Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences
Abstract
:1. Introduction
2. Protein Binding: General Principles
3. Effect of Plasma Protein Binding on Antibiotics
3.1. Pharmacokinetics
3.2. Pharmacodynamics
4. Methodologies for Determining PPB
5. Assessment of Protein Binding of Antibiotics in the Serum and Plasma across Species
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Benet, L.Z.; Hoener, B. Changes in Plasma Protein Binding Have Little Clinical Relevance. Clin. Pharmacol. Ther. 2002, 71, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Di, L.; Kerns, E.H. The Effect of Plasma Protein Binding on In Vivo Efficacy: Misconceptions in Drug Discovery. Nat. Rev. Drug Discov. 2010, 9, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wright, M.; Hop, C.E.C.A. Rational Use of Plasma Protein and Tissue Binding Data in Drug Design: Miniperspective. J. Med. Chem. 2014, 57, 8238–8248. [Google Scholar] [CrossRef] [PubMed]
- Wasan, K.M.; Cassidy, S.M. Role of Plasma Lipoproteins in Modifying the Biological Activity of Hydrophobic Drugs. J. Pharm. Sci. 1998, 87, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Tozer, T.N.; Rowland, M. Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; ISBN 978-0-7817-5149-0. [Google Scholar]
- Filip, Z.; Jan, K.; Vendula, S.; Jana, K.Z.; Kamil, M.; Kamil, K. Albumin and A1-Acid Glycoprotein: Old Acquaintances. Expert Opin. Drug Metab. Toxicol. 2013, 9, 943–954. [Google Scholar] [CrossRef]
- Bertucci, C.; Domenici, E. Reversible and Covalent Binding of Drugs to Human Serum Albumin: Methodological Approaches and Physiological Relevance. Curr. Med. Chem. 2002, 9, 1463–1481. [Google Scholar] [CrossRef]
- Fournier, T.; Medjoubi-N, N.; Porquet, D. Alpha-1-Acid Glycoprotein. Biochim. Biophys. Acta 2000, 1482, 157–171. [Google Scholar] [CrossRef]
- Kremer, J.M.; Wilting, J.; Janssen, L.H. Drug Binding to Human Alpha-1-Acid Glycoprotein in Health and Disease. Pharmacol. Rev. 1988, 40, 1–47. [Google Scholar]
- Wanat, K. Biological Barriers, and the Influence of Protein Binding on the Passage of Drugs across Them. Mol. Biol. Rep. 2020, 47, 3221–3231. [Google Scholar] [CrossRef] [Green Version]
- Di, L. An Update on the Importance of Plasma Protein Binding in Drug Discovery and Development. Expert Opin. Drug Discov. 2021, 16, 1453–1465. [Google Scholar] [CrossRef]
- Choi, Y.H.; Zhang, C.; Liu, Z.; Tu, M.-J.; Yu, A.-X.; Yu, A.-M. A Novel Integrated Pharmacokinetic-Pharmacodynamic Model to Evaluate Combination Therapy and Determine In Vivo Synergism. J. Pharmacol. Exp. Ther. 2021, 377, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Diamantstein, L.; Yoseph, G.; Gruzman, G.; Rubinovitch, B.; Barzilai, A.; Keller, N. The Effect of Albumin Globulin, Pus and Dead Bacteria in Aerobic and Anaerobic Conditions on the Antibacterial Activity of Moxifloxacin, Trovafloxacin and Ciprofloxacin against Streptococcus Pneumoniae, Staphylococcus Aureus and Escherichia Coli. Clin. Microbiol. Infect. 2000, 6, 678–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeitlinger, M.; Sauermann, R.; Fille, M.; Hausdorfer, J.; Leitner, I.; Muller, M. Plasma Protein Binding of Fluoroquinolones Affects Antimicrobial Activity. J. Antimicrob. Chemother. 2008, 61, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Musteata, F.M. Calculation of Normalized Drug Concentrations in the Presence of Altered Plasma Protein Binding. Clin. Pharmacokinet. 2012, 51, 55–68. [Google Scholar] [CrossRef]
- Celestin, M.N.; Musteata, F.M. Impact of Changes in Free Concentrations and Drug-Protein Binding on Drug Dosing Regimens in Special Populations and Disease States. J. Pharm. Sci. 2021, 110, 3331–3344. [Google Scholar] [CrossRef] [PubMed]
- Bergogne-Bérézin, E. Clinical Role of Protein Binding of Quinolones. Clin. Pharmacokinet. 2002, 41, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Schley, J.; MÜLler-Oerlinghausen, B. Investigation of the Binding of Various Tricyclic Neuroleptics and Antidepressants to A1-Acid Glycoprotein. J. Pharm. Pharmacol. 2011, 38, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Kerkay, J.; Westphal, U. Steroid-Protein XIX. Complex Formation between A1-Acid Steroid Hormones. Biochim. Biophys. Acta BBA-Gen. Subj. 1968, 170, 324–333. [Google Scholar] [CrossRef]
- Toutain, P.L.; Bousquet-Melou, A. Free Drug Fraction vs Free Drug Concentration: A Matter of Frequent Confusion. J. Vet. Pharmacol. Ther. 2002, 25, 460–463. [Google Scholar] [CrossRef]
- Bailey, D.N.; Briggs, J.R. The Binding of Selected Therapeutic Drugs to Human Serum Alpha-1 Acid Glycoprotein and to Human Serum Albumin In Vitro. Ther. Drug Monit. 2004, 26, 40–43. [Google Scholar] [CrossRef]
- Scaglione, F.; Demartini, G.; Arcidiacono, M.M.; Dugnani, S.; Fraschini, F. Influence of Protein Binding on the Pharmacodynamics of Ceftazidime or Ceftriaxone against Gram-Positive and Gram-Negative Bacteria in an In Vitro Infection Model. J. Chemother. 1998, 10, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Nix, D.E.; Matthias, K.R.; Ferguson, E.C. Effect of Ertapenem Protein Binding on Killing of Bacteria. Antimicrob. Agents Chemother. 2004, 48, 3419–3424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeitlinger, M.A.; Sauermann, R.; Traunmüller, F.; Georgopoulos, A.; Müller, M.; Joukhadar, C. Impact of Plasma Protein Binding on Antimicrobial Activity Using Time–Killing Curves. J. Antimicrob. Chemother. 2004, 54, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.D.; Cameron, G.L.; Mullins, P.R. Anomalous Effect of Serum on the Antimicrobial Activity of Cefoperazone. Drugs 1981, 22 (Suppl. S1), 52–59. [Google Scholar] [CrossRef] [PubMed]
- Leggett, J.E.; Craig, W.A. Enhancing Effect of Serum Ultrafiltrate on the Activity of Cephalosporins against Gram-Negative Bacilli. Antimicrob. Agents Chemother. 1989, 33, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.L. Mechanism of Action and Target Identification: A Matter of Timing in Drug Discovery. iScience 2020, 23, 101487. [Google Scholar] [CrossRef]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of Pharmacokinetic/Pharmacodynamic (PK/PD) Terminology for Anti-Infective Drugs: An Update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Schuck, E.; Kumar, V.; Burkhardt, O.; Derendorf, H. Integration of Pharmacokinetic/Pharmacodynamic Modeling and Simulation in the Development of New Anti-Infective Agents-Minimum Inhibitory Concentration versus Time-Kill Curves. Expert Opin. Drug Discov. 2007, 2, 849–860. [Google Scholar] [CrossRef]
- Schuck, E.L.; Derendorf, H. Pharmacokinetic/Pharmacodynamic Evaluation of Anti-Infective Agents. Expert Rev. Anti-Infect. Ther. 2005, 3, 361–373. [Google Scholar] [CrossRef]
- Veronese, F.M.; Bevilacqua, R.; Boccù, E.; Benassi, C.A. Drug-Protein Interaction: The Binding of Cephalosporins to Albumins. Il Farm. Ed. Sci. 1977, 32, 303–310. [Google Scholar]
- Svensson, C.K.; Woodruff, M.N.; Baxter, J.G.; Lalka, D. Free Drug Concentration Monitoring in Clinical Practice. Rationale and Current Status. Clin. Pharmacokinet. 1986, 11, 450–469. [Google Scholar] [CrossRef] [PubMed]
- Riond, J.L.; Riviere, J.E. Doxycycline Binding to Plasma Albumin of Several Species. J. Vet. Pharmacol. Ther. 1989, 12, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.; Sachdeva, M.; Chambers, H.F. Effect of Protein Binding of Daptomycin on MIC and Antibacterial Activity. Antimicrob. Agents Chemother. 1991, 35, 2505–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, S.M.; Kang, S.L.; Cappelletty, D.M.; Rybak, M.J. Bactericidal Killing Activities of Cefepime, Ceftazidime, Cefotaxime, and Ceftriaxone against Staphylococcus Aureus and Beta-Lactamase-Producing Strains of Enterobacter Aerogenes and Klebsiella Pneumoniae in an In Vitro Infection Model. Antimicrob. Agents Chemother. 1995, 39, 1764–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, M.P.; Nakahiro, R.K.; Chin, A.; Bedikian, A. Cefepime Clinical Pharmacokinetics: Clin. Pharmacokinet. 1993, 25, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.W.; Duroux, M.H.; Gambertoglio, J.G.; Barriere, S.L.; Guglielmo, B.J. Effect of Protein Binding on Serum Bactericidal Activities of Ceftazidime and Cefoperazone in Healthy Volunteers. Antimicrob. Agents Chemother. 1988, 32, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Esmieu, F.; Guibert, J.; Rosenkilde, H.C.; Ho, I.; Go, A.L. Pharmacokinetics of Cefotaxime in Normal Human Volunteers. J. Antimicrob. Chemother. 1980, 6, 83–92. [Google Scholar] [CrossRef]
- Popick, A.C.; Crouthamel, W.G.; Bekersky, I. Plasma Protein Binding of Ceftriaxone. Xenobiotica 1987, 17, 1139–1145. [Google Scholar] [CrossRef]
- Bassler, M.; Blaschke, H.; Just, M.; Daschner, F.D. Effect of Ceftriaxone on Pseudomonas aeruginosa and Staphylococcus aureus in Broth, Serum, and in Combination with Human Polymorphonuclear Leukocytes. Chemotherapy 1982, 28, 390–396. [Google Scholar] [CrossRef]
- Schmidt, S.; Röck, K.; Sahre, M.; Burkhardt, O.; Brunner, M.; Lobmeyer, M.T.; Derendorf, H. Effect of Protein Binding on the Pharmacological Activity of Highly Bound Antibiotics. Antimicrob. Agents Chemother. 2008, 52, 3994–4000. [Google Scholar] [CrossRef] [Green Version]
- Sevillano, D.; Giménez, M.J.; Alou, L.; Aguilar, L.; Cafini, F.; Torrico, M.; González, N.; Echeverría, O.; Coronel, P.; Prieto, J. Effects of Human Albumin and Serum on the In Vitro Bactericidal Activity of Cefditoren against Penicillin-Resistant Streptococcus Pneumoniae. J. Antimicrob. Chemother. 2007, 60, 156–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellington, K.; Curran, M.P. Cefditoren Pivoxil: A Review of Its Use in the Treatment of Bacterial Infections. Drugs 2004, 64, 2597–2618. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Karlowsky, J.A.; Davidson, R.J.; Hoban, D.J. Effect of Pooled Human Cerebrospinal Fluid on the Postantibiotic Effects of Cefotaxime, Ciprofloxacin, and Gentamicin against Escherichia Coli. Antimicrob. Agents Chemother. 1992, 36, 1136–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunin, C.M. Clinical Pharmacology of the New Penicillins: I. The Importance of Serum Protein Binding in Determining Antimicrobial Activity and Concentration in Serum. Clin. Pharmacol. Ther. 1966, 7, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Schneider, E.K.; Huang, J.X.; Cooper, M.A.; Li, J.; Velkov, T. The Plasma Protein Binding Proteome of Ertapenem: A Novel Compound-Centric Proteomic Approach for Elucidating Drug–Plasma Protein Binding Interactions. ACS Chem. Biol. 2016, 11, 3353–3364. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A. Contribution of Immunocompetence to the Antibacterial Activities of Ciprofloxacin and Moxifloxacin in an In Vitro Pharmacodynamic Model*. Infection 2005, 33, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Laue, H.; Valensise, T.; Seguin, A.; Hawser, S.; Lociuro, S.; Islam, K. Effect of Human Plasma on the Antimicrobial Activity of Iclaprim In Vitro. J. Antimicrob. Chemother. 2007, 60, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Cafini, F.; Aguilar, L.; González, N.; Giménez, M.J.; Torrico, M.; Alou, L.; Sevillano, D.; Vallejo, P.; Prieto, J. In Vitro Effect of the Presence of Human Albumin or Human Serum on the Bactericidal Activity of Daptomycin against Strains with the Main Resistance Phenotypes in Gram-Positives. J. Antimicrob. Chemother. 2007, 59, 1185–1189. [Google Scholar] [CrossRef]
- Cha, R. Influence of Protein Binding under Controlled Conditions on the Bactericidal Activity of Daptomycin in an In Vitro Pharmacodynamic Model. J. Antimicrob. Chemother. 2004, 54, 259–262. [Google Scholar] [CrossRef]
- Torrico, M.; Giménez, M.J.; González, N.; Alou, L.; Sevillano, D.; Cafini, F.; Prieto, J.; Cleeland, R.; Aguilar, L. Bactericidal Activity of Daptomycin versus Vancomycin in the Presence of Human Albumin against Vancomycin-Susceptible but Tolerant Methicillin-Resistant Staphylococcus Aureus (MRSA) with Daptomycin Minimum Inhibitory Concentrations of 1–2 μg/mL. Int. J. Antimicrob. Agents 2010, 35, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Dykhuizen, R.S.; Harvey, G.; Stephenson, N.; Nathwani, D.; Gould, I.M. Protein Binding and Serum Bactericidal Activities of Vancomycin and Teicoplanin. Antimicrob. Agents Chemother. 1995, 39, 1842–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, J.; Wagner, C.C.; Zeitlinger, M. Protein Binding of Antimicrobials: Methods for Quantification and for Investigation of Its Impact on Bacterial Killing. AAPS J. 2009, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscher, B.; Laakso, S.; Mascher, H.; Pusecker, K.; Doig, M.; Dillen, L.; Wagner-Redeker, W.; Pfeifer, T.; Delrat, P.; Timmerman, P. Bioanalysis for Plasma Protein Binding Studies in Drug Discovery and Drug Development: Views and Recommendations of the European Bioanalysis Forum. Bioanalysis 2014, 6, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholtan, W. Methods of determination and theoretical principles of the serum protein binding of drugs (author’s transl). Arzneimittelforschung 1978, 28, 1037–1047. [Google Scholar] [PubMed]
- Oravcová, J.; Böhs, B.; Lindner, W. Drug-Protein Binding Sites. New Trends in Analytical and Experimental Methodology. J. Chromatogr. B Biomed. Appl. 1996, 677, 1–28. [Google Scholar] [CrossRef]
- Sebille, B. Methods of Drug Protein Binding Determinations. Fundam. Clin. Pharmacol. 1990, 4 (Suppl. S2), 151s–161s. [Google Scholar] [CrossRef]
- Wright, J.D.; Boudinot, F.D.; Ujhelyi, M.R. Measurement and Analysis of Unbound Drug Concentrations. Clin. Pharmacokinet. 1996, 30, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Tambe, V.; Pande, S.; Gadeval, A.; Rajpoot, K.; Raval, N.; Tekade, R.K. Microdialysis: An Emerging Technique for Pharmacokinetic–Pharmacodynamic Profiling. In Biopharmaceutics and Pharmacokinetics Considerations; Elsevier: Amsterdam, Netherlands, 2021; pp. 601–616. ISBN 978-0-12-814425-1. [Google Scholar]
- Joukhadar, C.; Müller, M. Microdialysis: Current Applications in Clinical Pharmacokinetic Studies and Its Potential Role in the Future. Clin. Pharmacokinet. 2005, 44, 895–913. [Google Scholar] [CrossRef]
- Stahl, M.; Bouw, R.; Jackson, A.; Pay, V. Human Microdialysis. Curr. Pharm. Biotechnol. 2002, 3, 165–178. [Google Scholar] [CrossRef]
- Verbeeck, R.K. Blood Microdialysis in Pharmacokinetic and Drug Metabolism Studies. Adv. Drug Deliv. Rev. 2000, 45, 217–228. [Google Scholar] [CrossRef]
- Heinze, A.; Holzgrabe, U. Determination of the Extent of Protein Binding of Antibiotics by Means of an Automated Continuous Ultrafiltration Method. Int. J. Pharm. 2006, 311, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Whitlam, J.B.; Brown, K.F. Ultrafiltration in Serum Protein Binding Determinations. J. Pharm. Sci. 1981, 70, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xue, J.; Shao, J.; Jia, L. Compilation of 222 Drugs’ Plasma Protein Binding Data and Guidance for Study Designs. Drug Discov. Today 2012, 17, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y. Protein Binding. In Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 105–120. ISBN 978-0-306-46234-4. [Google Scholar]
- Kurz, H.; Trunk, H.; Weitz, B. Evaluation of Methods to Determine Protein-Binding of Drugs. Equilibrium Dialysis, Ultrafiltration, Ultracentrifugation, Gel Filtration. Arzneimittelforschung 1977, 27, 1373–1380. [Google Scholar] [PubMed]
- Lin, Z.J.; Musiano, D.; Abbot, A.; Shum, L. In Vitro Plasma Protein Binding Determination of Flunarizine Using Equilibrium Dialysis and Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2005, 37, 757–762. [Google Scholar] [CrossRef]
- Wan, H.; Rehngren, M. High-Throughput Screening of Protein Binding by Equilibrium Dialysis Combined with Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A 2006, 1102, 125–134. [Google Scholar] [CrossRef]
- Zeitlinger, M.A.; Derendorf, H.; Mouton, J.W.; Cars, O.; Craig, W.A.; Andes, D.; Theuretzbacher, U. Protein Binding: Do We Ever Learn? Antimicrob. Agents Chemother. 2011, 55, 3067–3074. [Google Scholar] [CrossRef] [Green Version]
- Ojha, S.; Gaikwad, S.T.; Suthar, T.; Gavane, A. Microbial Bioconversion of Poultry Waste: Value Added Products. Indian J. Pure Appl. Biosci. 2020, 8, 165–173. [Google Scholar] [CrossRef]
- Hage, D.S. Chromatographic and Electrophoretic Studies of Protein Binding to Chiral Solutes. J. Chromatogr. A 2001, 906, 459–481. [Google Scholar] [CrossRef]
- Nakai, D.; Kumamoto, K.; Sakikawa, C.; Kosaka, T.; Tokui, T. Evaluation of the Protein Binding Ratio of Drugs by a Micro-Scale Ultracentrifugation Method. J. Pharm. Sci. 2004, 93, 847–854. [Google Scholar] [CrossRef]
- Bohnert, T.; Gan, L.-S. Plasma Protein Binding: From Discovery to Development. J. Pharm. Sci. 2013, 102, 2953–2994. [Google Scholar] [CrossRef] [PubMed]
- Isbell, J.; Yuan, D.; Torrao, L.; Gatlik, E.; Hoffmann, L.; Wipfli, P. Plasma Protein Binding of Highly Bound Drugs Determined With Equilibrium Gel Filtration of Nonradiolabeled Compounds and LC-MS/MS Detection. J. Pharm. Sci. 2019, 108, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadhav, S.; Kumbhar, S.; Bhatia, M. Gel Permeation Chromatographic Method for Drug Protein Binding Studies. Marmara Pharm. J. 2017, 21, 938–948. [Google Scholar] [CrossRef] [Green Version]
- McCallum, M.M.; Pawlak, A.J.; Shadrick, W.R.; Simeonov, A.; Jadhav, A.; Yasgar, A.; Maloney, D.J.; Arnold, L.A. A Fluorescence-Based High Throughput Assay for the Determination of Small Molecule−human Serum Albumin Protein Binding. Anal. Bioanal. Chem. 2014, 406, 1867–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, E.M.; Rybak, M.J.; Kaatz, G.W. Comparative Effect of Protein Binding on the Killing Activities of Teicoplanin and Vancomycin. Antimicrob. Agents Chemother. 1991, 35, 1089–1092. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Gonzalez, D.; Derendorf, H. Significance of Protein Binding in Pharmacokinetics and Pharmacodynamics. J. Pharm. Sci. 2010, 99, 1107–1122. [Google Scholar] [CrossRef]
- Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species Differences between Mouse, Rat, Dog, Monkey and Human CYP-Mediated Drug Metabolism, Inhibition and Induction. Expert Opin. Drug Metab. Toxicol. 2006, 2, 875–894. [Google Scholar] [CrossRef]
- Martinez, M.N. Factors Influencing the Use and Interpretation of Animal Models in the Development of Parenteral Drug Delivery Systems. AAPS J. 2011, 13, 632–649. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H. Species Similarities and Differences in Pharmacokinetics. Drug Metab. Dispos. 1995, 23, 1008–1021. [Google Scholar]
- Casal, M.; Haskins, M. Large Animal Models and Gene Therapy. Eur. J. Hum. Genet. EJHG 2006, 14, 266–272. [Google Scholar] [CrossRef]
- Poggesi, I. Predicting Human Pharmacokinetics from Preclinical Data. Curr. Opin. Drug Discov. Dev. 2004, 7, 100–111. [Google Scholar]
- Davies, B.; Morris, T. Physiological Parameters in Laboratory Animals and Humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Walton, K.; Dorne, J.L.C.M.; Renwick, A.G. Species-Specific Uncertainty Factors for Compounds Eliminated Principally by Renal Excretion in Humans. Food Chem. Toxicol. 2004, 42, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, T.; Hasegawa, T.; Johno, I.; Kitazawa, S. Protein Binding of Cefpiramide in the Plasma of Various Species. J. Pharm. Pharmacol. 1991, 43, 805–806. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Hatano, K.; Higashi, Y.; Mine, Y.; Nakamoto, S.; Tawara, S.; Kamimura, T.; Matsumoto, F.; Kuwahara, S. Animal Pharmacokinetics of FK037, a Novel Parenteral Broad-Spectrum Cephalosporin. J. Antibiot. 1993, 46, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Kita, Y.; Yamazaki, T.; Imada, A. Comparative Pharmacokinetics of SCE-2787 and Related Antibiotics in Experimental Animals. Antimicrob. Agents Chemother. 1992, 36, 2481–2486. [Google Scholar] [CrossRef] [Green Version]
- Kita, Y.; Fugono, T.; Imada, A. Comparative Pharmacokinetics of Carumonam and Aztreonam in Mice, Rats, Rabbits, Dogs, and Cynomolgus Monkeys. Antimicrob. Agents Chemother. 1986, 29, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Wittendorf, R.W.; Swagzdis, J.E.; Gifford, R.; Mico, B.A. Protein Binding of Glycopeptide Antibiotics with Diverse Physical-Chemical Properties in Mouse, Rat, and Human Serum. J. Pharmacokinet. Biopharm. 1987, 15, 5–13. [Google Scholar] [CrossRef]
- Arhin, F.F.; Belley, A.; McKay, G.; Beaulieu, S.; Sarmiento, I.; Parr, T.R.; Moeck, G. Assessment of Oritavancin Serum Protein Binding across Species. Antimicrob. Agents Chemother. 2010, 54, 3481–3483. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Kirkpatrick, I.D.; Hoban, D.J.; Kabani, A.M.; Karlowsky, J.A. Influence of Human Serum on Pharmacodynamic Properties of an Investigational Glycopeptide, LY333328, and Comparator Agents against Staphylococcus Aureus. Antimicrob. Agents Chemother. 1998, 42, 2427–2430. [Google Scholar] [CrossRef] [Green Version]
Antibiotic Class | Antibiotic | Plasma Protein Binding % (Drug Concentration) | Protein Preparation | Medium | Techniques for Protein Quantification | Susceptibility Test/s | Pathogens | References |
---|---|---|---|---|---|---|---|---|
Cephalosporin | Cefepime Ceftazidime Cefotaxime Ceftriaxone | 19% 21% 38% 84–96% (70–300 µg/mL) | HA (4 g/dL) | SMHB | NA | Time–kill curves, MIC, MBEC | E. aerogenes K. pneumoniae S. aureus | [35,36,37,38,39] |
Ceftriaxone | 84–96% (70–300 µg/mL) | 20% Human serum | BHI | NA | Time–kill curves | S. aureus P. aeruginosa | [38,40] | |
Ceftriaxone Ertapenem | HA 76.8 ± 11.0%; BSA, 20.2 ± 8.3%; HSA 56.9 ± 16.6%, HA 73.8 ± 11.6%; BSA 12.4 ± 4.8%; HSA 17.8 ± 11.5% | BSA and HSA (40 g/L) | MHB, THB + 5% CO2 | in vitro microdialysis | MIC, time–kill curve | E. coli S. pneumoniae | [41] | |
Cefditoren | 88% | 90% HS, 4 g/dL HA | MHB | NA | Time–kill curve | S. pneumoniae | [42,43] | |
Cefotaxime | 10–40% (0.5–32 µg/mL) | 90% Pooled human CSF | CAMHB | NA | MIC | E. coli | [38,44] | |
Ceftriaxone, Cefoperazone, Moxalactam, Ceftizoxime | 92.2% 89.7% 63.8% 29.4% | HA (0, 2.5, or 5% solution), heat-inactivated HA (0, 25, 50, or 95%) (95% Human Serum) | MHB | Equilibrium dialysis | MIC, MBEC | S. aureus E. coli P. aeruginosa K. pneumoniae | [26] | |
Penicillin | Ampicillin, Oxacillin | 20% 60–94% | 40 g/L human albumin | MHB | NA | Time–kill curve | S. aureus | [24,45] |
Carbapenem | Ertapenem | 85–95% (50–300 µg/mL) | 50% pooled human plasma | TSB. CAMHB | Surface Plasmon Resonance (SPR) assay | MIC | S. aureus | [46] |
Fluoroquinolones | Ciprofloxacin | 20–40% (2 µg/mL) | 90% pooled human CSF | CAMHB | NA | MIC | E. coli | [17,44] |
Moxifloxacin, Trovafloxacin | 38% (0.2–5 µg/mL) 77% (0.2–5 µg/mL) | HS (20%, 70%, 100%), HA (4%, 8%, 12%, 16%) | MHB | Ultrafiltration | MIC | S. aureus P. aeruginosa | [14] | |
Ciprofloxacin, Moxifloxacin | 20–40% (2 µg/mL) 26–30% (1–5 µg/mL) | rat polyvinyl sponge model | BHI, RPMI 1640 (for cells) | NA | Viable cell count | P. aeruginosa S. pneumoniae | [14,17,47] | |
Moxifloxacin Ciprofloxacin Trovafloxacin | 20–40% (2 µg/mL) 26–30% (1–5 µg/mL) 77% (0.2–5 µg/mL) | HA 10%, 30%, 50% | MHB | NA | MIC | S. pneumoniae S. aureus E. coli | [13,14,17] | |
Diaminopyrimidine | Iclaprim | 93% | 50% HP | MHB | NA | MIC | S. aureus | [48] |
Cyclic lipopeptide | Daptomycin | 91.7% | 90% HS 4 g/dL HA | MHB | NA | Time–kill curves | S. pneumoniae E. faecium | [34,49] |
Daptomycin | 91.7% | 50% HS | MHB | NA | MIC, time–kill curve | S. aureus E. faecium | [34,50] | |
Daptomycin | 91.7% | 4 g/dL HA | CAMHB | NA | Time–kill curves | MRSA | [34,51] | |
Glycopeptide | Vancomycin | 36.9% | 4 g/dL HA | Cation-adjusted MHB | NA | Time–kill curves | MRSA | [51,52] |
Technique/Method | Principle | Advantages | Drawbacks/Issues | References |
---|---|---|---|---|
Ultrafiltration | Plasma water and unbound drug is forced through a semipermeable filter, retaining protein–drug complexes |
|
| [57,58,63,64,65,66] |
Equilibrium dialysis | Separated by a semipermeable membrane, unbound drug diffuses from plasma into protein-free buffer, until equilibrium is reached |
|
| [56,58,60,65,66,67,68,69] |
Microdialysis | Dialysate buffer is driven through an embedded probe, having a microdialysis membrane. Unbound drug disperses from blood into dialysate |
|
| [41,56,58,61,62] |
Ultracentrifugation | Dissociation of protein and low-molecular-weight components occurs only by gravitation (centrifugation) |
|
| [55,56,65,67,70] |
Gel filtration | The free and not the total drug concentration is the independent variable. |
|
| [71] |
Chromatographic methods | Chromatographic methods include a range of techniques, based on separation of substances (including the bound and unbound fraction of an antibiotic) on the basis of different physical or chemical properties such as molecular size, charge, affinity etc. |
|
| [72] |
Fluorescence spectroscopy | Higher energy photons are used to excite a sample, which then emit lower energy photons. The change in fluorescence at changing ligand/protein concentrations is used to calculate the concentration of bound drug. |
|
| [56] |
For Serum (% Bound) | ||||||||
---|---|---|---|---|---|---|---|---|
Antibiotic | Concentration (µg/mL) | Human | Dog | Rat | Mouse | Rabbit | Monkey | References |
Cefotetan # | 91.0 | 39 | 30 | [86] | ||||
Cefpirmide # | 15 | 98.4 | 40 | 87.4 | 92.9 | [87] | ||
Ceftriaxone # | 100 | 92.7 | 20 | 79.5 | 93.7 | [39] | ||
Cefpirome | 30 | 5.8 | 6.8 | 15.8 | 11.6 | 10.3 | [88] | |
Ceftazidime | 30 | 11.9 | 9.5 | 17.6 | 11.9 | 17.6 | [88] | |
Cefzopran | 20 | 8.1 | 10.4 | 6.4 | 7.1 | 9.8 | 10.9 | [89] |
Cefclidin | 20 | 8.5 | 8.5 | 10.4 | 9.8 | 7.3 | 8.1 | [89] |
Carumonam | 20 | 28 | 11 | 36 | 20 | 21 | 24 | [90] |
Ristocetin | 4–120 | 73.1 | 56.1 | 53.5 | [91] | |||
Oritavancin | 82 | 82.4 | 85.3 | [92] | ||||
Oritavancin # | 87.5 | 80 | [93] | |||||
Vancomycin | 4–100 | 34.6 | 23.4 | 17.3 | [91] | |||
Mannosylaglycone | 6–170 | 72.8 | 87.9 | 88.3 | [91] | |||
Ardacinaglycone | 6–180 | 91.5 | 96.7 | 92.1 | [91] | |||
Ardacin A | 6–190 | 97 | 97.2 | 94.6 | [91] | |||
Ardacin B | 6–210 | 98.7 | 98.5 | 97.4 | [91] | |||
Ardacin C | 6–210 | 99.6 | 99.5 | 99.1 | [91] | |||
Pseudoaglycone | 6–190 | 99.4 | 99.1 | 99 | [91] | |||
Aztreonam | 20 | 62 | 20 | 85 | 46 | 45 | 53 | [90] |
Wilcoxon matched-pairs signed rank test | ||||||||
Number of pairs with human values | 9 | 19 | 15 | 8 | 4 | |||
p-value | * (0.0195) | NS (0.8059) | * (0.0353) | NS (0.3750) | NS (0.5000) |
For Serum (% Binding Ratio) | |||||
---|---|---|---|---|---|
Antibiotic | Human/Dog | Human/Rat | Human/Mouse | Human/Rabbit | Human/Monkey |
Cefotetan # | 2.3 | 3.0 | |||
Cefpiramide # | 2.5 | 1.2 | 1.1 | ||
Ceftriaxone # | 4.6 | 1.2 | 1.0 | ||
Cefpirome | 0.8 | 0.4 | 0.5 | 0.6 | |
Ceftazidime | 1.2 | 0.7 | 1.0 | 0.7 | |
Cefzopran | 0.8 | 1.3 | 1.1 | 0.8 | 0.7 |
Cefclidin | 1.0 | 0.8 | 0.9 | 1.2 | 1.0 |
Carumonam | 2.5 | 0.8 | 1.4 | 1.3 | 1.2 |
Ristocetin | 1.3 | 1.4 | |||
Oritavancin | 1.0 | 1.0 | |||
Oritavancin # | 1.1 | ||||
Vancomycin | 1.5 | 2.0 | |||
Mannosylaglycone | 0.8 | 0.8 | |||
Ardacinaglycone | 0.9 | 1.0 | |||
Ardacin A | 1.0 | 1.0 | |||
Ardacin B | 1.0 | 1.0 | |||
Ardacin C | 1.0 | 1.0 | |||
Pseudoaglycone | 1.0 | 1.0 | |||
Aztreonam | 3.1 | 0.7 | 1.3 | 1.3 | 1.2 |
Means difference analysis | |||||
Number of pairs with human values | 9 | 19 | 15 | 8 | 4 |
Mean | 1.96 | 1.09 | 1.09 | 1 | 1.02 |
Standard deviation | 1.30 | 0.53 | 0.33 | 0.27 | 0.24 |
Range | 0.8–4.6 | 0.4–3.0 | 0.5–2.0 | 0.6–1.3 | 0.7–1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.; Bergmann, F.; Zeitlinger, M. Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences. Antibiotics 2022, 11, 923. https://doi.org/10.3390/antibiotics11070923
Ahmed H, Bergmann F, Zeitlinger M. Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences. Antibiotics. 2022; 11(7):923. https://doi.org/10.3390/antibiotics11070923
Chicago/Turabian StyleAhmed, Hifza, Felix Bergmann, and Markus Zeitlinger. 2022. "Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences" Antibiotics 11, no. 7: 923. https://doi.org/10.3390/antibiotics11070923
APA StyleAhmed, H., Bergmann, F., & Zeitlinger, M. (2022). Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences. Antibiotics, 11(7), 923. https://doi.org/10.3390/antibiotics11070923