The Production of Antibiotics Must Be Reoriented: Repositioning Old Narrow-Spectrum Antibiotics, Developing New Microbiome-Sparing Antibiotics
Abstract
:1. Introduction and Literature Review
1.1. A Brief History of Antibiotics and Antibiotic Therapy
1.2. The Development of Wide-Spectrum Antibiotics with the Aim of Targeting Multi-Resistant Bacteria Is an Obsolete Business Model
1.3. Financial and Institutional Measures Have Allowed the Introduction of New Broad-Spectrum Molecules but Are Not a Sustainable Strategy in the Medium Term
2. Methodology
3. Results
3.1. How to Reposition the Different Antibiotics and Define Research and Production Needs
3.1.1. Producing New Drugs
3.1.2. Repositioning Old Antibiotics
3.1.3. Promoting the Use of Old Narrow-Spectrum Antibiotics
3.2. Narrow-Spectrum Antibiotics with “Targeted Microbiome-Sparing Antibiotics” Could Help Control Antibiotic Resistance while Remaining Economically Sustainable
3.3. Supporting Companies to Develop and Produce Targeted Microbiome-Sparing Antibiotics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- De Kraker, M.E.A.; Wolkewitz, M.; Davey, P.G.; Koller, W.; Berger, J.; Nagler, J.; Icket, C.; Kalenic, S.; Horvatic, J.; Seifert, H.; et al. Clinical Impact of Antimicrobial Resistance in European Hospitals: Excess Mortality and Length of Hospital Stay Related to Methicillin-Resistant Staphylococcus Aureus Bloodstream Infections. Antimicrob. Agents Chemother. 2011, 55, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 7 May 2022).
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the Mechanisms and Drivers of Antimicrobial Resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A Systematic Review and Meta-Analysis of the Effects of Antibiotic Consumption on Antibiotic Resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Andremont, A.; Brun-Buisson, C.; Struelens, M. Evaluating and Predicting the Ecologic Impact of Antibiotics. Clin. Microbiol. Infect. 2001, 7 (Suppl. 5), 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bretonnière, C.; Leone, M.; Milési, C.; Allaouchiche, B.; Armand-Lefevre, L.; Baldesi, O.; Bouadma, L.; Decré, D.; Figueiredo, S.; Gauzit, R.; et al. Strategies to Reduce Curative Antibiotic Therapy in Intensive Care Units (Adult and Paediatric). Intensive Care Med. 2015, 41, 1181–1196. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The Global Preclinical Antibacterial Pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. [Google Scholar] [CrossRef] [Green Version]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 7 May 2022).
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of Antibiotic Stewardship on the Incidence of Infection and Colonisation with Antibiotic-Resistant Bacteria and Clostridium Difficile Infection: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Shlaes, D.M. The Economic Conundrum for Antibacterial Drugs. Antimicrob. Agents Chemother. 2019, 64, e02057-19. [Google Scholar] [CrossRef]
- Årdal, C.; Baraldi, E.; Theuretzbacher, U.; Outterson, K.; Plahte, J.; Ciabuschi, F.; Røttingen, J.-A. Insights into Early Stage of Antibiotic Development in Small- and Medium-Sized Enterprises: A Survey of Targets, Costs, and Durations. J. Pharm. Policy Pract. 2018, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Gould, K. Antibiotics: From Prehistory to the Present Day. J. Antimicrob. Chemother. 2016, 71, 572–575. [Google Scholar] [CrossRef]
- Gradmann, C. Re-Inventing Infectious Disease: Antibiotic Resistance and Drug Development at the Bayer Company 1945-80. Med. Hist. 2016, 60, 155–180. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Tommasi, R.; Brown, D.G.; Walkup, G.K.; Manchester, J.I.; Miller, A.A. ESKAPEing the Labyrinth of Antibacterial Discovery. Nat. Rev. Drug Discov. 2015, 14, 529–542. [Google Scholar] [CrossRef]
- Havers, F.P.; Hicks, L.A.; Chung, J.R.; Gaglani, M.; Murthy, K.; Zimmerman, R.K.; Jackson, L.A.; Petrie, J.G.; McLean, H.Q.; Nowalk, M.P.; et al. Outpatient Antibiotic Prescribing for Acute Respiratory Infections During Influenza Seasons. JAMA Netw. Open 2018, 1, e180243. [Google Scholar] [CrossRef]
- Erdem, H.; Hargreaves, S.; Ankarali, H.; Caskurlu, H.; Ceviker, S.A.; Bahar-Kacmaz, A.; Meric-Koc, M.; Altindis, M.; Yildiz-Kirazaldi, Y.; Kizilates, F.; et al. Managing Adult Patients with Infectious Diseases in Emergency Departments: International ID-IRI Study. J. Chemother. 2021, 33, 302–318. [Google Scholar] [CrossRef]
- Seale, A.C.; Gordon, N.C.; Islam, J.; Peacock, S.J.; Scott, J.A.G. AMR Surveillance in Low and Middle-Income Settings—A Roadmap for Participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Res. 2017, 2, 92. [Google Scholar] [CrossRef]
- Wang, M.; Earley, M.; Chen, L.; Hanson, B.M.; Yu, Y.; Liu, Z.; Salcedo, S.; Cober, E.; Li, L.; Kanj, S.S.; et al. Clinical Outcomes and Bacterial Characteristics of Carbapenem-Resistant Klebsiella Pneumoniae Complex among Patients from Different Global Regions (CRACKLE-2): A Prospective, Multicentre, Cohort Study. Lancet Infect. Dis. 2022, 22, 401–412. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.-A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of Multidrug-Resistant Organisms among Patients with Bacteremia in Intensive Care Units: An International ID-IRI Survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef] [PubMed]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. Available online: https://www.who.int/publications/i/item/9789240027336 (accessed on 7 May 2022).
- Abbott, I.J.; Peel, T.N.; Cairns, K.A.; Stewardson, A.J. Antibiotic Management of UTI in the Post-Antibiotic Era: A Narrative Review Highlighting Diagnostic and Antimicrobial Stewardship. Clin. Microbiol. Infect. 2022. [Google Scholar] [CrossRef] [PubMed]
- Abbara, S.; Pitsch, A.; Jochmans, S.; Hodjat, K.; Cherrier, P.; Monchi, M.; Vinsonneau, C.; Diamantis, S. Impact of a Multimodal Strategy Combining a New Standard of Care and Restriction of Carbapenems, Fluoroquinolones and Cephalosporins on Antibiotic Consumption and Resistance of Pseudomonas Aeruginosa in a French Intensive Care Unit. Int. J. Antimicrob. Agents 2019, 53, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F.; et al. Elaboration of a Consensual Definition of De-Escalation Allowing a Ranking of β-Lactams. Clin. Microbiol. Infect. 2015, 21, 649.e1–649.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klug, D.M.; Idiris, F.I.M.; Blaskovich, M.A.T.; von Delft, F.; Dowson, C.G.; Kirchhelle, C.; Roberts, A.P.; Singer, A.C.; Todd, M.H. There Is No Market for New Antibiotics: This Allows an Open Approach to Research and Development. Wellcome Open Res. 2021, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. WHO 2020 Report on the Antibacterial Production and Development Pipeline. Lancet Microbe 2021, 2, e239. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/ears-net (accessed on 7 May 2022).
- Gauzit, R.; Castan, B.; Bonnet, E.; Bru, J.P.; Cohen, R.; Diamantis, S.; Faye, A.; Hitoto, H.; Issa, N.; Lebeaux, D.; et al. Anti-Infectious Treatment Duration: The SPILF and GPIP French Guidelines and Recommendations. Infect. Dis. Now 2021, 51, 114–139. [Google Scholar] [CrossRef]
- Årdal, C.; Lacotte, Y.; Ploy, M.-C. Financing Pull Mechanisms for Antibiotic-Related Innovation: Opportunities for Europe. Clin. Infect. Dis. 2020, 71, 1994–1999. [Google Scholar] [CrossRef]
- Årdal, C.; Outterson, K.; Hoffman, S.J.; Ghafur, A.; Sharland, M.; Ranganathan, N.; Smith, R.; Zorzet, A.; Cohn, J.; Pittet, D.; et al. International Cooperation to Improve Access to and Sustain Effectiveness of Antimicrobials. Lancet 2016, 387, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications-detail-redirect/9789241509763 (accessed on 7 May 2022).
- McKenna, M. The Antibiotic Paradox: Why Companies Can’t Afford to Create Life-Saving Drugs. Nature 2020, 584, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Achaogen Bankruptcy Highlights Antibacterial Development Woes. Nat. Rev. Drug Discov. 2019, 18, 411. [Google Scholar] [CrossRef]
- Lupia, T.; De Benedetto, I.; Stroffolini, G.; Di Bella, S.; Mornese Pinna, S.; Zerbato, V.; Rizzello, B.; Bosio, R.; Shbaklo, N.; Corcione, S.; et al. Temocillin: Applications in Antimicrobial Stewardship as a Potential Carbapenem-Sparing Antibiotic. Antibiotics 2022, 11, 493. [Google Scholar] [CrossRef] [PubMed]
- Laterre, P.-F.; Wittebole, X.; Van de Velde, S.; Muller, A.E.; Mouton, J.W.; Carryn, S.; Tulkens, P.M.; Dugernier, T. Temocillin (6 g Daily) in Critically Ill Patients: Continuous Infusion versus Three Times Daily Administration. J. Antimicrob. Chemother. 2015, 70, 891–898. [Google Scholar] [CrossRef]
- Layios, N.; Visée, C.; Mistretta, V.; Denooz, R.; Maes, N.; Descy, J.; Frippiat, F.; Marchand, S.; Grégoire, N. Modelled Target Attainment after Temocillin Treatment in Severe Pneumonia: Systemic and Epithelial Lining Fluid Pharmacokinetics of Continuous versus Intermittent Infusions. Antimicrob. Agents Chemother. 2022, 66, e0205221. [Google Scholar] [CrossRef] [PubMed]
- ESCMID Sore Throat Guideline Group; Pelucchi, C.; Grigoryan, L.; Galeone, C.; Esposito, S.; Huovinen, P.; Little, P.; Verheij, T. Guideline for the Management of Acute Sore Throat. Clin. Microbiol. Infect. 2012, 18 (Suppl. 1), 1–28. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Bernard, P.; Chosidow, O.; Vaillant, L.; French Erysipelas Study Group. Oral Pristinamycin versus Standard Penicillin Regimen to Treat Erysipelas in Adults: Randomised, Non-Inferiority, Open Trial. BMJ 2002, 325, 864. [Google Scholar] [CrossRef] [Green Version]
- Alm, R.A.; Lahiri, S.D. Narrow-Spectrum Antibacterial Agents-Benefits and Challenges. Antibiotics 2020, 9, E418. [Google Scholar] [CrossRef]
- Avis, T.; Wilson, F.X.; Khan, N.; Mason, C.S.; Powell, D.J. Targeted Microbiome-Sparing Antibiotics. Drug Discov. Today 2021, 26, 2198–2203. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Enoki, Y.; Uno, S.; Uwamino, Y.; Iketani, O.; Hasegawa, N.; Matsumoto, K. Stability of Benzylpenicillin Potassium and Ampicillin in an Elastomeric Infusion Pump. J. Infect. Chemother. 2018, 24, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Dale, G.E.; Halabi, A.; Petersen-Sylla, M.; Wach, A.; Zwingelstein, C. Pharmacokinetics, Tolerability, and Safety of Murepavadin, a Novel Antipseudomonal Antibiotic, in Subjects with Mild, Moderate, or Severe Renal Function Impairment. Antimicrob. Agents Chemother. 2018, 62, e00490-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittke, F.; Vincent, C.; Chen, J.; Heller, B.; Kabler, H.; Overcash, J.S.; Leylavergne, F.; Dieppois, G. Afabicin, a First-in-Class Antistaphylococcal Antibiotic, in the Treatment of Acute Bacterial Skin and Skin Structure Infections: Clinical Noninferiority to Vancomycin/Linezolid. Antimicrob. Agents Chemother. 2020, 64, e00250-20. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Apisarnthanarak, A.; Bin Kim, H.; Moore, L.S.P.; Xiao, Y.; Singh, S.; Doi, Y.; Kwa, A.L.-H.; Ponnampalavanar, S.S.L.S.; Cao, Q.; Kim, S.-W.; et al. Utility and Applicability of Rapid Diagnostic Testing in Antimicrobial Stewardship in the Asia-Pacific Region: A Delphi Consensus. Clin. Infect. Dis. 2022, 74, 2067–2076. [Google Scholar] [CrossRef]
- Ruppé, E.; Burdet, C.; Grall, N.; de Lastours, V.; Lescure, F.-X.; Andremont, A.; Armand-Lefèvre, L. Impact of Antibiotics on the Intestinal Microbiota Needs to Be Re-Defined to Optimize Antibiotic Usage. Clin. Microbiol. Infect. 2018, 24, 3–5. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamantis, S.; Retur, N.; Bertrand, B.; Lieutier-Colas, F.; Carenco, P.; Mondain, V.; on behalf of PROMISE Professional Community Network on Antimicrobial Resistance. The Production of Antibiotics Must Be Reoriented: Repositioning Old Narrow-Spectrum Antibiotics, Developing New Microbiome-Sparing Antibiotics. Antibiotics 2022, 11, 924. https://doi.org/10.3390/antibiotics11070924
Diamantis S, Retur N, Bertrand B, Lieutier-Colas F, Carenco P, Mondain V, on behalf of PROMISE Professional Community Network on Antimicrobial Resistance. The Production of Antibiotics Must Be Reoriented: Repositioning Old Narrow-Spectrum Antibiotics, Developing New Microbiome-Sparing Antibiotics. Antibiotics. 2022; 11(7):924. https://doi.org/10.3390/antibiotics11070924
Chicago/Turabian StyleDiamantis, Sylvain, Nicolas Retur, Benjamin Bertrand, Florence Lieutier-Colas, Philippe Carenco, Véronique Mondain, and on behalf of PROMISE Professional Community Network on Antimicrobial Resistance. 2022. "The Production of Antibiotics Must Be Reoriented: Repositioning Old Narrow-Spectrum Antibiotics, Developing New Microbiome-Sparing Antibiotics" Antibiotics 11, no. 7: 924. https://doi.org/10.3390/antibiotics11070924
APA StyleDiamantis, S., Retur, N., Bertrand, B., Lieutier-Colas, F., Carenco, P., Mondain, V., & on behalf of PROMISE Professional Community Network on Antimicrobial Resistance. (2022). The Production of Antibiotics Must Be Reoriented: Repositioning Old Narrow-Spectrum Antibiotics, Developing New Microbiome-Sparing Antibiotics. Antibiotics, 11(7), 924. https://doi.org/10.3390/antibiotics11070924