mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment
Abstract
:1. Introduction
2. Results
2.1. Liquid Conjugation was Established for Quantitative Measurement of Plasmid Transfer Rate
2.2. mcr-1 Inhibits pHNSHP45 Transfer through Conjugation
2.3. Colistin Resistance has Inhibitory Effect on Plasmid Transfer
2.4. The Impact of Colistin Resistance on Helper Plasmid Transfer
2.5. mcr-1 Plasmid Transfers In Vivo
3. Discussion
4. Materials and Methods
4.1. Bacteria and Growth Condition
4.2. Growth Curve Assay
4.3. Competition Assay
4.4. Conjugation In Vitro
4.5. Conjugation Frequency In Vivo
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Duin, D.; Paterson, D.L. Multidrug-Resistant Bacteria in the Community: An Update. Infect. Dis. Clin. N. Am. 2020, 34, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.J.; Salim, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Marshall, S.; Rudin, S.D.; et al. Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae: Laboratory Detection and Impact on Mortality. Clin. Infect. Dis. 2017, 64, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, J.S. The Salmonella PmrAB regulon: Lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 2008, 16, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Cannatelli, A.; D’Andrea, M.M.; Giani, T.; Di Pilato, V.; Arena, F.; Ambretti, S.; Gaibani, P.; Rossolini, G.M. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother. 2013, 57, 5521–5526. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.Y.; Chen, Y.F.; Peng, H.L. Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J. Biomed. Sci. 2010, 17, 60. [Google Scholar] [CrossRef] [Green Version]
- Baquero, F.; Negri, M.C.; Morosini, M.I.; Blázquez, J. The antibiotic selective process: concentration-specific amplification of low-level resistant populations. Ciba Found. Symp. 1997, 207, 93–105. [Google Scholar]
- Bonny, C.; Montandon, P.E.; Marc-Martin, S.; Stutz, E. Analysis of streptomycin-resistance of Escherichia coli mutants. Biochim. Biophys. Acta 1991, 1089, 213–219. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.H.; Tian, G.B.; Dong, B.L.; Huang, X.H.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Baker, K.S.; Dallman, T.J.; Field, N.; Childs, T.; Mitchell, H.; Day, M.; Weill, F.X.; Lefevre, S.; Tourdjman, M.; Hughes, G.; et al. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nat. Commun. 2018, 9, 1462. [Google Scholar] [CrossRef]
- Conlan, S.; Thomas, P.J.; Deming, C.; Park, M.; Lau, A.F.; Dekker, J.P.; Snitkin, E.S.; Clark, T.A.; Luong, K.; Song, Y.; et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci. Transl. Med. 2014, 6, 254ra126. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Hu, Y.; Li, Z.; Sun, J.; Wang, Q.; Lin, J.; Ye, H.; Liu, F.; Srinivas, S.; Li, D.; et al. Dissemination and Mechanism for the MCR-1 Colistin Resistance. PLoS Pathog. 2016, 12, e1005957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, N.H.; Al-Kadmy, I.M.S.; Taha, B.M.; Hussein, J.D. Mobilized colistin resistance (mcr) genes from 1 to 10, a comprehensive review. Mol. Biol. Rep. 2021, 48, 2897–2907. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 2020, 9, 508–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Gao, Q.; et al. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Sci. Total Environ. 2021, 799, 149280. [Google Scholar] [CrossRef]
- Hao, G.; Chen, A.I.; Liu, M.; Zhou, H.; Egan, M.; Yang, X.; Kan, B.; Wang, H.; Goulian, M.; Zhu, J. Colistin-resistance-mediated bacterial surface modification sensitizes phage infection. Antimicrob. Agents Chemother. 2019, 12, e01609–e01619. [Google Scholar] [CrossRef]
- Neil, K.; Allard, N.; Rodrigue, S. Molecular Mechanisms Influencing Bacterial Conjugation in the Intestinal Microbiota. Front. Microbiol. 2021, 12, 673260. [Google Scholar] [CrossRef]
- Tanner, J.R.; Kingsley, R.A. Evolution of Salmonella within Hosts. Trends Microbiol. 2018, 26, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Godbole, G.; Ashton, P.; Larkin, L.; Dallman, T.; Day, M.; Day, M.; Muller-Pebody, B.; Ellington, M.J.; de Pinna, E.; et al. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J. Antimicrob. Chemother. 2016, 71, 2300–2305. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liu, F.; Lin, I.Y.; Gao, G.F.; Zhu, B. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 2016, 16, 146–147. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Yi, L.X.; Yu, L.F.; Wang, J.; Liu, Y.; Chen, X.; Lv, L.; Yang, J.; Liu, J.H. Fitness Advantage of mcr-1-Bearing IncI2 and IncX4 Plasmids in Vitro. Front. Microbiol. 2018, 9, 331. [Google Scholar] [CrossRef]
- Kim, Y.J.; Seo, K.H.; Kim, S.; Bae, S. Phylogenetic Comparison and Characterization of an mcr-1-Harboring Complete Plasmid Genome Isolated from Enterobacteriaceae. Microb. Drug Resist. 2022, 28, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Yang, Y.; Cao, S.; Liu, H.; Li, X.; Sun, J.; Li, F.; Ishfaq, M.; Zhang, X. Prevalence and Characteristic of Swine-Origin mcr-1-Positive Escherichia coli in Northeastern China. Front. Microbiol. 2021, 12, 712707. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hu, Y.; Luo, M.; Zhou, H.; Wang, X.; Du, Y.; Li, Z.; Xu, J.; Zhu, B.; Xu, X.; et al. MCR-1.6, a New MCR Variant Carried by an IncP Plasmid in a Colistin-Resistant Salmonella enterica Serovar Typhimurium Isolate from a Healthy Individual. Antimicrob. Agents Chemother. 2017, 61, e02616–e02632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Zhang, H.; Liu, Y.H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef]
- Zeng, X.; Lin, J. Factors influencing horizontal gene transfer in the intestine. Anim. Health Res. Rev. 2017, 18, 153–159. [Google Scholar] [CrossRef]
- Lerner, A.; Matthias, T.; Aminov, R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front. Immunol. 2017, 8, 1630. [Google Scholar] [CrossRef] [Green Version]
- San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018, 26, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.P.; Bohnhoff, M. Changes in the Mouse’s Enteric Microflora Associated with Enhanced Susceptibility to Salmonella Infection Following Streptomycin Treatment. J. Infect. Dis. 1963, 113, 59–66. [Google Scholar] [CrossRef]
- Leatham, M.P.; Banerjee, S.; Autieri, S.M.; Mercado-Lubo, R.; Conway, T.; Cohen, P.S. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 2009, 77, 2876–2886. [Google Scholar] [CrossRef] [Green Version]
- Marin, F.; Luquet, G.; Marie, B.; Medakovic, D. Molluscan shell proteins: Primary structure, origin, and evolution. Curr. Top. Dev. Biol. 2008, 80, 209–276. [Google Scholar]
- Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Miyashiro, T.; Tsou, A.; Hsiao, A.; Goulian, M.; Zhu, J. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc. Natl. Acad. Sci. USA 2008, 105, 9769–9774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, V.V.H.; Biggs, P.J.; Wheeler, D.; Davies, I.G.; Rakonjac, J. Novel mechanisms of TolC-independent decreased bile-salt susceptibility in Escherichia coli. FEMS Microbiol. Lett. 2020, 367, fnaa083. [Google Scholar] [CrossRef]
- Ott, L.C.; Stromberg, Z.R.; Redweik, G.A.J.; Wannemuehler, M.J.; Mellata, M. Mouse Genetic Background Affects Transfer of an Antibiotic Resistance Plasmid in the Gastrointestinal Tract. mSphere 2020, 5, e00847-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, W.F.; McDermott, P.F.; Mammel, M.K.; Zhao, S.; Johnson, T.J.; Rasko, D.A.; Fedorka-Cray, P.J.; Pedroso, A.; Whichard, J.M.; Leclerc, J.E.; et al. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry. Appl. Environ. Microbiol. 2009, 75, 5963–5971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licht, T.R.; Struve, C.; Christensen, B.B.; Poulsen, R.L.; Molin, S.; Krogfelt, K.A. Evidence of increased spread and establishment of plasmid RP4 in the intestine under sub-inhibitory tetracycline concentrations. FEMS Microbiol. Ecol. 2003, 44, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Anthony, K.G.; Klimke, W.A.; Manchak, J.; Frost, L.S. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: Insights into the mechanism of conjugation. J. Bacteriol. 1999, 181, 5149–5159. [Google Scholar] [CrossRef] [Green Version]
- Ishiwa, A.; Komano, T. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J. Bacteriol. 2003, 185, 5192–5199. [Google Scholar] [CrossRef] [Green Version]
- Duke, J.; Guiney, D.G., Jr. The role of lipopolysaccharide structure in the recipient cell during plasmid-mediated bacterial conjugation. Plasmid 1983, 9, 222–226. [Google Scholar] [CrossRef]
- Hastings, P.J.; Rosenberg, S.M.; Slack, A. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 2004, 12, 401–404. [Google Scholar] [CrossRef]
- Aviv, G.; Rahav, G.; Gal-Mor, O. Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts. mBio 2016, 7, e01316–e01395. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.M.; de Groof, A.J.; Bhattacharjee, M.K.; Figurski, D.H.; Schon, E.A. Bacterial conjugation in the cytoplasm of mouse cells. Infect. Immun. 2008, 76, 5110–5119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, A.M.; Sommer, M.O. Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. PLoS ONE 2014, 9, e100739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Quintanilla, M.; Ramos-Morales, F.; Casadesus, J. Conjugal transfer of the Salmonella enterica virulence plasmid in the mouse intestine. J. Bacteriol. 2008, 190, 1922–1927. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zeng, F.; Li, R.; Liu, Y.; Wang, Z.; Polen, T. Subinhibitory Concentration of Colistin Promotes the Conjugation Frequencies of Mcr-1- and blaNDM-5-Positive Plasmids. Microbiol. Spectr. 2022, 10, e02121–e02160. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Bile acid detergency: permeability, inflammation, and effects of sulfation. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 322, G480–G488. [Google Scholar] [CrossRef]
- Hsiao, A.; Zhu, J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020, 11, 1582–1599. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Moura, Q.; Sartori, L.; Silva, K.C.; Cunha, M.P.; Esposito, F.; Lopes, R.; Otutumi, L.K.; Goncalves, D.D.; Dropa, M.; et al. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Euro. Surveill. 2016, 21, 30214. [Google Scholar] [CrossRef]
- Mitra, S.; Basu, S.; Rath, S.; Sahu, S.K. Colistin resistance in Gram-negative ocular infections: prevalence, clinical outcome and antibiotic susceptibility patterns. Int. Ophthalmol. 2020, 40, 1307–1317. [Google Scholar] [CrossRef]
- Jin, L.; Wang, R.; Wang, X.; Wang, Q.; Zhang, Y.; Yin, Y.; Wang, H. Emergence of mcr-1 and carbapenemase genes in hospital sewage water in Beijing, China. J. Antimicrob. Chemother. 2018, 73, 84–87. [Google Scholar] [CrossRef]
- Zhao, F.; Feng, Y.; Lu, X.; McNally, A.; Zong, Z. Remarkable Diversity of Escherichia coli Carrying mcr-1 from Hospital Sewage with the Identification of Two New mcr-1 Variants. Front. Microbiol. 2017, 8, 2094. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Ji, Y.; Song, J.; Huang, J.; Chen, R.; Qiu, C.; Zhou, K. A novel host of MCR-5 belonging to Enterobacter spp. isolated from hospital sewage water. Environ. Microbiol. Rep. 2021, 13, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, C.; Ji, Y.; Song, J.; Liu, Y.; Guo, Y.; Zhou, K. Identification of mcr-10 carried by self-transmissible plasmids and chromosome in Enterobacter roggenkampii strains isolated from hospital sewage water. Environ. Pollut. 2021, 268, 115706. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fu, Y.; Schwarz, S.; Yin, W.; Walsh, T.R.; Zhou, Y.; He, J.; Jiang, H.; Wang, Y.; Wang, S. Genetic environment of colistin resistance genes mcr-1 and mcr-3 in Escherichia coli from one pig farm in China. Vet. Microbiol. 2019, 230, 56–61. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Fu, J.; Yin, J.; Zhao, J.; Zhong, C.; Cao, G. Co-Occurrence of Colistin and Meropenem Resistance Determinants in a Stenotrophomonas Strain Isolated from Sewage Water. Microb. Drug Resist. 2019, 25, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Zhai, R.; Fu, B.; Shi, X.; Sun, C.; Liu, Z.; Wang, S.; Shen, Z.; Walsh, T.R.; Cai, C.; Wang, Y.; et al. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ. Int. 2020, 139, 105715. [Google Scholar] [CrossRef]
- Islam, A.; Rahman, Z.; Monira, S.; Rahman, M.A.; Camilli, A.; George, C.M.; Ahmed, N.; Alam, M. Colistin resistant Escherichia coli carrying mcr-1 in urban sludge samples: Dhaka, Bangladesh. Gut. Pathog. 2017, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. ESKAPE Bacteria and Extended-Spectrum-beta-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02719–e02748. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Wang, Y.L.; Liu, C.; Yang, J.; Yuan, M.; Bai, X.N.; Jin, D.; Liang, J.R.; Cui, Z.G.; Li, J. Genetic Diversity, Antimicrobial Resistance, and Virulence Genes of Aeromonas Isolates from Clinical Patients, Tap Water Systems, and Food. Biomed. Environ. Sci. 2020, 33, 385–395. [Google Scholar]
- Bachmann, B.J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 1972, 36, 525–557. [Google Scholar] [CrossRef]
- Lasaro, M.; Liu, Z.; Bishar, R.; Kelly, K.; Chattopadhyay, S.; Paul, S.; Sokurenko, E.; Zhu, J.; Goulian, M. Escherichia coli Isolate for Studying Colonization of the Mouse Intestine and Its Application to Two-Component Signaling Knockouts. J. Bacteriol. 2014, 196, 1723–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nißle, A. Weiteres über Grundlagen und Praxis der Mutaflorbehandlung. Deut. Med. Wochenschr. 1925, 51, 1809–1813. [Google Scholar] [CrossRef]
- Ditta, G.; Stanfield, S.; Corbin, D.; Helinski, D.R. Broad host range DNA cloning system for gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 1980, 77, 7347–7351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, T.A.; Pellegrino, G.M.; Therrien, J.A.; Ham, D.T.; Bartlett, P.C.; Karas, B.J.; Gloor, G.B.; Edgell, D.R. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 2019, 10, 4544. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, H.; Zhou, Z.; Sheng, Y.; Naseer, N.; Kan, B.; Zhu, J. Thiol-based switch mechanism of virulence regulator AphB modulates oxidative stress response in Vibrio cholerae. Mol. Microbiol. 2016, 102, 939–949. [Google Scholar] [CrossRef] [Green Version]
Strain and Plasmid | Description | Reference or Source |
---|---|---|
Strains | ||
E. coli | ||
MG1655 | StrR | [60] |
MP13 | GenR, ChlR, TcR | [61] |
Nissle 1917 | NalR, StrR | [62] |
K. pneumoniae | ||
A2312NM | Clinical isolate, StrR, TcR | [15] |
D20-2 | Clinical isolate, GenR | This study |
A1502 | Clinical isolate, GenR | This study |
Plasmids | ||
pHNSHP45 | IncI2 type plasmid, harboring mcr-1 gene, colistinR | [8] |
pAC22 | mcr-1 gene in pHNSHP45 is replaced by kanamycin resistance, KmR | [15] |
pAC23 | Recombine mcr-1 gene on pAC22, colistinR | [15] |
pAC24 | mcr-1 gene in pHNSHP45 is replaced by apramycin resistance, ApraR | This study |
pMCR1.6_P053 | IncP type plasmid, harboring mcr-1.6, colistinR | [23] |
pRK2013 | Auxiliary plasmid for mating, KmR | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Shu, R.; Hou, L.; Ren, P.; Lu, X.; Huang, Z.; Zhong, Z.; Wang, H. mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics 2022, 11, 875. https://doi.org/10.3390/antibiotics11070875
Yang X, Shu R, Hou L, Ren P, Lu X, Huang Z, Zhong Z, Wang H. mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics. 2022; 11(7):875. https://doi.org/10.3390/antibiotics11070875
Chicago/Turabian StyleYang, Xiaoman, Rundong Shu, Leqi Hou, Panpan Ren, Xin Lu, Zhi Huang, Zengtao Zhong, and Hui Wang. 2022. "mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment" Antibiotics 11, no. 7: 875. https://doi.org/10.3390/antibiotics11070875
APA StyleYang, X., Shu, R., Hou, L., Ren, P., Lu, X., Huang, Z., Zhong, Z., & Wang, H. (2022). mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics, 11(7), 875. https://doi.org/10.3390/antibiotics11070875