PubMed]
- Hafez, S.; Saied, T.; Hasan, E.; Elnawasany, M.; Ahmad, E.; Lloyd, L.; El-Shobary, W.; House, B.; Talaat, M. Incidence and modifiable risk factors of surveillance of surgical site infections in Egypt: A prospective study. Am. J. Infect. Control 2011, 40, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Aiken, A.; Wanyoro, A.; Mwangi, J.; Mulingwa, P.; Wanjohi, J.; Njoroge, J.; Juma, F.; Mugoya, I.; Scott, J.; Hall, A. Evaluation of surveillance for surgical site infections in Thika Hospital, Kenya. J. Hosp. Infect. 2013, 83, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Preventing Surgical Site Infections: Implementation Approaches for Evidence-Based Recommendations. 2018. Available online: https://www.who.int/infection-prevention/tools/surgical/sssi_implementation-approaches.pdf (accessed on 1 March 2022).
- Anderson, D.J. Prevention of surgical site infection: Beyond SCIP. AORN J. 2014, 99, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Collaborating Centre for Women’s and Children’s Health (UK). Surgical Site Infection: Prevention and Treatment of Surgical Site Infection; RCOG Press: London, UK, 2008. [Google Scholar]
- Lee, R.P.; Venable, G.T.; Vaughn, R.B.N.; Lillard, B.J.C.; Oravec, B.C.S.; Klimo, J.P., Jr. The Impact of a Pediatric Shunt Surgery Checklist on Infection Rate at a Single Institution. Neurosurgery 2017, 83, 508–520. [Google Scholar] [CrossRef]
- Schaffzin, J.K.; Harte, L.; Marquette, S.; Zieker, K.; Wooton, S.; Walsh, K.; Newland, J.G. Surgical Site Infection Reduction by the Solutions for Patient Safety Hospital Engagement Network. Pediatrics 2015, 136, e1353–e1360. [Google Scholar] [CrossRef] [Green Version]
- Kashtan, M.; Dawson, M.; Anandalwar, S.; Hills-Dunlap, J.; Graham, D.A.; Rangel, S. Implementation of a Plan–Do–Study–Act framework to reduce unindicated surgical antimicrobial prophylaxis. J. Pediatr. Surg. 2020, 55, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Toltzis, P.; O’Riordan, M.; Cunningham, D.J.; Ryckman, F.C.; Bracke, T.M.; Olivea, J.; Lyren, A. A Statewide Collaborative to Reduce Pediatric Surgical Site Infections. Pediatrics 2014, 134, e1174–e1180. [Google Scholar] [CrossRef] [Green Version]
- Merry, A.F.; the ABC Study Group; Gargiulo, D.A.; Bissett, I.; Cumin, D.; English, K.; Frampton, C.; Hamblin, R.; Hannam, J.; Moore, M.; et al. The effect of implementing an aseptic practice bundle for anaesthetists to reduce postoperative infections, the Anaesthetists Be Cleaner (ABC) study: Protocol for a stepped wedge, cluster randomised, multi-site trial. Trials 2019, 20, 342. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Fernandez, P.G.; Rowlands, J.P.; Koff, M.D.; Loftus, R.W. Perioperative Infection Transmission: The Role of the Anesthesia Provider in Infection Control and Healthcare-Associated Infections. Curr. Anesthesiol. Rep. 2020, 10, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, U.; Pappalardo, M.; Chinè, V.; Gismondi, P.; Neglia, C.; Argentiero, A.; Calderaro, A.; Prati, A.; Esposito, S. Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics 2020, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Altokhais, T.I.; Al-Obaid, O.A.; Kattan, A.E.; Amer, Y.S.; CPG Collaborative Groups. Assessment of implementability of an adapted clinical practice guideline for surgical antimicrobial prophylaxis at a tertiary care university hospital. J. Eval. Clin. Pract. 2016, 23, 156–164. [Google Scholar] [CrossRef]
- Billett, A.L.; Colletti, R.B.; Mandel, K.E.; Miller, M.; Muething, S.E.; Sharek, P.J.; Lannon, C.M. Exemplar Pediatric Collaborative Improvement Networks: Achieving Results. Pediatrics 2013, 131 (Suppl. S4), S196–S203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.W.; Zarosinski, S.; Rockstroh, D. Improvement of surgical wound classification following a targeted training program at a children’s hospital. J. Pediatr. Surg. 2018, 53, 2378–2382. [Google Scholar] [CrossRef]
- Phipps, A.R.; Paradis, M.; Peterson, K.A.; Jensen, J.; Nielsen, K.; Hall, M.; Simonsen, K.; Norton, B.M. Reducing Serious Safety Events and Priority Hospital-Acquired Conditions in a Pediatric Hospital with the Implementation of a Patient Safety Program. Jt. Comm. J. Qual. Patient Saf. 2018, 44, 334–340. [Google Scholar] [CrossRef]
- Alidina, S.; Kuchukhidze, S.; Menon, G.; Citron, I.; Lama, T.N.; Meara, J.; Barash, D.; Hellar, A.; A Kapologwe, N.; Maina, E.; et al. Effectiveness of a multicomponent safe surgery intervention on improving surgical quality in Tanzania’s Lake Zone: Protocol for a quasi-experimental study. BMJ Open 2019, 9, e031800. [Google Scholar] [CrossRef]
- Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Hospital-Wide Surveillance of Healthcare-Associated Infections as a Source of Information about Specific Hospital Needs. A 5-Year Observation in a Multiprofile Provincial Hospital in the South of Poland. Int. J. Environ. Res. Public Health 2018, 15, 1956. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Oetgen, M.E.; Magge, S.N.; Berger, J.T.; Shah, R.K. Utilization of a Dual Surveillance Program to Reduce Surgical-site Infections. Pediatr. Qual. Saf. 2018, 3, e121. [Google Scholar] [CrossRef]
- Fisher, J.C.; Godfried, D.H.; Lighter-Fisher, J.; Pratko, J.; Sheldon, M.E.; Diago, T.; Kuenzler, K.A.; Tomita, S.S.; Ginsburg, H.B. A novel approach to leveraging electronic health record data to enhance pediatric surgical quality improvement bundle process compliance. J. Pediatr. Surg. 2016, 51, 1030–1033. [Google Scholar] [CrossRef]
- Karavite, D.J.; Miller, M.W.; Ramos, M.J.; Rettig, S.L.; Ross, R.K.; Xiao, R.; Muthu, N.; Localio, A.R.; Gerber, J.S.; Coffin, S.E.; et al. User Testing an Information Foraging Tool for Ambulatory Surgical Site Infection Surveillance. Appl. Clin. Inform. 2018, 9, 791–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaseje, N.; Pinard, J.; Louis, W.F.J.; MacLee, J.L.; Jeudy, A.P.; Ford, H. A multi-model intervention including an occlusive dressing and parental engagement to prevent pediatric surgical site infections for elective ambulatory procedures in a resource-constrained setting: An observational retrospective study from a tertiary center in Central Haiti. Pediatr. Surg. Int. 2018, 34, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Schaffzin, J.K.; Mangeot, C.; Sucharew, H.; Beck, A.F.; Sturm, P.F. Factors Affecting Adherence to a Preoperative Surgical Site Infection Prevention Protocol. Infect. Control Hosp. Epidemiol. 2016, 37, 728–730. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.G.; Riedel, M.D.; Glotzbecker, M.P.; Matsumoto, H.; Roye, D.P.; Akbarnia, B.A.; Anderson, R.C.; Brockmeyer, D.L.; Emans, J.B.; Erickson, M.; et al. Building consensus: Development of a Best Practice Guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J. Pediatr. Orthop. 2013, 33, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gormley, T.; Markel, T.A.; Jones, H.; Greeley, D.; Ostojic, J.; Clarke, J.H.; Abkowitz, M.; Wagner, J. Cost-benefit analysis of different air change rates in an operating room environment. Am. J. Infect. Control 2017, 45, 1318–1323. [Google Scholar] [CrossRef]
- Pinder, E.M.; Bottle, A.; Aylin, P.; Loeffler, M.D. Does laminar flow ventilation reduce the rate of infection? an observational study of trauma in England. Bone Jt. J. 2016, 98, 1262–1269. [Google Scholar] [CrossRef]
- Theodorou, C.; Simpson, G.S.; Walsh, C.J. Theatre ventilation. Ann. R. Coll. Surg. Engl. 2021, 103, 151–154. [Google Scholar] [CrossRef]
- Brandt, C.; Hott, U.; Sohr, D.; Daschner, F.; Gastmeier, P.; Ruden, H. Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. Ann. Surg. 2008, 248, 695–697. [Google Scholar] [CrossRef]
Study | Type of Study | (N of Patients) Study Population | SSI Rate | Type of Surgery |
---|---|---|---|---|
Murray, 2014 [26] | Single-center, retrospective | (470) 0–1 y.o., postoperative | 3.4% (6.8 in neonates) | Cardiac surgery |
Lejus, 2013 [39] | Single-center, retrospective | (286) neonates, postoperative | 3.8% | Non-specified |
Zingg, 2017 [19] | Multicenter, retrospective | (17,273) 0–18 y.o., all patients | 0.18% | Non-specified |
Boomer, 2014 [30] | Single-center, retrospective | (1388) 0–18 y.o., postoperative | 5.1% | Appendicectomy |
Katayanagi, 2015 [25] | Single-center, retrospective | (174) 0–15 y.o., postoperative | 17% and 6.9% ** (superficial SSI) 13% and 3% ** (space SSI) | Cardiac surgery |
Clements, 2016 [37] | Single-center, retrospective | (165) neonates, postoperative | 11.7% | Non-specified |
Prasad, 2016 [38] | Multicenter, retrospective | (902) neonates, postoperative | 4.46% | Non-specified |
Kulaylat, 2018 [18] | Multicenter, retrospective | (129,849) 0–18 y.o., postoperative | 0.9% | Non-specified |
Blackwood *, 2017 [20] | Multicenter, retrospective | (66,671) 2–18 y.o., postoperative | 2% | Non-specified |
Blackwood *, 2017 [20] | Multicenter, retrospective | 2–18 y.o., postoperative | 3.6% | Paediatric general surgery |
Blackwood *, 2017 [20] | Multicenter, retrospective | 2–18 y.o., postoperative | 2.5% | Cardiothoracic surgery |
Blackwood *, 2017 [20] | Multicenter, retrospective | 2–18 y.o., postoperative | 2.4% | Paediatric neurosurgery |
Inoue, 2018 [35] | Single-center, retrospective | (181) neonates, postoperative | 8.8% | Non-specified |
Bartz-Kurycki, 2018 [36] | Multicenter, retrospective | (3589) neonates, postoperative | 4% | Non-specified |
Malik, 2019 [34] | Multicenter, retrospective | (1891) 2–18 y.o., postoperative | 4.2% | Posterior spinal fusion |
Li, 2019 [17] | Single-center, retrospective | (18,314) 0–18 y.o., postoperative | 0.9% | Non-specified |
Canadian Nosocomial Infection Surveillance Program, 2020 [22] | Multicenter, retrospective | (266) 0–18 y.o., postoperative | 3.3% | Paediatric neurosurgery |
Canadian Nosocomial Infection Surveillance Program, 2020 [22] | Multicenter, retrospective | 0–18 y.o., postoperative | 4.1% | Cardiac surgery |
Woodward, 2020 [23] | Multicenter, retrospective | (807) 0–18 y.o., postoperative | 2.4% (superficial SSI) | Cardiac surgery |
Shibamura-Fujiogi, 2020 [29] | Single-center, retrospective | (621) 0–18 y.o., postoperative | 6.3% | Intestinal surgery |
Pough, 2020 [27] | Single-center, retrospective | (192) 0–18 y.o., postoperative | 6% | Colo-rectal surgery |
Tipper, 2019 [32] | Single-center, prospective | (355) 2.5–17.9 y.o., postoperative | 1.9% and 2.5% (idiopathic and neuromuscular scoliosis, respectively) | Spinal surgery |
Furdock, 2020 [33] | Multicenter, retrospective | (111) 8–20 y.o., postoperative | 6.3% | Spinal surgery |
Study | (N of Patients) Population | Risk Factors Identified |
---|---|---|
Li, 2019 [17] | (18,314) 0–18 y.o. | Type of surgery |
Blackwood, 2017 [20] | (66,671) 2–18 y.o. | Type of surgery |
Elward, 2015 [21] | (19) 0–18 y.o. | Longer procedure and previous surgery (for craniostomy), longer time at lowest body temperature, postoperative anticoagulants (for spinal fusion) |
Woodward, 2020 [23] | (807) 0–18 y.o. | Delayed sternal closure, type of surgical wound dressing |
Sochet, 2017 [24] | (12) 0–18 y.o. | length of stay at the hospital, post-surgical thoracostomy output, peak fluid overload, IV fluids/blood products administered volume |
Katayanagi, 2015 [25] | (174) 0–15 y.o. | Length of hospitalization, MRSA colonization, duration of surgery, lowest rectal temperature, cardiac bypass circuit volume, blood transfusion volume |
Murray, 2014 [26] | (470) 0–1 y.o. | Neonatal age, higher postoperative glycaemia, blood loss |
Pough, 2020 [27] | (192) 0–18 y.o. | Emergent surgery, length of surgery, hyperglycaemia |
Costello, 2010 [28] | (67) 0–18 y.o. | Age < 1 y, longer duration of cardiopulmonary bypass, >2RBC transfusions |
Shibamura-Fujiogi, 2020 [29] | (621) 0–18 y.o. | Higher dose of volatile anaesthetics |
Boomer, 2014 [30] * | (1388) 0–18 y.o. | Older age, gastrointestinal comorbidity, open operation (or laparoscopic operation converted to an open operation), longer length of symptoms |
Butler, 2020 [31] | (720), 0–18 y.o. | Laparotomy |
Tipper, 2019 [32] | (355) 2.5–17.9 y.o. | Neuromuscular scoliosis |
Furdock, 2020 [33] | (111), 8–20 y.o. | Higher Hct and Hb |
Malik, 2019 [34] | (1291), 2–18 y.o. | Obesity |
Inoue, 2018 [35] | (181), neonates | MRSA colonization |
Bartz-Kurycki, 2018 [36] | (3589), neonates | Length of stay at the hospital, nutritional support, contamination of the surgical wound, preoperative transfusions, preoperative dialysis, lower GA, longer operative duration, low weight at surgery, CNS abnormalities |
Clements, 2016 [37] | (165) neonates, postoperative | Duration of procedure, type of surgery |
Prasad, 2016 [38] | (902) neonates | Lower GA and CA |
Lejus, 2013 [39] | (286) neonates | Lower GA, length of stay at the hospital |
Study | N of Patients with SSI | Kind of Surgery | Most Common Bacteria Detected 1 |
---|---|---|---|
CNISP, 2020 [22] | 190 | Cardiac surgery | S. aureus (43%), CoNS (24%) |
Shibamura-Fujiogi, 2020 [29] | 39 (42 positive cultures gathered, 22 for superficial SSI and 20 for Deep/Organ space SSI)) | Intestinal surgery | Superficial SSI: Enterococci (27%), Staphylociocci (18%), P. aeruginosa (15%), E. coli (9%), E. cloacae (9%), B. fragilis (5%), Others (27%) |
Deep/Organ space SSI: Enterococci (30%), E. coli (20%), C. albicans (15%), P. aeruginosa (15%), Staphylococci (10%), B. fragilis (5%), Others (5%) | |||
Pough, 2020 [27] | 12 | Gastrointestinal surgery | MRSA alone 17%, C. glabrata (16%), P. aeruginosa (16%), MSSA alone 9%, K. pneumoniae (8%), C. albicans (8%), E. cloacae (8%), C. tropicalis (8%) |
Tipper, 2019 [32] | 9 3 | Scoliosis surgery | S. aureus (55%), E. coli (22%), E. faecalis (22%), P. aeruginosa (22%), P. acnes (11%), A. fumigatus (11%), S. epidermidis (11%), |
Furdock, 2020 [33] | 7 | Neuromuscular scoliosis surgery | Polimicrobial (42%), MSSA alone (28%), MRSA alone (14%), unassessed (14%) |
Weiner-Lastinger, 2020 [40] 2 | 2215 3 | Abdominal surgery | E. coli (24.2%), P. aeruginosa (8.2%), S. aureus (7.9%), E. faecalis (7.6%), Enterobacteriacae (6.8%), CoNS (3.1%), |
487 3 | Orthopedic surgery | S. aureus (32.2%), E. coli (10.9%), P. aeruginosa (11.9%), Enterobacteriacae (8.0%), CoNS (7.0%), E. faecalis (2.1%) | |
419 3 | Neurosurgical surgery | S. aureus (27.9%), CoNS (20.5%), P. aeruginosa (7.9%), Enterobacteriacae (7.9%), E. coli (3.6%), E. faecalis (1.2%) | |
312 3 | Cardiac surgery | S. aureus (48.7%), CoNS (17.9%), P. aeruginosa (4.5%), Enterobacteriacae (2.9%), E. faecalis (2.9%), E. coli (1.6%) | |
Lake, 2018 [41] | 3053 3 | Any kind of surgery | S. aureus (22.2%), E. coli (17.5%), CoNS (9.6%), P. aeruginosa (7.6%), Enterobacteriacae (6.2%), E. faecalis (4.5%) |
Woltmann, 2017 [43] | 212 3 (from 2012 to 2015) | Clean or clean-contaminated surgery | MSSA (27%), MRSA (15%), CoNS (14%), P. aeruginosa (9%), Enterobacteriacae (7%), Enterococci (6%), Streptococci (4%) |
286 3 (from 2006 to 2011) | MSSA (28%), MRSA (12%), CoNS (12%), P. aeruginosa (8%), Enterobacteriacae (7%), Enterococci (5%), Streptococci (4%) | ||
420 3 (from 2000 to 2005) | CoNS (25%), MSSA (15%), P. aeruginosa (9%), Enterococci (8%), MRSA (6%), Enterobacteriacae (6%), Streptococci (5%) | ||
323 3 (from 1994 to 1999) | MSSA (17%), CoNS (16%), Enterococci (11%), P. aeruginosa (8%), Enterobacteriacae (11%), Streptococci (5%), MRSA (0%) | ||
Prasad, 2016 [38] | 26 4 | Any kind of surgery on neonates | S. aureus (38%), CoNS (12%), Enterobacteriacae (8%), Yeast (8%), E. faecalis (8%), E. coli (4%) |
Lejus, 2013 [39] | 11 | Any kind of surgery on neonates | MRCoNS (63%), MSSA (18%), MSCoNS (9%), E. cloacae (9%) |
Ventilation System | Description |
---|---|
Natural ventilation | The most basic way to ventilate an environment. Use of natural forces to introduce and distribute outdoor air into or out of a building. This kind of ventilation might be used in settings with limited resources, even if there is no evidence for its use in operating rooms |
Conventional airflow (turbulent flow) | This system uses variably filtered air introduced via ceiling diffusers. The air is then removed via pressure dampers at floor level. |
Laminar airflow (unidirectional flow) | This mechanism requires the installation of filters supplying clean air through high-efficiency particulate air (HEPA) filters. The filtered air moves from the operative field to the exhaust grill. This system can change the air up to 300 times per hour. In an ideal situation, this system is associated with a lower concentration of microorganisms when compared to conventional airflow, but in everyday practice, its efficiency is reduced due to different factors (i.e., the position of the surgeons, sterility of instruments, etc.). |
Negative pressure environment | This system is mainly used in order to reduce the release of infective particles to nearby spaces, sealing all doors and installing exhaust fans. This technique was highly recommended during the COVID-19 pandemic. In fact, even with low evidence, it is believed to reduce the risk of infection in the operators. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meoli, A.; Ciavola, L.; Rahman, S.; Masetti, M.; Toschetti, T.; Morini, R.; Dal Canto, G.; Auriti, C.; Caminiti, C.; Castagnola, E.; et al. Prevention of Surgical Site Infections in Neonates and Children: Non-Pharmacological Measures of Prevention. Antibiotics 2022, 11, 863. https://doi.org/10.3390/antibiotics11070863
Meoli A, Ciavola L, Rahman S, Masetti M, Toschetti T, Morini R, Dal Canto G, Auriti C, Caminiti C, Castagnola E, et al. Prevention of Surgical Site Infections in Neonates and Children: Non-Pharmacological Measures of Prevention. Antibiotics. 2022; 11(7):863. https://doi.org/10.3390/antibiotics11070863
Chicago/Turabian StyleMeoli, Aniello, Lorenzo Ciavola, Sofia Rahman, Marco Masetti, Tommaso Toschetti, Riccardo Morini, Giulia Dal Canto, Cinzia Auriti, Caterina Caminiti, Elio Castagnola, and et al. 2022. "Prevention of Surgical Site Infections in Neonates and Children: Non-Pharmacological Measures of Prevention" Antibiotics 11, no. 7: 863. https://doi.org/10.3390/antibiotics11070863
APA StyleMeoli, A., Ciavola, L., Rahman, S., Masetti, M., Toschetti, T., Morini, R., Dal Canto, G., Auriti, C., Caminiti, C., Castagnola, E., Conti, G., Donà, D., Galli, L., La Grutta, S., Lancella, L., Lima, M., Lo Vecchio, A., Pelizzo, G., Petrosillo, N., ... on behalf of the Peri-Operative Prophylaxis in Neonatal and Paediatric Age (POP-NeoPed) Study Group. (2022). Prevention of Surgical Site Infections in Neonates and Children: Non-Pharmacological Measures of Prevention. Antibiotics, 11(7), 863. https://doi.org/10.3390/antibiotics11070863