Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Bacterial Profiles
2.3. IR Biotyper® Protocol
2.4. Pulsed-Field Gel Electrophoresis (PFGE)
3. Results
3.1. Optimization of IRBT® Sample Preparation
3.2. Comparison of the Results by IRBT® According to Media
3.3. Strain Typing of IRBT® Compared with the Results of PFGE Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Peng, H.; Liu, D.; Ma, Y.; Gao, W. Comparison of community- and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a chinese tertiary hospital, 2012–2017. Sci. Rep. 2018, 8, 17916. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Hong, J.S.; Yoon, E.-J.; Lee, H.; Kim, Y.A.; Shin, K.S.; Shin, J.H.; Uh, Y.; Shin, J.H.; Park, Y.S.; et al. Toxic shock syndrome toxin 1-producing methicillin-resistant Staphylococcus aureus of clonal complex 5, the New York/Japan epidemic clone, causing a high early-mortality rate in patients with bloodstream infections. Antimicrob. Agents Chemother. 2019, 63, e01362-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, E.J.; Lee, H.; Kim, D.; Shin, J.H.; Shin, J.H.; Jeong, S.H. Methicillin-resistant Staphylococcus aureus blood isolates harboring a novel pseudo-staphylococcal cassette chromosome mec element. Front. Microbiol. 2019, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Baede, V.O.; David, M.Z.; Andrasevic, A.T.; Blanc, D.S.; Borg, M.; Brennan, G.; Catry, B.; Chabaud, A.; Empel, J.; Enger, H.; et al. Mrsa surveillance programmes worldwide: Moving towards a harmonised international approach. Int. J. Antimicrob. Agents 2022, 59, 106538. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the eu and the european economic area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Zhen, X.; Lundborg, C.S.; Zhang, M.; Sun, X.; Li, Y.; Hu, X.; Gu, S.; Gu, Y.; Wei, J.; Dong, H. Clinical and economic impact of methicillin-resistant staphylococcus aureus: A multicentre study in China. Sci. Rep. 2020, 10, 3900. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (mrsa). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Joo, E.J.; Choi, J.Y.; Chung, D.R.; Song, J.H.; Ko, K.S. Characteristics of the community-genotype sequence type 72 methicillin-resistant Staphylococcus aureus isolates that underlie their persistence in hospitals. J. Microbiol. 2016, 54, 445–450. [Google Scholar] [CrossRef]
- Bowers, J.R.; Driebe, E.M.; Albrecht, V.; McDougal, L.K.; Granade, M.; Roe, C.C.; Lemmer, D.; Rasheed, J.K.; Engelthaler, D.M.; Keim, P.; et al. Improved subtyping of Staphylococcus aureus clonal complex 8 strains based on whole-genome phylogenetic analysis. mSphere 2018, 3, e00464-17. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Mrsa virulence and spread. Cell Microbiol. 2012, 14, 1513–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soge, O.O.; No, D.; Michael, K.E.; Dankoff, J.; Lane, J.; Vogel, K.; Smedley, J.; Roberts, M.C. Transmission of mdr mrsa between primates, their environment and personnel at a united states primate centre. J. Antimicrob. Chemother. 2016, 71, 2798–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, B.; Barrett, T.J.; Hunter, S.B.; Tauxe, R.V.; Force, C.D.C.P.T. Pulsenet: The molecular subtyping network for foodborne bacterial disease surveillance, united states. Emerg. Infect. Dis. 2001, 7, 382–389. [Google Scholar] [CrossRef]
- Blanc, D.S.; Magalhaes, B.; Koenig, I.; Senn, L.; Grandbastien, B. Comparison of whole genome (wg-) and core genome (cg-) mlst (bionumerics(tm)) versus snp variant calling for epidemiological investigation of pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 1729. [Google Scholar] [CrossRef]
- Zarnowiec, P.; Lechowicz, L.; Czerwonka, G.; Kaca, W. Fourier transform infrared spectroscopy (ftir) as a tool for the identification and differentiation of pathogenic bacteria. Curr. Med. Chem. 2015, 22, 1710–1718. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, H.; Lu, J.; Sun, Q.; Liu, C.; Zeng, Y.; Zhang, R. Evaluation of the ir biotyper for klebsiella pneumoniae typing and its potentials in hospital hygiene management. Microb. Biotechnol. 2021, 14, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. In CLSI Document M100S, 31st ed.; CLSI: Wayne, PA, USA, 2021. [Google Scholar]
- Li, X.; Zhu, L.; Wang, X.; Li, J.; Tang, B. Evaluation of ir biotyper for lactiplantibacillus plantarum typing and its application potential in probiotic preliminary screening. Front. Microbiol. 2022, 13, 823120. [Google Scholar] [CrossRef]
- Schaumburg, F.; Pauly, M.; Anoh, E.; Mossoun, A.; Wiersma, L.; Schubert, G.; Flammen, A.; Alabi, A.S.; Muyembe-Tamfum, J.J.; Grobusch, M.P.; et al. Staphylococcus aureus complex from animals and humans in three remote African regions. Clin. Microbiol. Infect. 2015, 21, 345.e1–345.e8. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.C. Livestock-associated staphylococcus aureus: The united states experience. PLoS Pathog. 2015, 11, e1004564. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, E.J.; Hong, J.S.; Choi, M.H.; Kim, H.S.; Kim, Y.R.; Kim, Y.A.; Uh, Y.; Shin, K.S.; Shin, J.H.; et al. Major bloodstream infection-causing bacterial pathogens and their antimicrobial resistance in South Korea, 2017–2019: Phase i report from kor-glass. Front. Microbiol. 2021, 12, 799084. [Google Scholar] [CrossRef]
- Kang, G.S.; Jung, Y.H.; Kim, H.S.; Lee, Y.S.; Park, C.; Lee, K.J.; Cha, J.O. Prevalence of major methicillin-resistant Staphylococcus aureus clones in Korea between 2001 and 2008. Ann. Lab. Med. 2016, 36, 536–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.H.; Hsueh, P.R.; Chung, D.R.; Ko, K.S.; Kang, C.I.; Peck, K.R.; Yeom, J.S.; Kim, S.W.; Chang, H.H.; Kim, Y.S.; et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: An ansorp study. J. Antimicrob. Chemother. 2011, 66, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel de Araujo, F.; Pirolo, M.; Monaco, M.; Del Grosso, M.; Ambretti, S.; Lombardo, D.; Cassetti, T.; Gargiulo, R.; Riccobono, E.; Visca, P.; et al. Virulence determinants in Staphylococcus aureus clones causing osteomyelitis in Italy. Front. Microbiol. 2022, 13, 846167. [Google Scholar] [CrossRef]
- Jamrozy, D.; Misra, R.; Xu, Z.; Ter-Stepanyan, M.M.; Kocharyan, K.S.; Cave, R.; Hambardzumyan, A.D.; Mkrtchyan, H.V. Novel methicillin-resistant Staphylococcus aureus cc8 clone identified in a hospital setting in Armenia. Front. Microbiol. 2019, 10, 1592. [Google Scholar] [CrossRef]
- Lombardo, D.; Cordovana, M.; Deidda, F.; Pane, M.; Ambretti, S. Application of fourier transform infrared spectroscopy for real-time typing of Acinetobacter baumannii outbreak in intensive care unit. Future Microbiol. 2021, 16, 1239–1250. [Google Scholar] [CrossRef]
- Zloch, M.; Pomastowski, P.; Maslak, E.; Monedeiro, F.; Buszewski, B. Study on molecular profiles of Staphylococcus aureus strains: Spectrometric approach. Molecules 2020, 25, 4894. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the mec Element in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Johnson, W.M.; Tyler, S.D.; Ewan, E.P.; Ashton, F.E.; Pollard, D.R.; Rozee, K.R. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Strain Type | Methicillin-Resistance | mecA | mecC | SCCmec | TSST-1 | PVL | spa Type |
---|---|---|---|---|---|---|---|---|
SA01 | ST72 | R | P | N | IV | N | N | t324 |
SA02 | ST5 | R | P | N | II | P | N | t2460 |
SA03 | ST72 | S | N | N | - | N | N | t126 |
SA04 | ST5 | R | P | N | II | P | N | t2460 |
SA05 | ST72 | S | N | N | - | N | N | t126 |
SA06 | ST5 | R | P | N | II | P | N | t002 |
SA07 | ST8 | R | P | N | IV | N | P | t008 |
SA08 | ST72 | S | N | N | N | N | N | t126 |
SA09 | ST8 | R | P | N | IV | N | P | t008 |
SA10 | ST5 | R | P | N | II | P | N | t2460 |
SA11 | ST5 | R | P | N | II | N | N | t2460 |
SA12 | ST8 | R | P | N | IV | N | P | t008 |
SA13 | ST72 | R | P | N | IV | N | N | t324 |
SA14 | ST8 | S | N | N | - | N | N | t008 |
SA15 | ST8 | S | N | N | - | N | N | t008 |
SA16 | ST72 | R | P | N | IV | P | N | t324 |
SA17 | ST8 | S | N | N | - | N | N | t008 |
SA18 | ST5 | S | N | N | - | N | N | t688 |
SA19 | ST5 | R | P | N | II | N | N | t002 |
SA20 | ST188 | R | P | N | V | N | N | t189 |
SA21 | ST188 | R | P | N | IV | N | N | t189 |
SA22 | ST188 | R | P | N | V | N | N | t189 |
SA23 | ST5 | S | N | N | - | N | N | t688 |
SA24 | ST5 | S | N | N | - | N | N | t688 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.S.; Kim, D.; Jeong, S.H. Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains. Antibiotics 2022, 11, 909. https://doi.org/10.3390/antibiotics11070909
Hong JS, Kim D, Jeong SH. Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains. Antibiotics. 2022; 11(7):909. https://doi.org/10.3390/antibiotics11070909
Chicago/Turabian StyleHong, Jun Sung, Dokyun Kim, and Seok Hoon Jeong. 2022. "Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains" Antibiotics 11, no. 7: 909. https://doi.org/10.3390/antibiotics11070909
APA StyleHong, J. S., Kim, D., & Jeong, S. H. (2022). Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains. Antibiotics, 11(7), 909. https://doi.org/10.3390/antibiotics11070909