Evaluation of Agar Dilution Method in Susceptibility Testing of Polymyxins for Enterobacteriaceae and Non-Fermentative Rods: Advantages Compared to Broth Microdilution and Broth Macrodilution
Abstract
:1. Introduction
2. Results
2.1. MICs of Polymyxin B and Colistin by Three Susceptibility Methods
2.2. Comparison of AD with Other Susceptibility Testing Methods
2.3. Differences of MICs between Polystyrene and Glass-Bottom Microtiter Plates
2.4. Differences of MICs between Polystyrene and Glass Petri Dishes
2.5. The Ratio of Lack of Growth
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antibacterial Agents and Susceptibility Testing
4.3. Interpretation of Antimicrobial Susceptibility Testing Methods
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ezadi, F.; Ardebili, A.; Mirnejad, R. Antimicrobial Susceptibility Testing for Polymyxins: Challenges, Issues, and Recommendations. J. Clin. Microbiol. 2019, 57, e01390-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Zhang, H.; Liu, Y.H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.T.; Pitt, M.E.; Elliott, A.G.; Cooper, M.A. Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria? Expert Rev. Anti. Infect. Ther. 2018, 16, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.L.; Hu, X.X.; Gao, Y.; Jin, J.; Yi, H.; Wang, X.K.; Nie, T.Y.; Chen, Y.; He, Q.Y.; Guo, H.F.; et al. Synthesis and Bioactivity Investigation of the Individual Components of Cyclic Lipopeptide Antibiotics. J. Med. Chem. 2018, 61, 1845–1857. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo-Godoy, A.; Hansford, K.A.; Muldoon, C.; Becker, B.; Elliott, A.G.; Huang, J.X.; Pelingon, R.; Butler, M.S.; Blaskovich, M.A.T.; Cooper, M.A. Structure-Function Studies of Polymyxin B Lipononapeptides. Molecules 2019, 24, 553. [Google Scholar] [CrossRef] [Green Version]
- Dijkmans, A.C.; Wilms, E.B.; Kamerling, I.M.; Birkhoff, W.; Ortiz-Zacarias, N.V.; Van Nieuwkoop, C.; Verbrugh, H.A.; Touw, D.J. Colistin: Revival of an Old Polymyxin Antibiotic. Ther. Drug Monit. 2015, 37, 419–427. [Google Scholar] [CrossRef]
- Tran, T.B.; Velkov, T.; Nation, R.L.; Forrest, A.; Tsuji, B.T.; Bergen, P.J.; Li, J. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? Int. J. Antimicrob. Agents 2016, 48, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [Green Version]
- Vaara, M. Polymyxins and Their Potential Next Generation as Therapeutic Antibiotics. Front. Microbiol. 2019, 10, 1689. [Google Scholar] [CrossRef]
- EUCAST. Recommendations for MIC Determination of Colistin (Polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. 2016. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf (accessed on 22 March 2016).
- Karvanen, M.; Malmberg, C.; Lagerback, P.; Friberg, L.E.; Cars, O. Colistin Is Extensively Lost during Standard In Vitro Experimental Conditions. Antimicrob. Agents Chemother. 2017, 61, e00857-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, T.Y.; Ng, L.S. Comparison of three standardized disc susceptibility testing methods for colistin. J. Antimicrob. Chemother. 2006, 58, 864–867. [Google Scholar] [CrossRef]
- Lo-Ten-Foe, J.R.; De Smet, A.M.; Diederen, B.M.; Kluytmans, J.A.; Van Keulen, P.H. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob. Agents Chemother. 2007, 51, 3726–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Heijden, I.M.; Levin, A.S.; De Pedri, E.H.; Fung, L.; Rossi, F.; Duboc, G.; Barone, A.A.; Costa, S.F. Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. aeruginosa to polymyxins. Ann. Clin. Microbiol. Antimicrob. 2007, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, B.; Mathur, P.; Das, A.; Kapil, A.; Gupta, B.; Bhoi, S.; Farooque, K.; Sharma, V.; Misra, M.C. Evaluation of susceptibility testing methods for polymyxin. Int. J. Infect. Dis. 2010, 14, e596–e601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskowitz, S.M.; Garber, E.; Chen, Y.; Clock, S.A.; Tabibi, S.; Miller, A.K.; Doctor, M.; Saiman, L. Colistin susceptibility testing: Evaluation of reliability for cystic fibrosis isolates of Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2010, 65, 1416–1423. [Google Scholar] [CrossRef]
- Maalej, S.M.; Meziou, M.R.; Rhimi, F.M.; Hammami, A. Comparison of disc diffusion, Etest and agar dilution for susceptibility testing of colistin against Enterobacteriaceae. Lett. Appl. Microbiol. 2011, 53, 546–551. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- EUCAST of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth microdilution. EUCAST Discussion Document E. Def 2003, 5.1. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
- Satlin, M.J.; Lewis, J.S.; Weinstein, M.P.; Patel, J.; Humphries, R.M.; Kahlmeter, G.; Giske, C.G.; Turnidge, J. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing Position Statements on Polymyxin B and Colistin Clinical Breakpoints. Clin. Infect. Dis. 2020, 71, e523–e529. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum beta-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [CrossRef]
- Chinese Research Hospital Association of Critical Care Medicine; Chinese Research Hospital Association of Evidence Base; Translational Infectious Diseases. Chinese expert consensus on polymyxins in the clinical practice. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, 1194–1198. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021; Available online: https://www.treata.academy/wp-content/uploads/2021/03/CLSI-31-2021.pdf (accessed on 29 March 2021).
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2021. Available online: http://www.eucast.org (accessed on 1 January 2020).
- Castanheira, M.; Doyle, T.B.; Carvalhaes, C.G.; Roth, B.M.; Rhomberg, P.R.; Mendes, R.E. Media for colistin susceptibility testing does not improve the detection of Klebsiella pneumoniae isolates carrying MgrB disruption and other mutation driven colistin resistance mechanisms. Diagn. Microbiol. Infect. Dis. 2020, 98, 115077. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Green, D.A.; Schuetz, A.N.; Bergman, Y.; Lewis, S.; Yee, R.; Stump, S.; Lopez, M.; Macesic, N.; Uhlemann, A.C.; et al. Multicenter Evaluation of Colistin Broth Disk Elution and Colistin Agar Test: A Report from the Clinical and Laboratory Standards Institute. J. Clin. Microbiol. 2019, 57, e01269-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albur, M.; Noel, A.; Bowker, K.; Macgowan, A. Colistin susceptibility testing: Time for a review. J. Antimicrob. Chemother. 2014, 69, 1432–1434. [Google Scholar] [CrossRef] [Green Version]
- Matuschek, E.; Ahman, J.; Webster, C.; Kahlmeter, G. Antimicrobial susceptibility testing of colistin-evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Simner, P.J.; Bergman, Y.; Trejo, M.; Roberts, A.A.; Marayan, R.; Tekle, T.; Campeau, S.; Kazmi, A.Q.; Bell, D.T.; Lewis, S.; et al. Two-Site Evaluation of the Colistin Broth Disk Elution Test To Determine Colistin In Vitro Activity against Gram-Negative Bacilli. J. Clin. Microbiol. 2019, 57, e01163-18. [Google Scholar] [CrossRef] [Green Version]
- Green, D.A.; Macesic, N.; Uhlemann, A.C.; Lopez, M.; Stump, S.; Whittier, S.; Schuetz, A.N.; Simner, P.J.; Humphries, R.M. Evaluation of Calcium-Enhanced Media for Colistin Susceptibility Testing by Gradient Agar Diffusion and Broth Microdilution. J. Clin. Microbiol. 2020, 58, e01522-19. [Google Scholar] [CrossRef]
- Bardet, L.; Okdah, L.; Le Page, S.; Baron, S.A.; Rolain, J.M. Comparative evaluation of the UMIC Colistine kit to assess MIC of colistin of gram-negative rods. BMC Microbiol. 2019, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Turnidge, J.D.; Bell, J.M. Antimicrobial susceptibility on solid media. In Antibiotics in Laboratory Medicine, 6th ed.; Amsterdam, D., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2015. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 19 April 2020).
- Turlej-Rogacka, A.; Xavier, B.B.; Janssens, L.; Lammens, C.; Zarkotou, O.; Pournaras, S.; Goossens, H.; Malhotra-Kumar, S. Evaluation of colistin stability in agar and comparison of four methods for MIC testing of colistin. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Landman, D.; Salamera, J.; Quale, J. Irreproducible and uninterpretable Polymyxin B MICs for Enterobacter cloacae and Enterobacter aerogenes. J. Clin. Microbiol. 2013, 51, 4106–4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnidge, J.; Sei, K.; Mouton, J. Polymyxin Susceptibility Testing and Breakpoint Setting. Adv. Exp. Med. Biol. 2019, 1145, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, D. Susceptibility Testing of Antimicrobials in Liquid Media. In Antibiotics in Laboratory Medicine, 6th ed.; Amsterdam, D., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2015. [Google Scholar]
Species | PMB | CST | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AD | rBMD* | BMAD | AD | rBMD* | BMAD | |||||||
μg/mL | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 |
E. coli | 0.5 | 1 | 1 | 2 | 0.5 | 1 | 0.5 | 0.5 | 1 | 2 | 0.25 | 0.5 |
K. pneumoniae | 1 | 2 | 2 | 2 | 1 | 2 | 0.5 | 1 | 1 | 2 | 0.5 | 1 |
E. cloacae | 1 | 1 | 2 | 4 | 0.5 | 1 | 1 | 1 | 1 | 2 | 0.5 | 1 |
K. aerogenes | 1 | 1 | 2 | 2 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 2 | 0.25 | 0.5 |
A. baumannii | 1 | 1 | 2 | 2 | 0.5 | 1 | 0.5 | 0.5 | 1 | 2 | 0.5 | 1 |
P. aeruginosa | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 |
No. | Strains | PMB | CST | ||||
---|---|---|---|---|---|---|---|
AD | rBMD* | BMAD | AD | rBMD* | BMAD | ||
1 | E. coli NCTC13846 | 4 | 4 | 4 | 8 | 8 | 8 |
2 | E. coli CCPM(A)-P-070885 | 8 | 4 | 4 | 16 | 16 | 8 |
3 | E. coli CCPM(A)-P-071343 | 8 | 4 | 4 | 16 | 16 | 8 |
4 | E. coli CCPM(A)-P-071366 | 8 | 4 | 4 | 16 | 8 | 8 |
5 | E. coli CCPM(A)-P-071368 | 8 | 8 | 4 | 8 | 16 | 8 |
6 | E. coli CCPM(A)-P-0717R14 | 8 | 4 | 4 | 8 | 8 | 8 |
7 | K. pneumoniae CCPM(A)-P-080920 | 16 | 8 | 8 | 32 | 16 | 32 |
Species | Tested Agents | rBMD* | BMAD | ||||||
---|---|---|---|---|---|---|---|---|---|
% | VME | ME | CA | EA | VME | ME | CA | EA | |
E. coli | PMB | 2.5 | 0 | 97.5 | 80 | 0 | 0 | 100 | 87.5 |
K. pneumoniae | 10.5 | 0 | 89.5 | 94.7 | 5.3 | 0 | 94.7 | 89.5 | |
E. cloacae | 10.8 | 0 | 89.2 | 86.5 | 0 | 0 | 100 | 62.2 | |
K. aerogenes | 3.3 | 0 | 96.7 | 90 | 0 | 0 | 100 | 73.3 | |
A. baumannii | 15.8 | 0 | 84.2 | 76.3 | 2.6 | 0 | 97.4 | 86.8 | |
P. aeruginosa | 29.7 | 2.7 | 67.6 | 81.1 | 0 | 2.7 | 97.3 | 73 | |
Total (%) | 12.2 | 0.4 | 87.3 | 85 | 1.4 | 0.4 | 98.2 | 79.1 | |
E. coli | CST | 2.5 | 0 | 97.5 | 67.5 | 0 | 0 | 100 | 92.5 |
K. pneumoniae | 7.9 | 0 | 92.1 | 68.4 | 2.6 | 0 | 97.4 | 86.8 | |
E. cloacae | 0 | 0 | 100 | 78.4 | 2.7 | 0 | 97.3 | 89.2 | |
K. aerogenes | 0 | 0 | 100 | 73.3 | 6.7 | 0 | 93.3 | 90 | |
A. baumannii | 7.9 | 0 | 92.1 | 71.1 | 0 | 0 | 100 | 100 | |
P. aeruginosa | 35.1 | 0 | 64.9 | 94.6 | 10.8 | 0 | 89.2 | 89.2 | |
Total (%) | 9.1 | 0 | 90.9 | 75.1 | 3.6 | 0 | 96.4 | 91.8 |
Tested Agents | Strains | rBMD | AD | ||||
---|---|---|---|---|---|---|---|
TC-PS | GB | nTC-PS | TC Plates | GA | nTC Plates | ||
PMB | E. coli ATCC 25922 | 2 | 0.5 | 1 | 2 | 1 | 1 |
E. coli ATCC 2469 | 2 | 0.5 | 0.5 | 1 | 0.5 | 1 | |
K. pneumoniae ATCC 700603 | 4 | 0.5 | 0.5 | 2 | 1 | 1 | |
K. pneumoniae ATCC 2146 | 4 | 0.5 | 0.5 | 2 | 1 | 1 | |
A. baumannii ATCC 19606 | 2 | 0.5 | 0.5 | 1 | 0.5 | 1 | |
P. aeruginosa ATCC 27853 | 2 | 0.5 | 1 | 2 | 1 | 2 | |
CST | E. coli ATCC 25922 | 2 | 1 | 1 | 1 | 0.5 | 1 |
E. coli ATCC 2469 | 2 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | |
K. pneumoniae ATCC 700603 | 4 | 0.5 | 0.5 | 1 | 0.5 | 1 | |
K. pneumoniae ATCC 2146 | 2 | 0.5 | 0.5 | 1 | 0.5 | 1 | |
A. baumannii ATCC 19606 | 2 | 1 | 1 | 1 | 0.5 | 0.5 | |
P. aeruginosa ATCC 27853 | 2 | 1 | 1 | 2 | 1 | 1 |
Tested Agents | Strains | 100 μL | 200 μL | 300 μL | |||
---|---|---|---|---|---|---|---|
TC-PS | GB | TC-PS | GB | TC-PS | GB | ||
PMB | E. coli ATCC 25922 | 2 | 0.5 | 1 | 0.25 | 1 | 0.25 |
E. coli ATCC 2469 | 2 | 0.5 | 0.5 | 0.25 | 0.5 | 0.12 | |
K. pneumoniae ATCC 700603 | 4 | 0.5 | 1 | 0.25 | 1 | 0.25 | |
K. pneumoniae ATCC 2146 | 4 | 0.5 | 1 | 0.12 | 1 | 0.12 | |
A. baumannii ATCC 19606 | 2 | 0.5 | 1 | 0.12 | 1 | 0.12 | |
P. aeruginosa ATCC 27853 | 2 | 0.5 | 1 | 0.5 | 1 | 0.5 | |
CST | E. coli ATCC 25922 | 2 | 1 | 1 | 0.25 | 1 | 0.25 |
E. coli ATCC 2469 | 2 | 0.5 | 1 | 0.25 | 0.5 | 0.25 | |
K. pneumoniae ATCC 700603 | 4 | 0.5 | 1 | 0.25 | 1 | 0.25 | |
K. pneumoniae ATCC 2146 | 2 | 0.5 | 1 | 0.12 | 0.5 | 0.25 | |
A. baumannii ATCC 19606 | 2 | 1 | 1 | 0.5 | 1 | 0.5 | |
P. aeruginosa ATCC 27853 | 2 | 1 | 1 | 0.5 | 1 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Sun, L.; Nie, T.; Yang, Y.; Wang, X.; Pang, J.; Lu, X.; Li, X.; Lu, Y.; Li, C.; et al. Evaluation of Agar Dilution Method in Susceptibility Testing of Polymyxins for Enterobacteriaceae and Non-Fermentative Rods: Advantages Compared to Broth Microdilution and Broth Macrodilution. Antibiotics 2022, 11, 1392. https://doi.org/10.3390/antibiotics11101392
Hu X, Sun L, Nie T, Yang Y, Wang X, Pang J, Lu X, Li X, Lu Y, Li C, et al. Evaluation of Agar Dilution Method in Susceptibility Testing of Polymyxins for Enterobacteriaceae and Non-Fermentative Rods: Advantages Compared to Broth Microdilution and Broth Macrodilution. Antibiotics. 2022; 11(10):1392. https://doi.org/10.3390/antibiotics11101392
Chicago/Turabian StyleHu, Xinxin, Lilan Sun, Tongying Nie, Yan Yang, Xiukun Wang, Jing Pang, Xi Lu, Xue Li, Yun Lu, Congran Li, and et al. 2022. "Evaluation of Agar Dilution Method in Susceptibility Testing of Polymyxins for Enterobacteriaceae and Non-Fermentative Rods: Advantages Compared to Broth Microdilution and Broth Macrodilution" Antibiotics 11, no. 10: 1392. https://doi.org/10.3390/antibiotics11101392
APA StyleHu, X., Sun, L., Nie, T., Yang, Y., Wang, X., Pang, J., Lu, X., Li, X., Lu, Y., Li, C., Yang, X., Meng, Y., Li, G., & You, X. (2022). Evaluation of Agar Dilution Method in Susceptibility Testing of Polymyxins for Enterobacteriaceae and Non-Fermentative Rods: Advantages Compared to Broth Microdilution and Broth Macrodilution. Antibiotics, 11(10), 1392. https://doi.org/10.3390/antibiotics11101392