In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance Profile
2.2. Prevalence of Multiple Drug Resistance
2.3. Detection of Antibiotic Resistance Genes (ARGs)
3. Discussion
4. Materials and Methods
4.1. Phytoncides Mixture
4.2. Salmonella spp. Isolation and Identification
4.3. Biochemical Strain Identification
4.4. Confirmation of Salmonella Identification with Molecular Biology Methods
4.5. Phytoncides Mixture Test by Broth Microdilution Method
4.6. Antibiotic Resistance Test
4.7. Detection of Antimicrobial Resistance Genes by Multiplex PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedman, H.D.; Vasco, K.A.; Zhang, L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals 2020, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; World Health Organization: Geneva, Switzerland, 2019.
- European. Commission RASFF—The Rapid Alert System for Food and Feed—Annual Report 2020. 2021. Available online: https://ec.europa.eu/food/system/files/2021-08/rasff_pub_annual-report_2020.pdf (accessed on 6 May 2022).
- Duka, R.; Ardelean, D. Phytoncides and phytoalexins—Vegetal antibiotics. J. Med. Arad. 2010, XIII, 19–25. [Google Scholar]
- Katoch, R.; Rajagopalan, S. Warfare Injuries: History, Triage, Transport and Field Hospital Setup in the Armed Forces. Med. J. Armed Forces India 2010, 66, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- VanEtten, H.D.; Mansfield, J.W.; Bailey, J.A.; Farmer, E.E. Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell 1994, 6, 1191–1192. [Google Scholar] [CrossRef]
- González-Lamothe, R.; Mitchell, G.; Gattuso, M.; Diarra, M.S.; Malouin, F.; Bouarab, K. Plant antimicrobial agents and their effects on plant and human pathogens. Int. J. Mol. Sci. 2009, 10, 3400–3419. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, X.; Du, X.; Yang, L.; Zu, Y.; Yang, F. A new approach for obtaining trans-resveratrol from tree peony seed oil extracted residues using ionic liquid-based enzymatic hydrolysis in situ extraction. Sep. Purif. Technol. 2016, 170, 294–305. [Google Scholar] [CrossRef]
- Parama, D.; Girisa, S.; Khatoon, E.; Kumar, A.; Alqahtani, M.S.; Abbas, M.; Sethi, G.; Kunnumakkara, A.B. An overview of the pharmacological activities of scopoletin against different chronic diseases. Pharmacol. Res. 2022, 179, 106202. [Google Scholar] [CrossRef]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef]
- Dahmer, J.; Marangon, P.; Adolpho, L.O.; Reis, F.L.; Maldaner, G.; Burrow, R.A.; Mostardeiro, M.A.; Dalcol, I.I.; Morel, A.F. Alkaloids from the stem barks of Scutia buxifolia Reissek (Rhamnaceae): Structures and antimicrobial evaluation. Phytochemistry 2022, 196, 113071. [Google Scholar] [CrossRef] [PubMed]
- Long, L.N.; Kang, B.J.; Jiang, Q.; Chen, J.S. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. Poult. Sci. 2020, 99, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Ding, C.-F.; Deng, S.-Y.; Gao, W.; Tan, B.-Y.; Wu, H.; Guo, Y.; Song, J.-F.; Zhang, L.-C.; Zhang, R.-P.; et al. Monoterpene indole N-oxide alkaloids from Tabernaemontana corymbosa and their antimicrobial activity. Fitoterapia 2022, 158, 105178. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Tyagi, A.; Bhansali, P.; Pareek, S.; Singh, V.; Ilyas, A.; Mishra, R.; Poddar, N.K. Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food Chem. Toxicol. 2021, 150, 112075. [Google Scholar] [CrossRef]
- Zaiter, A.; Becker, L.; Baudelaire, E.; Dicko, A. Optimum polyphenol and triterpene contents of Hedera helix (L.) and Scrophularia nodosa (L.): The role of powder particle size. Microchem. J. 2018, 137, 168–173. [Google Scholar] [CrossRef]
- Saboora, A.; Sajjadi, S.-T.; Mohammadi, P.; Fallahi, Z. Antibacterial activity of different composition of aglycone and glycosidic saponins from tuber of Cyclamen coum Miller. Ind. Crops Prod. 2019, 140, 111662. [Google Scholar] [CrossRef]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Pires, T.C.S.P.; Calhelha, R.C.; Alves, M.J.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Phenolic profile, antioxidant and antibacterial properties of Juglans regia L. (walnut) leaves from the Northeast of Portugal. Ind. Crops Prod. 2019, 134, 347–355. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Chidi, F.; Bouhoudan, A.; Khaddor, M. Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. J. King Saud Univ. Sci. 2020, 32, 2041–2045. [Google Scholar] [CrossRef]
- Mangalagiri, N.P.; Panditi, S.K.; Jeevigunta, N.L.L. Antimicrobial activity of essential plant oils and their major components. Heliyon 2021, 7, e06835. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.-L. Chapter 1—Essential Oils: What They Are and How the Terms Are Used and Defined. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 3–10. [Google Scholar]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Hammer, K.A. Chemistry and Bioactivity of Essential Oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 203–238. [Google Scholar]
- Valdivieso-Ugarte, M.; Plaza-Diaz, J.; Gomez-Llorente, C.; Lucas Gómez, E.; Sabés-Alsina, M.; Gil, Á. In vitro examination of antibacterial and immunomodulatory activities of cinnamon, white thyme, and clove essential oils. J. Funct. Foods 2021, 81, 104436. [Google Scholar] [CrossRef]
- Srivastava, S.; Lal, R.K.; Yadav, K.; Pant, Y.; Bawitlung, L.; Kumar, P.; Mishra, A.; Gupta, P.; Pal, A.; Rout, P.K.; et al. Chemical composition of phenylpropanoid rich chemotypes of Ocimum basilicum L. and their antimicrobial activities. Ind. Crops Prod. 2022, 183, 114978. [Google Scholar] [CrossRef]
- Yan, J.; Wang, H.; Wang, Y.; Xu, S.; Wan, Y.; He, L.; Yu, L.; Zhu, W. Integrated metabolome and transcriptome analysis reveals candidate genes involved in metabolism of terpenoids and phthalides in celery seeds. Ind. Crops Prod. 2021, 172, 114011. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Alkhulaifi, M.M.; Abudabos, A.M.; Alabdullatifb, A.; El-Mubarak, A.H.; Al Suliman, A.R.; Stanley, D. Organic acid blend supplementation increases butyrate and acetate production in Salmonella enterica serovar Typhimurium challenged broilers. PLoS ONE 2020, 15, e0232831. [Google Scholar] [CrossRef] [PubMed]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef]
- Adhikari, B.; Hernandez-Patlan, D.; Solis-Cruz, B.; Kwon, Y.M.; Arreguin, M.A.; Latorre, J.D.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez-Isaias, G. Evaluation of the Antimicrobial and Anti-inflammatory Properties of Bacillus-DFM (Norum™) in Broiler Chickens Infected With Salmonella KentuKen. Front. Vet. Sci. 2019, 6, 282. [Google Scholar] [CrossRef] [Green Version]
- Aljumaah, M.R.; Alkhulaifi, M.M.; Abudabos, A.M. In vitro Antibacterial Efficacy of Non-Antibiotic Growth Promoters in Poultry Industry. J. Poult. Sci. 2020, 57, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Balta, I.; Linton, M.; Pinkerton, L.; Kelly, C.; Stef, L.; Pet, I.; Stef, D.; Criste, A.; Gundogdu, O.; Corcionivoschi, N. The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021, 121, 107745. [Google Scholar] [CrossRef]
- da Silva, A.P.S.A.; Nascimento da Silva, L.C.; Martins da Fonseca, C.S.; de Araújo, J.M.; Correia, M.T.D.S.; Cavalcanti, M.d.S.; Lima, V.L.d.M. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc. Front. Microbiol. 2016, 7, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doran, G.; NiChulain, M.; DeLappe, N.; O’Hare, C.; Corbett-Feeney, G.; Cormican, M. Interpreting streptomycin susceptibility test results for Salmonella enterica serovar Typhimurium. Int. J. Antimicrob. Agents 2006, 27, 538–540. [Google Scholar] [CrossRef] [PubMed]
- European Union, Regulation (EC). No. 1831/2003 of the European Parliament and the council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Commun. 2003, 1, 29. [Google Scholar]
- El-Ashram, S.; Abdelhafez, G.A. Effects of phytogenic supplementation on productive performance of broiler chickens. J. Appl. Poult. Res. 2020, 29, 852–862. [Google Scholar] [CrossRef]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Park, M.S.; Min, W.; Lillehoj, E.P.; Bravo, D. Immune effects of dietary anethole on Eimeria acervulina infection. Poult. Sci. 2013, 92, 2625–2634. [Google Scholar] [CrossRef]
- Moharreri, M.; Vakili, R.; Oskoueian, E.; Rajabzadeh, G. Effects of microencapsulated essential oils on growth performance and biomarkers of inflammation in broiler chickens challenged with salmonella enteritidis. J. Saudi Soc. Agric. Sci. 2022, 21, 349–357. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A.; et al. Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria monocytogenes and different serotypes of Salmonella enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Kollanoor Johny, A.; Darre, M.J.; Donoghue, A.M.; Donoghue, D.J.; Venkitanarayanan, K. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro1 1Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that are suitable. J. Appl. Poult. Res. 2010, 19, 237–244. [Google Scholar] [CrossRef]
- Thanissery, R.; Kathariou, S.; Smith, D.P. Rosemary oil, clove oil, and a mix of thyme-orange essential oils inhibit Salmonella and Campylobacter in vitro. J. Appl. Poult. Res. 2014, 23, 221–227. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, C. Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash. Int. J. Food Microbiol. 2012, 152, 31–34. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult. Sci. 2020, 99, 5744–5751. [Google Scholar] [CrossRef] [PubMed]
- Pławińska-Czarnak, J.; Wódz, K.; Piechowicz, L.; Tokarska-Pietrzak, E.; Bełkot, Z.; Bogdan, J.; Wiśniewski, J.; Kwieciński, P.; Kwieciński, A.; Anusz, K. Wild Duck (Anas platyrhynchos) as a Source of Antibiotic-Resistant Salmonella enterica subsp. diarizonae O58—The First Report in Poland. Antibiotics 2022, 11, 530. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Ramtahal, M.A.; Somboro, A.M.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Molecular Epidemiology of Salmonella enterica in Poultry in South Africa Using the Farm-to-Fork Approach. Int. J. Microbiol. 2022, 2022, 5121273. [Google Scholar] [CrossRef] [PubMed]
- Akinola, S.A.; Mwanza, M.; Ateba, C.N. Occurrence, Genetic Diversities And Antibiotic Resistance Profiles Of Salmonella Serovars Isolated From Chickens. Infect. Drug Resist. 2019, 12, 3327–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [Green Version]
Country | AMR Transmission Pathway(s) | Findings |
---|---|---|
Kenya | Indirect transmission to backyard poultry. | Salmonella spp. were isolated and detected the presence of class 1 integrons beta-lactamase genes from backyard chicken feces. |
Vietnam | Intensive chicken farming Occupational exposure. | Demonstrated an association with AMR Salmonella spp. in farmers and intensively farmed poultry. |
EU | Zoonotic. | Human and food-production animals had a moderate to high prevalence of E. coli and Salmonella resistant to ampicillin, tetracyclines, and sulfonamides, a high to extremely high resistance to fluoroquinolones in Salmonella spp., E. coli, and Campylobacter recovered from humans, broilers, fattening turkeys, and poultry carcasses/meat, and low levels of bacteria resistant to colistin in food-producing animals. Multiple drug resistance (MDR) Salmonella enterica serotype Infantis recovered from broilers. |
USA | Zoonotic. | Moderate levels of Salmonella resistant to ciprofloxacin associated to direct and indirect contact with animal feces. MDR Salmonella enterica serotype Infantis recovered from broiler’s meat. Whole-genome sequencing revealed that this strain was identified from sick people returning from South America, and it is rapidly spreading among people and animal populations. |
Hazard | Product Category | Notifying Country | Notification |
---|---|---|---|
Salmonella | Poultry meat and poultry meat products. | Poland | 70 |
Salmonella | Poultry meat and poultry meat products. | Lithuania | 63 |
Salmonella | Poultry meat and poultry meat products. | France | 50 |
Salmonella | Poultry meat and poultry meat products. | Italy | 44 |
Salmonella Strains | Sample Source | Dilution | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1:2 | 1:4 | 1:16 | 1:32 | 1:64 | 1:118 | 1:256 | 1:512 | 1:1024 | 1:2048 | 1:4096 | 1:8192 | ||
Salmonella Typhimurium (BO4) | Boot swabs | − | − | − | − | − | − | − | + | + | + | + | + |
Salmonella Typhimurium (BO4) | Boot swabs | − | − | − | − | − | − | − | − | + | + | + | + |
Salmonella Typhimurium (BO4) | Boot swabs | − | − | − | − | − | − | − | + | + | + | + | + |
Salmonella Typhimurium (BO4) | Boot swabs | − | − | − | − | − | − | − | − | + | + | + | + |
Salmonella Kentucky (CO8) | Boot swabs | − | − | − | − | − | − | − | + | + | + | + | + |
Salmonella Kentucky (CO8) | Dust | − | − | − | − | − | − | − | − | + | + | + | + |
Salmonella Enteritidis (DO9) | Intestines | − | − | − | − | − | − | − | + | + | + | + | + |
Salmonella Enteritidis (DO9) | Liver | − | − | − | − | − | − | − | − | − | + | + | + |
Salmonella Enteritidis (DO9) | Spleen | − | − | − | − | − | − | − | − | + | + | + | + |
Salmonella Enteritidis (DO9) | Boot swabs | − | − | − | − | − | − | − | − | + | + | + | + |
Salmonella Enteritidis (DO9) | Boot swabs | − | − | − | − | − | − | − | − | + | + | + | + |
Salmonella Enteritidis (DO9) | Boot swabs | − | − | − | − | − | − | − | + | + | + | + | + |
Salmonella Strains | Sample Source | Phenotypic AntimicrobialResistance Profile | MAR Index |
---|---|---|---|
Salmonella Typhimurium (BO4) | Boot swabs | CFX-CPH-GEN-NEO-STR | 0.2 |
Boot swabs | AMP-AMX-CFX-CFT-CPH-CFT-CFP-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | 0.56 | |
Boot swabs | CFX-CPH-GEN-NEO-STR-ENR-MRB-FLR-LIN/SP | 0.36 | |
Boot swabs | CFX-CPH-GEN-NEO-STR | 0.2 | |
Salmonella Kentucky (CO8) | Boot swabs | AMP-AMX-AMX/CL-CFX-CFT-CPH-CFP-GEN-NEO-STR-ENR-UB-MRB-NOR-DOX-OXY-TET-LIN/SP | 0.72 |
Dust | AMP-AMX-CFX-CFT-CPH-CFP-GEN-STR-ENR-UB-MRB-DOX- OXY-TET | 0.56 | |
Salmonella Enteritidis (DO9) | Intestines | CPH-GEN-STR-DOX-OXY-TET | 0.24 |
Liver | GEN-STR-UB-LIN/SP | 0.16 | |
Spleen | CPH-GEN-NEO-STR-UB | 0.2 | |
Boot swabs | CPH-GEN-STR-UB | 0.16 | |
Boot swabs | CFX-CPH-GEN-NEO-STR-UB | 0.24 | |
Boot swabs | CPH-GEN-STR-LIN/SP | 0.16 |
Salmonella Strains | Sample Source | Resistance Phenotype | Resistance Genes |
---|---|---|---|
Salmonella Typhimurium (BO4) | Boot swabs | CFX-CPH-GEN-NEO-STR | aadA, strA/strB, aphA1, aphA2 |
Boot swabs | AMP-AMX-CFX-CFT-CPH-CFP-CFTI-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | blaCMY-2,blaPSE-1,blaTEM,aadA, strA/strB, floR | |
Boot swabs | CFX-CPH-GEN-NEO-STR-ENR-MRB-FLR-LIN/SP | aadA, strA/strB, aphA1, aphA2, floR | |
Boot swabs | CFX-CPH-GEN-NEO-STR | aadA, strA/strB, aphA1, aphA2 | |
Salmonella Kentucky (CO8) | Boot swabs | AMP-AMX-AMX/CL-CFX-CFT-CPH-CFP-GEN-NEO-STR-ENR-UB-MRB-NOR-DOX-OXY-TET-LIN/SP | blaCMY-2,blaPSE-1,blaTEM,aadA, strA/strB, aphA1, aphA2, tetA, tetB |
Dust | AMP-AMX-CFX-CFT-CPH-CFP-GEN-STR-ENR-UB-MRB-DOX-OXY-TET-LIN/SP | blaCMY-2,blaPSE-1,blaTEM,aadA, strA/strB, tetA, tetB | |
Salmonella Enteritidis (DO9) | Intestines | CPH-GEN-STR-DOX-OXY-TET | aadA, strA/strB, tetA, tetB |
Liver | GEN-STR-UB-LIN/SP | aadA, strA/strB | |
Spleen | CPH-GEN-NEO-STR-UB | aadA, strA/strB, aphA1, aphA2 | |
Boot swabs | CPH-GEN-STR-UB | aadA, strA/strB | |
Boot swabs | CFX-CPH-GEN-NEO-STR-UB | aadA, strA/strB, aphA1, aphA2 | |
Boot swabs | CPH-GEN-STR-LIN/SP | aadA, strA/strB |
Multiplex PCR | Gene/Antibiotic | Primer Sequences 5′–3′ | Annealing Temperature | Product Size (bp) |
---|---|---|---|---|
Multiplex 1 | aadA streptomycin | F-GTG GAT GGC GGC CTG AAG CC R-AAT GCC CAG TCG GCA GCG | 63 °C | 525 bp |
Multiplex 1 | strA/strB streptomycin | F-ATG GTG GAC CCT AAA ACT CT R-CGT CTA GGA TCG AGA CAA AG | 63 °C | 893 bp |
Multiplex 2 | aphA1 neomycin | F-ATG GGC TCG CGA TAA TGT C R-CTC ACC GAG GCA GTT CCA T | 55 °C | 634 bp |
Multiplex 2 | aphA2 neomycin | F-GAT TGA ACA AGA TGG ATT GCR-CCA TGA TGG ATA CTT TCT CG | 55 °C | 347 bp |
Multiplex 2 | aadB gentamicin | F-GAG GAG TTG GAC TATGGA TT R-CTT CAT CGG CAT AGT AAA AG | 55 °C | 208 bp |
Multiplex 3 | tetA tetracycline | F-GGC GGT CTT CTT CAT CAT GC R-CGG CAG GCA GAG CAA GTA GA | 63 °C | 502 bp |
Multiplex 3 | tetB tetracycline | F-CGC CCA GTG CTG TTG TTG TC R-CGC GTT GAG AAG CTG AGG TG | 63 °C | 173 bp |
Multiplex 4 | sul1 sulfamethoxazole | F-CGG CGT GGG CTA CCT GAA CG R-GCC GAT CGC GTG AAG TTC CG | 66 °C | 433 bp |
Multiplex 4 | sul2 sulfamethoxazole | F-CGG CAT CGT CAA CAT AAC CT R-TGT GCG GAT GAA GTC AGC TC | 66 °C | 721 bp |
Single PCR | floR florfenicol | F-CACGTTGAGCCTCTATATGG R-ATGCAGAAGTAGAACGCGAC | 61 °C | 888 bp |
Multiplex 5 | blaTEM ampicillin | F-TTAACTGGCGAACTACTTAC R-GTCTATTTCGTTCATCCATA | 55 °C | 247 bp |
Multiplex 5 | blaSHV ceftiofur | F-AGGATTGACTGCCTTTTTG R-ATTTGCTGATTTCGCTCG | 55 °C | 393 bp |
Multiplex 5 | blaCMY-2 ceftiofur | F-GACAGCCTCTTTCTCCACA R-TGGACACGAAGGCTACGTA | 55 °C | 1000 bp |
Single PCR | blaPSE-1 ampicillin | F-GCAAGTAGGGCAGGCAATCA R-GAGCTAGATAGATGCTCACAA | 60 °C | 461 bp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwiński, H.; Wódz, K.; Chodkowska, K.; Nowak, T.; Różański, H. In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler. Antibiotics 2022, 11, 868. https://doi.org/10.3390/antibiotics11070868
Iwiński H, Wódz K, Chodkowska K, Nowak T, Różański H. In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler. Antibiotics. 2022; 11(7):868. https://doi.org/10.3390/antibiotics11070868
Chicago/Turabian StyleIwiński, Hubert, Karolina Wódz, Karolina Chodkowska, Tomasz Nowak, and Henryk Różański. 2022. "In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler" Antibiotics 11, no. 7: 868. https://doi.org/10.3390/antibiotics11070868
APA StyleIwiński, H., Wódz, K., Chodkowska, K., Nowak, T., & Różański, H. (2022). In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler. Antibiotics, 11(7), 868. https://doi.org/10.3390/antibiotics11070868