Comparative Evaluation of Vitek 2 and Etest versus Broth Microdilution for Ceftazidime/Avibactam and Ceftolozane/Tazobactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Susceptibility Testing
4.3. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629. [Google Scholar] [CrossRef]
- Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol. 2018, 17, 3. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Centers for Disease Control. Antibiotic Resistance Threats in the United States; Department of Health and Human Services: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Church, N.A.; McKillip, J.L. Antibiotic resistance crisis: Challenges and imperatives. Biologia 2021, 76, 1535–1550. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem resistance: A review. Med. Sci. 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1800516. [Google Scholar] [CrossRef] [Green Version]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of antibiotic resistance in important Gram-positive and Gram-negative pathogens and novel antibiotic solutions. Antibiotics 2021, 10, 415. [Google Scholar] [CrossRef]
- Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An update on eight “new” antibiotics against multidrug-resistant Gram-negative bacteria. J. Clin. Med. 2021, 10, 1068. [Google Scholar] [CrossRef]
- Shirley, M. Ceftazidime-avibactam: A review in the treatment of serious Gram-negative bacterial infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef]
- Tuon, F.F.; Rocha, J.L.; Formigoni-Pinto, M.R. Pharmacological aspects and spectrum of action of ceftazidime–avibactam: A systematic review. Infection 2017, 46, 165–181. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef]
- Soriano, A.; Carmeli, Y.; Omrani, A.S.; Moore, L.S.P.; Tawadrous, M.; Irani, P. Ceftazidime-avibactam for the treatment of serious Gram-negative infections with limited treatment options: A systematic literature review. Infect. Dis. Ther. 2021, 10, 1989. [Google Scholar] [CrossRef]
- Bassetti, M.; Castaldo, N.; Cattelan, A.; Mussini, C.; Righi, E.; Tascini, C.; Menichetti, F.; Mastroianni, C.M.; Tumbarello, M.; Grossi, P.; et al. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: A multicentre nationwide clinical experience. Int. J. Antimicrob. Agents 2019, 53, 408–415. [Google Scholar] [CrossRef]
- Munita, J.M.; Aitken, S.L.; Miller, W.R.; Perez, F.; Rosa, R.; Shimose, L.A.; Lichtenberger, P.N.; Abbo, L.M.; Jain, R.; Nigo, M.; et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2017, 65, 158. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane–tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Mack, A.R.; Taracila, M.A.; Bonomo, R.A. Resistance to novel β-lactam–β-lactamase inhibitor combinations: The “price of progress”. Infect. Dis. Clin. N. Am. 2020, 34, 773–819. [Google Scholar] [CrossRef]
- Daragon, B.; Fournier, D.; Plésiat, P.; Jeannot, K. Performance of disc diffusion, MIC gradient tests and Vitek 2 for ceftolozane/tazobactam and ceftazidime/avibactam susceptibility testing of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2021, 76, 2586–2592. [Google Scholar] [CrossRef]
- Humphries, R.; Campeau, S.; Davis, T.E.; Nagaro, K.J.; LaBombardi, V.J.; Franklin, S.; Heimbach, L.; Dwivedi, H.P. Multicenter evaluation of ceftazidime-avibactam susceptibility testing of Enterobacterales and Pseudomonas aeruginosa on the Vitek 2 system. J. Clin. Microbiol. 2021, 59, e01870-20. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0. 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 8 April 2022).
- ISO. ISO 20776-2:2021—Clinical Laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 2: Evaluation of Performance of Antimicrobial Susceptibility Test Devices against Reference Broth Micro-Dilution. Available online: https://www.iso.org/standard/79377.html (accessed on 11 April 2022).
- Humphries, R.M.; Hindler, J.A. Emerging resistance, new antimicrobial agents … but no tests! The challenge of antimicrobial susceptibility testing in the current US regulatory landscape. Clin. Infect. Dis. 2016, 63, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Kresken, M.; Körber-Irrgang, B. Performance of the Etest for susceptibility testing of Enterobacterales (Enterobacteriaceae) and Pseudomonas aeruginosa toward ceftazidime-avibactam. J. Clin. Microbiol. 2018, 56, 528–546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, G.; Zhang, G.; Kang, W.; Duan, S.; Wang, T.; Li, J.; Huangfu, Z.; Yang, Q.; Xu, Y.; et al. Performance evaluation of the gradient diffusion strip method and disk diffusion method for ceftazidime–avibactam against Enterobacterales and Pseudomonas aeruginosa: A dual-center study. Front. Microbiol. 2021, 12, 2565. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Wang, Z.; Chen, H.; Wang, X.; Zhang, Y.; Li, S.; Wang, H. Evaluation of the Etest and disk diffusion method for detection of the activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa in China. BMC Microbiol. 2020, 20, 187. [Google Scholar] [CrossRef]
- Shields, R.K.; Clancy, C.J.; Pasculle, A.W.; Press, E.G.; Haidar, G.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Nguyen, M.H. Verification of ceftazidime-avibactam and ceftolozane-tazobactam susceptibility testing methods against carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2018, 56, e01093-17. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Bletz, S.; Mellmann, A.; Becker, K.; Idelevich, E.A. Comparison of methods to analyse susceptibility of German MDR/XDR Pseudomonas aeruginosa to ceftazidime/avibactam. Int. J. Antimicrob. Agents 2019, 54, 255–260. [Google Scholar] [CrossRef]
- Bailey, A.L.; Armstrong, T.; Dwivedi, H.-P.; Denys, G.A.; Hindler, J.; Campeau, S.; Traczewski, M.; Humphries, R.; Burnham, C.-A.D. Multicenter evaluation of the Etest gradient diffusion method for ceftolozane-tazobactam susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2018, 56, e00717-18. [Google Scholar] [CrossRef] [Green Version]
- Humphries, R.M.; Hindler, J.A.; Magnano, P.; Wong-Beringer, A.; Tibbetts, R.; Miller, S.A. Performance of ceftolozane-tazobactam Etest, MIC test strips, and disk diffusion compared to reference broth microdilution for lactam-resistant Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 2018, 56, e01633-17. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Version 2.01. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 5 April 2022).
- Boutal, H.; Vogel, A.; Bernabeu, S.; Devilliers, K.; Creton, E.; Cotellon, G.; Plaisance, M.; Oueslati, S.; Dortet, L.; Jousset, A.; et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 909. [Google Scholar] [CrossRef]
Organism (No of Isolates) | Clinical Specimens’ Source (No of Isolates) |
---|---|
Challenge (n = 69) | |
Carbapenem-resistant P. aeruginosa (n = 11) | Bronchial aspirates (n = 9) Urine (n = 2) |
Carbapenemase-producing K. pneumoniae (n = 34) K. pneumoniae OXA-48 K. pneumoniae KPC K. pneumoniae VIM K. pneumoniae KPC+VIM K. pneumoniae NDM | Blood (n = 26) Bronchial aspirates (n = 2) Urine (n = 3) Intra-abdominal secretions (n = 1) Deep tissue exudates (n = 2) |
ESBL-producing K. pneumoniae (n = 10) | Deep tissue exudates (n = 1) Urine (n = 5) Intra-abdominal secretions (n = 4) |
Carbapenemase-producing E. coli (n = 2) E. coli OXA-48 | Blood (n = 2) |
ESBL-producing E. coli (n = 9) | Urine (n = 5) Blood (n = 2) Bronchial aspirates (n = 1) Intra-abdominal secretions (n = 1) |
Carbapenemase-producing E. cloacae (n = 2) E. cloacae MBL E. cloacae KPC | Blood (n = 1) Intra-abdominal secretions (n = 1) |
ESBL-producing E. cloacae (n = 1) | Intra-abdominal secretions (n = 1) |
ESBL-negative, carbapenem-susceptible (n = 31) | |
P. aeruginosa (n = 6) | Blood (n = 4) Bronchial aspirates (n = 2) |
K. pneumoniae (n = 13) | Bronchial aspirates (n = 13) |
E. coli (n = 8) | Urine (n = 8) |
E. cloacae (n = 4) | Bronchial aspirates (n = 4) |
Organism (No of Isolates) | Assay | Resistance Rate | MIC (mg/L) | Performance | |||||
---|---|---|---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | CA | EA | ME | VME | |||
Enterobacterales | BMD | 23% | ≤0.125–>16 | 1 | >16 | _ | _ | _ | _ |
(n = 83) | Vitek 2 | 22% | ≤0.125–>8 | 0.5 | >8 | 99% | 100% | 0% | 1% |
Etest | 23% | 0.03–>256 | 1 | >256 | 100% | 97% | 0% | 0% | |
P. aeruginosa | BMD | 29% | 1–>16 | 2 | >16 | _ | _ | _ | _ |
(n = 17) | Vitek 2 | 29% | 1–>8 | 2 | >8 | 100% | 100% | 0% | 0% |
Etest | 24% | 1–256 | 2 | 128 | 94% | 85% | 0% | 6% | |
Total | BMD | 24% | _ | _ | _ | _ | _ | ||
(n = 100) | Vitek 2 | 23% | _ | 99% | 100% | 0% | 1% | ||
Etest | 23% | _ | 99% | 93% | 0% | 1% |
Organism (No of Isolates) | Assay | Resistance Rate | MIC (mg/L) | Performance | |||||
---|---|---|---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | CA | EA | ME | VME | |||
Enterobacterales | BMD | 48% | ≤0.25–>32 | 1 | >32 | _ | _ | _ | _ |
(n = 83) | Vitek 2 * | 48% | ≤0.25–>16 | 0.5 | >16 | 98% | 91% | 1% | 1% |
Etest | 47% | 0.06–>256 | 2 | >256 | 99% | 88% | 0% | 1% | |
P. aeruginosa | BMD | 29% | 0.5–>32 | 0.5 | >32 | _ | _ | _ | _ |
(n = 17) | Vitek 2 | 29% | 0.5–>16 | 0.5 | >16 | 100% | 100% | 0% | 0% |
Etest | 29% | 0.5–>256 | 1 | >256 | 100% | 100% | 0% | 0% | |
Total | BMD | 45% | _ | _ | _ | _ | _ | ||
(n = 100) | Vitek 2 | 44% | _ | 98% | 96% | 1% | 1% | ||
Etest | 44% | _ | 99% | 93% | 0% | 1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadomanolaki, A.; Siopi, M.; Karakosta, P.; Vourli, S.; Pournaras, S. Comparative Evaluation of Vitek 2 and Etest versus Broth Microdilution for Ceftazidime/Avibactam and Ceftolozane/Tazobactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa. Antibiotics 2022, 11, 865. https://doi.org/10.3390/antibiotics11070865
Papadomanolaki A, Siopi M, Karakosta P, Vourli S, Pournaras S. Comparative Evaluation of Vitek 2 and Etest versus Broth Microdilution for Ceftazidime/Avibactam and Ceftolozane/Tazobactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa. Antibiotics. 2022; 11(7):865. https://doi.org/10.3390/antibiotics11070865
Chicago/Turabian StylePapadomanolaki, Arhodoula, Maria Siopi, Polyxeni Karakosta, Sophia Vourli, and Spyros Pournaras. 2022. "Comparative Evaluation of Vitek 2 and Etest versus Broth Microdilution for Ceftazidime/Avibactam and Ceftolozane/Tazobactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa" Antibiotics 11, no. 7: 865. https://doi.org/10.3390/antibiotics11070865
APA StylePapadomanolaki, A., Siopi, M., Karakosta, P., Vourli, S., & Pournaras, S. (2022). Comparative Evaluation of Vitek 2 and Etest versus Broth Microdilution for Ceftazidime/Avibactam and Ceftolozane/Tazobactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa. Antibiotics, 11(7), 865. https://doi.org/10.3390/antibiotics11070865