Multi-Drug Resistance to Salmonella spp. When Isolated from Raw Meat Products
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility
2.2. Prevalence of Multiple Drug Resistance
2.3. Antimicrobial Resistance Profile
2.4. Genotypic Resistance
3. Materials and Methods
3.1. Sampling
3.2. Salmonella spp. Isolation and Identification
3.2.1. DNA Preparation and Presumptive Salmonella Confirmation
3.2.2. Biochemical Strain Identification
3.2.3. Serological Testing
3.3. Antimicrobial Sensitivity Testing
3.4. Determination of Antibiotics Resistance Profile of Salmonella spp. Isolates
Detection of Antimicrobial Resistance Genes by PCR
3.5. Statistical Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; de Pinna, E.; Nair, S.; Fields, P.I.; Issenhuth-jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; et al. Supplement 2008–2010 (no. 48) to the White–Kauffmann–Le Minor scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Gutema, F.D.; Agga, G.E.; Abdi, R.D.; De Zutter, L.; Duchateau, L.; Gabriël, S. Prevalence and serotype diversity of Salmonella in apparently healthy cattle: Systematic review and meta-analysis of published studies, 2000–2017. Front. Vet. Sci. 2019, 6, 102. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2022, 20, e07209. [Google Scholar] [CrossRef]
- Kong-Ngoen, T.; Santajit, S.; Tunyong, W.; Pumirat, P.; Sookrung, N.; Chaicumpa, W.; Indrawattana, N. Antimicrobial Resistance and Virulence of Non-Typhoidal Salmonella from Retail Foods Marketed in Bangkok, Thailand. Foods 2022, 11, 661. [Google Scholar] [CrossRef]
- Threlfall, E.J.; Rowe, B.; Ward, L.R. A comparison of multiple drug resistance in Salmonellas from humans and food animals in England and Wales, 1981 and 1990. Epidemiol. Infect. 1993, 111, 189–198. [Google Scholar] [CrossRef]
- Barza, M. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 2002, 34, 123–125. [Google Scholar] [CrossRef]
- Lai, J.; Wu, C.; Wu, C.; Qi, J.; Wang, Y.; Wang, H.; Liu, Y.; Shen, J. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009 and 2012. Int. J. Food Microbiol. 2014, 180, 30–38. [Google Scholar] [CrossRef]
- Barilli, E.; Bacci, C.; Villa, Z.S.; Merialdi, G.; D’Incau, M.; Brindani, F.; Vismarra, A. Antimicrobial resistance, biofilm synthesis and virulence genes in Salmonella isolated from pigs bred on intensive farms. Ital. J. Food Saf. 2018, 7, 131–137. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-typhoidal Salmonella in the pig production chain: A comprehensive analysis of its impact on human health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wu, Q.; Zhang, J.; Huang, J.; Chen, L.; Wu, S.; Zeng, H.; Wang, J.; Chen, M.; Wu, H.; et al. Prevalence, bacterial load, and antimicrobial resistance of Salmonella serovars isolated from retail meat and meat products in China. Front. Microbiol. 2019, 10, 2121. [Google Scholar] [CrossRef]
- WHO. WHO List of Critically Important Antimicrobials (CIA); World Health Organization: Geneva, Switzerland, 2019; ISBN 978-924-151-552-8. [Google Scholar]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Pławińska-Czarnak, J.; Wódz, K.; Kizerwetter-świda, M.; Nowak, T.; Bogdan, J.; Kwieciński, P.; Kwieciński, A.; Anusz, K. Citrobacter braakii yield false-positive identification as Salmonella, a note of caution. Foods 2021, 10, 2177. [Google Scholar] [CrossRef]
- Ramtahal, M.A.; Somboro, A.M.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Molecular Epidemiology of Salmonella enterica in Poultry in South Africa Using the Farm-to-Fork Approach. Int. J. Microbiol. 2022, 2022, 5121273. [Google Scholar] [CrossRef]
- Akinola, S.A.; Mwanza, M.; Ateba, C.N. Occurrence, genetic diversities and antibiotic resistance profiles of Salmonella serovars isolated from chickens. Infect. Drug Resist. 2019, 12, 3327–3342. [Google Scholar] [CrossRef] [Green Version]
- Pławińska-Czarnak, J.; Wódz, K.; Piechowicz, L.; Tokarska-Pietrzak, E.; Bełkot, Z.; Bogdan, J.; Wiśniewski, J.; Kwieciński, P.; Kwieciński, A.; Anusz, K. Wild Duck (Anas platyrhynchos) as a Source of Antibiotic-Resistant Salmonella enterica subsp. diarizonae O58—The First Report in Poland. Antibiotics 2022, 11, 530. [Google Scholar] [CrossRef]
- MacLowry, J.D.; Marsh, H.H. Semi-automatic microtechnique for serial dilution antibiotic sensitivity testing in the clinical laboratory. J. Lab. Clin. Med. 1968, 72, 685–687. [Google Scholar]
- Gerlach, E. Microdilution 1: A Comparative Study. In Current Techniques for Antibiotic Susceptibility Testing; Charles C. Thomas: Springfield, IL, USA, 1974; pp. 63–76. [Google Scholar]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from Swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Chuanchuen, R.; Padungtod, P. Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thailand. J. Vet. Med. Sci. 2009, 71, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- Koleri, J.; Petkar, H.M.; Husain, A.A.M.; Almaslamani, M.A.; Omrani, A.S. Moraxella osloensis bacteremia, a case series and review of the literature. IDCases 2022, 27, e01450. [Google Scholar] [CrossRef]
- Doran, G.; NiChulain, M.; DeLappe, N.; O’Hare, C.; Corbett-Feeney, G.; Cormican, M. Interpreting streptomycin susceptibility test results for Salmonella enterica serovar Typhimurium. Int. J. Antimicrob. Agents 2006, 27, 538–540. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, G.; Dejenu, G.; Tesema, C.; Arega, B.; Awoke, T.; Alemu, K.; Moges, F. Epidemiology of streptomycin resistant Salmonella from humans and animals in Ethiopia: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0244057. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.V.T.; Venkitanarayanan, K.; Johny, A.K. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 2018, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Ali Shah, S.A.; Nadeem, M.; Syed, S.A.; Fatima Abidi, S.T.; Khan, N.; Bano, N. Antimicrobial Sensitivity Pattern of Salmonella Typhi: Emergence of Resistant Strains. Cureus 2020, 12, 10–14. [Google Scholar] [CrossRef]
- Iredell, J.; Brown, J.; Tagg, K. Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. BMJ 2016, 352, h6420. [Google Scholar] [CrossRef]
- Philippon, A.; Slama, P.; Dény, P.; Labia, R. A structure-based classification of class A β-Lactamases, a broadly diverse family of enzymes. Clin. Microbiol. Rev. 2016, 29, 29–57. [Google Scholar] [CrossRef] [Green Version]
- Oladeinde, A.; Cook, K.; Lakin, S.M.; Woyda, R.; Abdo, Z.; Looft, T.; Herrington, K.; Zock, G.; Lawrence, J.P.; Thomas, J.C.; et al. Horizontal gene transfer and acquired antibiotic resistance in Salmonella enterica serovar heidelberg following in vitro incubation in broiler ceca. Appl. Environ. Microbiol. 2019, 85, e01903-19. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Sánchez, M.P.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Molecular characterization of antimicrobial resistance and enterobacterial repetitive intergenic consensus-PCR as a molecular typing tool for Salmonella spp. isolated from poultry and humans. Vet. World 2020, 13, 1771–1779. [Google Scholar] [CrossRef]
- White, P.A.; Iver, C.J.M.C.; Rawlinson, W.D. Integrons and Gene Cassettes in the Enterobacteriaceae. Antimicrob. Agents Chemother. 2001, 45, 2658–2661. [Google Scholar] [CrossRef] [Green Version]
- Doublet, B.; Boyd, D.; Mulvey, M.R.; Cloeckaert, A. The Salmonella genomic island 1 is an integrative mobilizable element. Mol. Microbiol. 2005, 55, 1911–1924. [Google Scholar] [CrossRef]
- Groussin, M.; Poyet, M.; Sistiaga, A.; Kearney, S.M.; Moniz, K.; Noel, M.; Hooker, J.; Gibbons, S.M.; Segurel, L.; Froment, A.; et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 2021, 184, 2053–2067.e18. [Google Scholar] [CrossRef] [PubMed]
Sample of Meat | Salmonella enterica spp. enterica | Antigenic Formula | Number of Isolated Strains |
---|---|---|---|
pork | Enteritidis | 1,9,12:g,m (without phase II) | 1 |
poultry | 22 | ||
poultry | Derby | 1,4,12:f,g:-(without phase II) | 5 |
poultry | Newport | 6,8,20:e,h:1,2 | 5 |
poultry | Infantis | 6,7:r:1,5 | 2 |
poultry | Kentucky | 8,20:i:z6 | 2 |
poultry | Indiana | 4,12:z:1,7 | 1 |
poultry | Mbandaka | 6,7:z10:e,n,z15 | 1 |
Total | Salmonella spp. | n = 39 |
Salmonella Strains | Sample Source | Antibiotics Resistance Profiles | MAR Index |
---|---|---|---|
Salmonella Derby (BO4) | 10 poultry | AMP-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | 0.42 |
22 poultry | AMX-CPH-GEN-STR-LIN/SP-TR/SMX | 0.18 | |
36 poultry | AMP-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | 0.42 | |
45 poultry | AMP-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | 0.42 | |
46 poultry | AMP-AMX-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP-TR/SMX | 0.48 | |
47 poultry | AMP-AMX-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR | 0.42 | |
Salmonella indiana (BO4) | 61 poultry | AMX-AMX/CL-CTX-CPH-CFTI-GEN-NEO-STR-DOX-OXY-TET-FLR-LIN/SP-TR/SMX | 0.42 |
Salmonella Infantis (CO7) | 3 poultry | AMX-CPH-GEN-STR-UB-DOX-OXY-TET-FLR-LIN/SP | 0.30 |
38 poultry | CPH-CFTI-GEN-STR-UB-DOX-OXY-TET-FLR-LIN/SP | 0.30 | |
Salmonella Mbandaka (CO7) | 9 poultry | AMP-AMX-CFX-CFT-CPH-GEN-STR-UB-LIN/SP | 0.27 |
Salmonella Kentucky (CO8) | 24 poultry | AMP-AMX-CFX-CFT-CPH-CFP-GEN-STR-ENR-UB-MRB-DOX-OXY-TET | 0.42 |
27 poultry | AMP-AMX-CFX-CFT-CPH-CFP-GEN-STR-ENR-UB-MRB-DOX-OXY-TET | 0.42 | |
Salmonella Newport (CO8) | 1 poultry | AMP-AMX-AMX/CL-CFX-CFT-CPH-GEN-NEO-STR-ENR-UB-MRB-NOR-DOX-OXY-TET-LIN/SP | 0.51 |
6 poultry | AMP-AMX-AMX/CL-CFX-CFT-CPH-GEN-STR-ENR-UB-MRB-NOR-DOX-OXY-TET-LIN/SP | 0.48 | |
8 poultry | AMP-CFX-CFT-CPH-GEN-STR-UB-MRB-DOX-OXY-TET-FLR | 0.36 | |
12 poultry | AMP-CFX-CFT-CPH-GEN-STR-ENR-UB-MRB-DOX-OXY-TET-FLR | 0.39 | |
13 poultry | AMP-AMX-CFX-CFT-CPH-GEN-STR-ENR-UB-MRB-DOX-OXY-TET-FLR | 0.42 | |
Salmonella Enteritidis (DO9) | 2 pork | CPH-GEN-STR | 0.09 |
4 poultry | AMX-CPH-GEN-STR-UB-FLR-LIN/SP | 0.21 | |
5 poultry | AMX-CPH-GEN-STR-UB-NOR-LIN/SP | 0.21 | |
7 poultry | GEN-STR-UB-LIN/SP | 0.12 | |
11 poultry | AMP-CFX-CFT-CPH-CFTI-GEN-STR-UB-MRB-FLR-LIN/SP | 0.33 | |
30 poultry | CPH-GEN-STR-UB | 0.12 | |
31 poultry | CPH-GEN-STR-UB | 0.12 | |
32 poultry | CPH-GEN-STR-LIN/SP | 0.12 | |
33 poultry | CPH-GEN-STR-LIN/SP | 0.12 | |
34 poultry | CPH-GEN-STR-UB-NOR-LIN/SP | 0.18 | |
35 poultry | CPH-GEN-STR-UB | 0.12 | |
37 poultry | CPH-GEN-STR-UB-LIN/SP | 0.15 | |
39 poultry | CPH-GEN-STR-UB | 0.12 | |
40 poultry | CPH-GEN-STR-UB-LIN/SP | 0.15 | |
41 poultry | CPH-GEN-STR-LIN/SP | 0.12 | |
42 poultry | CPH-GEN-STR-UB-LIN/SP | 0.15 | |
43 poultry | AMX-CPH-GEN-STR-UB-LIN/SP | 0.18 | |
44 poultry | CPH-GEN-STR | 0.09 | |
48 poultry | AMX-CFX-CFT-CPH-CFTI-GEN-STR-UB-FLR | 0.27 | |
49 poultry | CPH-GEN-STR-UB | 0.12 | |
64 poultry | CFX-CPH-GEN-NEO-STR-UB | 0.18 | |
68 poultry | CFX-CPH-GEN-NEO-STR-UB | 0.18 |
Salmonella Strains | Sample | Phenotypic Antimicrobial Resistance Profile | Genotypic Antimicrobial Resistance Profile |
---|---|---|---|
Salmonella Derby (BO4) | 10 | AMP-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | blaCMY-2, blaPSE-1, blaTEM, aadA, strA/strB, floR |
22 | AMX-CPH-GEN-STR-LIN/SP-TR/SMX | dfrA1, sul1, sul2, aadA, strA/strB, aadB | |
36 | AMP-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | blaCMY-2, blaPSE-1, blaSHV, blaTEM, aadA, strA/strB, aadB, floR | |
45 | AMP-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP | blaCMY-2, blaPSE-1, blaTEM, dfrA1, dfrA12, sul2, sul3, aadA, strA/strB, aadB, floR | |
46 | AMP-AMX-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR-LIN/SP-TR/SMX | blaCMY-2, blaPSE-1, blaTEM, dfrA1, dfrA12, sul2, sul3, aadA, strA/strB, aadB, floR | |
47 | AMP-AMX-CFX-CFT-CPH-CFP-CFTI-CFQ-GEN-STR-ENR-UB-MRB-FLR | blaCMY-2, blaPSE-1, blaTEM, aadA, strA/strB, floR | |
Salmonellaindiana (BO4) | 61 | AMX-AMX/CL-CTX-CPH-CFTI-GEN-NEO-STR-DOX-OXY-TET-FLR-LIN/SP-TR/SMX | blaCMY-2, blaTEM, dfrA1, sul1, sul2, aadA, strA/strB, aadB, aphA1, aphA2, tetA, tetB, floR |
Salmonella Infantis (CO7) | 3 | AMX-CPH-GEN-STR-UB-DOX-OXY-TET-FLR-LIN/SP | blaSHV, aadA, strA/strB, tetA, tetB, floR |
38 | CPH-CFTI-GEN-STR-UB-DOX-OXY-TET-FLR-LIN/SP | blaCMY-2, aadA, strA/strB, tetA, tetB, floR | |
Salmonella Mbandaka (CO7) | 9 | AMP-AMX-CFX-CFT-CPH-GEN-STR-UB-LIN/SP | blaPSE-1, blaTEM, aadA, strA/strB |
Salmonella Kentucky (CO8) | 24 | AMP-AMX-CFX-CFT-CPH-CFP-GEN-STR-ENR-UB-MRB-DOX-OXY-TET | blaCMY-2, blaPSE-1, blaTEM, aadA, strA/strB, aadB, tetA, tetB |
27 | AMP-AMX-CFX-CFT-CPH-CFP-GEN-STR-ENR-UB-MRB-DOX-OXY-TET | blaCMY-2, blaPSE-1, blaTEM, aadA, strA/strB, tetA, tetB | |
Salmonella Newport (CO8) | 1 | AMP-AMX-AMX/CL-CFX-CFT-CPH-GEN-NEO-STR-ENR-UB-MRB-NOR-DOX-OXY-TET-LIN/SP | blaCMY-2, blaTEM, aadA, strA/strB, aadB, aphA1, aphA2, tetA, tetB |
6 | AMP-AMX-AMX/CL-CFX-CFT-CPH-GEN-STR-ENR-UB-MRB-NOR-DOX-OXY-TET-LIN/SP | blaCMY-2, blaTEM, aadA, strA/strB, tetA, tetB | |
8 | AMP-CFX-CFT-CPH -GEN-STR-UB-MRB-DOX-OXY-TET-FLR | blaPSE-1, blaTEM, aadA, strA/strB, tetA, tetB, floR | |
12 | AMP-CFX-CFT-CPH-GEN-STR-ENR-UB-MRB-DOX-OXY-TET-FLR | blaPSE-1, blaTEM, aadA, strA/strB, tetA, tetB, floR | |
13 | AMP-AMX-CFX-CFT-CPH-GEN-STR-ENR-UB-MRB-DOX-OXY-TET-FLR | blaPSE-1, blaTEM, aadA, strA/strB, aadB, tetA, tetB, floR | |
Salmonella Enteritidis (DO9) | 2 | CPH-GEN-STR | aadA, strA/strB |
4 | AMX-CPH-GEN-STR-UB-FLR-LIN/SP | blaCMY-2, aadA, strA/strB, floR | |
5 | AMX-CPH-GEN-STR-UB-NOR-LIN/SP | blaSHV, aadA, strA/strB | |
7 | GEN-STR-UB-LIN/SP | aadA, strA/strB | |
11 | AMP-CFX-CFT-CPH-CFTI-GEN-STR-UB-MRB-FLR-LIN/SP | blaCMY-2, blaPSE-1, blaTEM, aadA, strA/strB, floR | |
30 | CPH-GEN-STR-UB | blaSHV, aadA, strA/strB | |
31 | CPH-GEN-STR-LIN/SP | blaSHV, aadA, strA/strB | |
32 | CPH-GEN-STR-LIN/SP | blaSHV, aadA, strA/strB | |
33 | CPH-GEN-STR-UB-NOR-LIN/SP | blaSHV, aadA, strA/strB | |
34 | CPH-GEN-STR-UB | blaCMY-2, aadA, strA/strB | |
35 | CPH-GEN-STR-UB-LIN/SP | blaSHV, aadA, strA/strB | |
37 | CPH-GEN-STR-UB | blaSHV, aadA, strA/strB | |
39 | CPH-GEN-STR-UB | blaSHV, aadA, strA/strB | |
40 | CPH-GEN-STR-UB-LIN/SP | blaTEM, aadA, strA/strB | |
41 | CPH-GEN-STR-LIN/SP | blaTEM, aadA, strA/strB | |
42 | CPH-GEN-STR-UB-LIN/SP | blaSHV, aadA, strA/strB | |
43 | AMX-CPH-GEN-STR-UB-LIN/SP | blaSHV, aadA, strA/strB | |
44 | CPH-GEN-STR | blaCMY-2, aadA, strA/strB | |
48 | AMX-CFX-CFT-CPH-CFTI-GEN-STR-UB-FLR | blaCMY-2, aadA, strA/strB, floR | |
49 | CPH-GEN-STR-UB | blaSHV, aadA, strA/strB | |
64 | CFX-CPH-GEN-NEO-STR-UB | blaTEM, aadA, strA/strB, aphA1, aphA2 | |
68 | CFX-CPH-GEN-NEO-STR-UB | blaTEM, aadA, strA/strB, aphA1, aphA2 |
Multiplex PCR or Single PCR | Gene/Antibiotic | Primer Sequences 5’-3’ | Annealing Temperature | Product Size (bp) |
---|---|---|---|---|
Multiplex 1 | aadA streptomycin | F-GTG GAT GGC GGC CTG AAG CC R-AAT GCC CAG TCG GCA GCG | 63 °C | 525 bp |
Multiplex 1 | strA/strB streptomycin | F-ATG GTG GAC CCT AAA ACT CT R-CGT CTA GGA TCG AGA CAA AG | 63 °C | 893 bp |
Multiplex 2 | aphA1 neomycin | F-ATG GGC TCG CGA TAA TGT C R-CTC ACC GAG GCA GTT CCA T | 55 °C | 634 bp |
Multiplex 2 | aphA2 neomycin | F-GAT TGA ACA AGA TGG ATT GC R-CCA TGA TGG ATA CTT TCT CG | 55 °C | 347 bp |
Multiplex 2 | aadB gentamicin | F-GAG GAG TTG GAC TATGGA TT R-CTT CAT CGG CAT AGT AAA AG | 55 °C | 208 bp |
Multiplex 3 | tetA tetracycline | F-GGC GGT CTT CTT CAT CAT GC R-CGG CAG GCA GAG CAA GTA GA | 63 °C | 502 bp |
Multiplex 3 | tetB tetracycline | F-CGC CCA GTG CTG TTG TTG TC R-CGC GTT GAG AAG CTG AGG TG | 63 °C | 173 bp |
Multiplex 4 | sul1 sulfamethoxazole | F-CGG CGT GGG CTA CCT GAA CG R-GCC GAT CGC GTG AAG TTC CG | 66 °C | 433 bp |
Multiplex 4 | sul2 sulfamethoxazole | F-CGG CAT CGT CAA CAT AAC CT R-TGT GCG GAT GAA GTC AGC TC | 66 °C | 721 bp |
Single PCR | sul3 sulfamethoxazole | F-GGGAGCCGCTTCCAGTAAT R-TCCGTGACACTGCAATCATTA | 60 °C | 500 bp |
Single PCR | dfrA1 trimethoprim | F-CAATGGCTGTTGGTTGGAC R-CCGGCTCGATGTCTATTGT | 62 °C | 253 bp |
Single PCR | dfrA10 trimethoprim | F-TCAAGGCAAATTACCTTGGC R-ATCTATTGGATCACCTACCC | 59 °C | 433 bp |
Single PCR | dfrA12 trimethoprim | F-TTCGCAGACTCACTGAGGG R-CGGTTGAGACAAGCTCGAAT | 63 °C | 330 bp |
Single PCR | floR florfenicol | F-CACGTTGAGCCTCTATATGG R-ATGCAGAAGTAGAACGCGAC | 61 °C | 888 bp |
5 | blaTEM ampicillin | F-TTAACTGGCGAACTACTTAC R-GTCTATTTCGTTCATCCATA | 55 °C | 247 bp |
5 | blaSHV ceftiofur | F-AGGATTGACTGCCTTTTTG R-ATTTGCTGATTTCGCTCG | 55 °C | 393 bp |
5 | blaCMY-2 ceftiofur | F-GACAGCCTCTTTCTCCACA R-TGGACACGAAGGCTACGTA | 55 °C | 1000 bp |
Single PCR | blaPSE-1 ampicillin | F-GCAAGTAGGGCAGGCAATCA R-GAGCTAGATAGATGCTCACAA | 60 °C | 461 bp |
Single PCR | blaCTX-M | F-CGCTTTGCGATGTGCAG R-ACCGCGATATCGTTGGT | 60 °C | 585 bp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pławińska-Czarnak, J.; Wódz, K.; Kizerwetter-Świda, M.; Bogdan, J.; Kwieciński, P.; Nowak, T.; Strzałkowska, Z.; Anusz, K. Multi-Drug Resistance to Salmonella spp. When Isolated from Raw Meat Products. Antibiotics 2022, 11, 876. https://doi.org/10.3390/antibiotics11070876
Pławińska-Czarnak J, Wódz K, Kizerwetter-Świda M, Bogdan J, Kwieciński P, Nowak T, Strzałkowska Z, Anusz K. Multi-Drug Resistance to Salmonella spp. When Isolated from Raw Meat Products. Antibiotics. 2022; 11(7):876. https://doi.org/10.3390/antibiotics11070876
Chicago/Turabian StylePławińska-Czarnak, Joanna, Karolina Wódz, Magdalena Kizerwetter-Świda, Janusz Bogdan, Piotr Kwieciński, Tomasz Nowak, Zuzanna Strzałkowska, and Krzysztof Anusz. 2022. "Multi-Drug Resistance to Salmonella spp. When Isolated from Raw Meat Products" Antibiotics 11, no. 7: 876. https://doi.org/10.3390/antibiotics11070876
APA StylePławińska-Czarnak, J., Wódz, K., Kizerwetter-Świda, M., Bogdan, J., Kwieciński, P., Nowak, T., Strzałkowska, Z., & Anusz, K. (2022). Multi-Drug Resistance to Salmonella spp. When Isolated from Raw Meat Products. Antibiotics, 11(7), 876. https://doi.org/10.3390/antibiotics11070876