A Retrospective Study of Antimicrobial Resistant Bacteria Associated with Feline and Canine Urinary Tract Infection in Hong Kong SAR, China—A Case Study on Implication of First-Line Antibiotics Use
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance in Commonly Identified Isolates in Feline and Canine Patients
2.2. Resistance of E. coli from Urine of Feline and Canine Patients to First-Line Antibiotics
2.3. E. coli Antibiotic Resistance Trend in Feline and Canine Species
3. Conclusions
4. Discussion
5. Materials and Methods
5.1. Informed Consent
5.2. Data Collection
5.3. Data Management
5.4. Collection of Urine Samples
5.5. Isolation and Identification of Bacteria
5.6. Culture and Antimicrobial Sensitivity Test
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Llor, C. and L. Bjerrum Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.B.; Guardabassi, L.; Hillier, A.; Lloyd, D.H.; Papich, M.G.; Rankin, S.C.; Turnidge, J.D. Antimicrobial Use Guidelines for Treatment of Urinary Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. Vet. Med. Int. 2011, 263768–263769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, D.J. Diagnosis and Treatment of Simple and Recurrent Urinary Tract Infections WSAVA/FECAVA/BSAVA World Congress 2012. Available online: https://www.vin.com/apputil/content/defaultadv1.aspx?id=5328239&pid=11349 (accessed on 20 August 2022).
- Lloyd, D. Development of Guidelines for Antimicrobial Use and Their Implementation. THE FECAVA SYMPOSIUM 2013 The Proper Use of Antimicrobials in Companion Animal Practice. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fecava.org/wp-content/uploads/2019/09/Winter-2013.pdf (accessed on 20 August 2022).
- Turnidge, J.; Baggoley, C.; Schipp, M.; Martin, R. Resistance sans frontieres: Containing antimicrobial resistance nationally and globally. Med. J. Aust. 2016, 204, 207–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teale, C.; Moulin, G. Prudent use guidelines: A review of existing veterinary guidelines. Rev. Sci. Et Tech.-Oie 2012, 31, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampacci, E.; Bottinelli, M.; Stefanetti, V.; Hyatt, D.R.; Sgariglia, E.; Coletti, M.; Passamonti, F. Antimicrobial susceptibility survey on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment. J. Glob. Antimicrob. Resist. 2018, 13, 192–196. [Google Scholar] [CrossRef]
- Scarborough, R.; Bailey, K.; Galgut, B.; Williamson, A.; Hardefeldt, L.; Gilkerson, J.; Browning, G. Use of local antibiogram data and antimicrobial importance ratings to select optimal empirical therapies for urinary tract infections in dogs and cats. Antibiotics 2020, 9, 924. [Google Scholar] [CrossRef]
- Page, S. Developing a global veterinary antimicrobial stewardship support programme. J. Companion Animal Pract. 2016, 21, 90–97. [Google Scholar]
- Lei, T.; Tian, W.; He, L.; Huang, X.H.; Sun, Y.X.; Deng, Y.T.; Sun, Y.; Lv, D.H.; Wu, C.M. Antimicrobial resistance in Escherichia coli isolates from food animals, animal food products and companion animals in China. Vet. Microbiol. 2010, 146, 85–89. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Chen, Y.; Huang, M.; Wang, Y.; Shen, Z.; Xia, Z.; Li, G. Antimicrobial resistance of bacterial pathogens isolated from canine urinary tract infections. Vet. Microbiol. 2020, 241, 108540. [Google Scholar] [CrossRef]
- KuKanich, K.; Lubbers, B.; Salgado, B. Amoxicillin and amoxicillin-clavulanate resistance in urinary Escherichia coli antibiograms of cats and dogs from the Midwestern United States. J. Vet. Intern. Med. 2020, 34, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Adator, E.H.; Narvaez-Bravo, C.; Zaheer, R.; Cook, S.R.; Tymensen, L.; Hannon, S.J.; Booker, C.W.; Church, D.; Read, R.R.; McAllister, T.A. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020, 8, 885. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, U.; von Lützau, A.; Schlattmann, A.; Roesler, U.; Köck, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among small companion animals in Germany. PLoS ONE 2018, 13, e0208364. [Google Scholar] [CrossRef] [Green Version]
- Naseer, U.; Olsson-Liljequist, B.E.; Woodford, N.; Dhanji, H.; Cantón, R.; Sundsfjord, A.; Lindstedt, B.-A. Multi-locus variable number of tandem repeat analysis for rapid and accurate typing of virulent multidrug resistant Escherichia coli clones. PLoS ONE 2012, 7, e41232. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.; White, J.; Lam, A. Prevalence of bacteria and changes in trends in antimicrobial resistance of Escherichia coli isolated from positive canine urinary samples from an Australian referral hospital over a 5-year period (2013–2017). Vet. Record Open 2019, 6, e000345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsch, R.; von Vopelius-Feldt, C.; Wolf, G.; Straubinger, R.K.; Hartmann, K. Feline urinary tract pathogens: Prevalence of bacterial species and antimicrobial resistance over a 10-year period. Vet. Rec. 2015, 176, 201. [Google Scholar] [CrossRef] [PubMed]
- Courtice, R.; Sniatynski, M.; Rubin, J.E. Characterization of antimicrobial-resistant Escherichia coli causing urinary tract infections in dogs: Passive surveillance in Saskatchewan, Canada 2014 to 2018. J. Vet. Intern. Med. 2021, 35, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Windahl, U.; Holst, B.S.; Nyman, A.; Grönlund, U.; Bengtsson, B. Characterisation of bacterial growth and antimicrobial susceptibility patterns in canine urinary tract infections. Bmc Vet. Res. 2014, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. Mmbr. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán Ramos, P.J.; Shiel, R.E.; Pérez, C.F.; Boeta, A.M.R.; Chamizo, M.R.P.; Aguado, J.I.B.; Duro, N.R.; Ortiz-Díez, G. Antimicrobial resistance increased over an 8-year period in Enterobacteriaceae cultured from canine urine samples. J. Small Anim. Pr. 2021, 62, 279–285. [Google Scholar] [CrossRef]
- Rzewuska, M.; Czopowicz, M.; Kizerwetter-Świda, M.; Chrobak, D.; Błaszczak, B.; Binek, M. Multidrug resistance in Escherichia coli strains isolated from infections in dogs and cats in Poland (2007–2013). Sci. World J. 2015, 2015, 408205–408208. [Google Scholar] [CrossRef] [Green Version]
- Awosile, B.B.; McClure, J.T.; Saab, M.E.; Heider, L.C. Antimicrobial resistance in bacteria isolated from cats and dogs from the Atlantic Provinces, Canada from 1994–2013. Can. Vet. J. 2018, 59, 885. [Google Scholar] [PubMed]
- Chen, Y.; Liu, Z.; Zhang, Y.; Zhang, Z.; Lei, L.; Xia, Z. Increasing prevalence of ESBL-producing multidrug resistance Escherichia coli from diseased pets in Beijing, China from 2012 to 2017. Front. Microbiol. 2019, 10, 2852. [Google Scholar] [CrossRef] [PubMed]
- Hersh, A.L.; Fleming-Dutra, K.E.; Shapiro, D.J.; Hyun, D.Y.; Hicks, L.A. Frequency of first-line antibiotic selection among US ambulatory care visits for otitis media, sinusitis, and pharyngitis. Jama Intern. Med. 2016, 176, 1870–1872. [Google Scholar] [CrossRef] [PubMed]
- Darwich, L.; Seminati, C.; Burballa, A.; Nieto, A.; Durán, I.; Tarradas, N.; Molina-López, R.A. Antimicrobial susceptibility of bacterial isolates from urinary tract infections in companion animals in Spain. Vet. Rec. 2021, 188. [Google Scholar] [CrossRef]
- Gómez-Beltrán, D.A.; Villar, D.; López-Osorio, S.; Ferguson, D.; Monsalve, L.K.; Chaparro-Gutiérrez, J.J. Prevalence of antimicrobial resistance in bacterial isolates from dogs and cats in a veterinary diagnostic laboratory in Colombia from 2016–2019. Vet. Sci. 2020, 7, 173. [Google Scholar] [CrossRef]
- Erb, A.; Stürmer, T.; Marre, R.; Brenner, H. Prevalence of antibiotic resistance in Escherichia coli: Overview of geographical, temporal, and methodological variations. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 83–90. [Google Scholar] [CrossRef]
- Cars, O.; Xiao, Y.; Lundborg, C.S.; Nilsson, L.E.; Shen, J.; Sun, Q.; Bi, Z.; Börjesson, S.; Greko, C.; Wang, Y. Building bridges to operationalise one health–a Sino-Swedish collaboration to tackle antibiotic resistance. One Health 2016, 2, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, P.; He, S.; Legido-Quigley, H. Antimicrobial Resistance Research Collaborations in Asia: Challenges and Opportunities to Equitable Partnerships. Antibiotics 2022, 11, 755. [Google Scholar] [CrossRef]
- Medina, M.-j.; Legido-Quigley, H.; Hsu, L.Y. Antimicrobial resistance in one health. In Global Health Security; Springer: Cham, Switzerland, 2020; pp. 209–229. [Google Scholar]
- Marques, C.; Menezes, J.; Belas, A.; Aboim, C.; Cavaco-Silva, P.; Trigueiro, G.; Gama, L.T.; Pomba, C. Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: Population structure, antimicrobial resistance and virulence genes. J. Antimicrob. Chemother. 2019, 74, 594–602. [Google Scholar] [CrossRef]
- Belas, A.; Menezes, J.; Gama, L.T.; Pomba, C. Sharing of Clinically Important Antimicrobial Resistance Genes by Companion Animals and Their Human Household Members. Microb. Drug Resist. 2020, 26, 1174–1185. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Frey, E. The role of companion animal veterinarians in one-health efforts to combat antimicrobial resistance. J. Am. Vet. Med Assoc. 2018, 253, 1396–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, D.H. Reservoirs of antimicrobial resistance in pet animals. Clin. Infect. Dis. 2007, 45 (Suppl. S2), S148–S152. [Google Scholar] [CrossRef] [PubMed]
- Epstein, C.; Yam, W.; Peiris, J.; Epstein, R. Methicillin-resistant commensal staphylococci in healthy dogs as a potential zoonotic reservoir for community-acquired antibiotic resistance. Infect. Genet. Evol. 2009, 9, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Nisa, S.; Bercker, C.; Midwinter, A.C.; Bruce, I.; Graham, C.F.; Venter, P.; Bell, A.; French, N.P.; Benschop, J.; Bailey, K.M. Combining MALDI-TOF and genomics in the study of methicillin resistant and multidrug resistant Staphylococcus pseudintermedius in New Zealand. Sci. Rep. 2019, 9, 1–13. [Google Scholar]
- Ribeiro, M.G.; de Morais, A.B.C.; Alves, A.C.; Bolaños, C.A.D.; de Paula, C.L.; Portilho, F.V.R.; Júnior, G.d.; Lara, G.H.B.; Martins, L.d.A.; Moraes, L.S.; et al. Klebsiella-induced infections in domestic species: A case-series study in 697 animals (1997–2019). Braz. J. Microbiol. 2022, 53, 455–464. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Pomba, C. Antimicrobial Resistance Trends in Dogs and Cats with Urinary Tract Infection. In Advances in Animal Health, Medicine and Production; Springer: Cham, Switzerland, 2020; pp. 246–264. [Google Scholar]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. Fems Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Overgaauw, P.A.; Vinke, C.M.; van Hagen, M.A.; Lipman, L.J. A one health perspective on the human–companion animal relationship with emphasis on zoonotic aspects. Int. J. Environ. Res. Public Health 2020, 17, 3789. [Google Scholar] [CrossRef]
- Santaniello, A.; Sansone, M.; Fioretti, A.; Menna, L.F. Systematic review and meta-analysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. Int. J. Environ. Res. Public Health 2020, 17, 3278. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
Canine Patients | Number and Percentage (%) of Isolates by Year | |||
---|---|---|---|---|
Isolates | 2018 | 2019 | 2020 | Total Isolates (By Bacteria) |
Escherichia coli * | 559 (37.34) | 414 (34.85) | 440 (39.32) | 1413 |
Proteus spp. * | 249 (16.63) | 234 (19.7) | 193 (17.25) | 676 |
Staphylococcus spp. | 222 (14.83) | 142 (11.95) | 144 (12.87) | 508 |
Enterococcus spp. | 142 (9.49) | 136 (11.45) | 103 (9.2) | 381 |
Klebsiella spp. * | 122 (8.15) | 102 (8.59) | 101 (9.03) | 325 |
Streptococcus spp. | 76 (5.08) | 68 (5.72) | 60 (5.36) | 204 |
Pseudomonas spp. * | 50 (3.34) | 33 (2.78) | 40 (3.57) | 123 |
Enterobacter spp. * | 17 (1.14) | 17 (1.43) | 9 (0.8) | 43 |
Citrobacter Koseri * | 10 (0.67) | Not isolated | 8 (0.71) | 18 |
Corynebacterium spp. | 7 (0.47) | 10 (0.84) | Not isolated | 17 |
Total isolates (By year) | 1454 | 1156 | 1098 | 3708 |
Feline Patients | Number and Percentage (%) of Isolates by Year | |||
---|---|---|---|---|
Isolates | 2018 | 2019 | 2020 | Total Isolates (By Bacteria) |
Escherichia coli * | 356 (48.17) | 276 (45.17) | 329 (46.67) | 961 |
Enterococcus spp. | 93 (12.58) | 103 (16.86) | 103 (14.61) | 299 |
Staphylococcus spp. | 104 (14.07) | 87 (14.24) | 106 (15.04) | 297 |
Pseudomonas spp. * | 31 (4.19) | 30 (4.91) | 38 (5.39) | 99 |
Proteus spp. * | 29 (3.92) | 28 (4.58) | 36 (5.11) | 93 |
Klebsiella spp. * | 43 (5.82) | 26 (4.26) | 38 (5.39) | 107 |
Streptococcus spp. | 27 (3.65) | 20 (3.27) | 10 (1.42) | 57 |
Enterobacter spp. * | 12 (1.62) | 13 (2.13) | 21 (2.98) | 46 |
Pasturella spp. * | 9 (1.22) | 9 (1.47) | 4 (0.57) | 22 |
Stenotrophomonas spp. * | 2 (0.27) | 3 (0.49) | 2 (0.28) | 7 |
Corynebacterium spp. | 3 (0.41) | 2 (0.33) | Not isolated | 5 |
Bacillaceae spp. | 2 (0.27) | 1 (0.16) | 1 (0.14) | 4 |
Morgenella spp. * | 1 (0.14) | 1 (0.16) | 2 (0.28) | 4 |
Serratia spp. * | 2 (0.27) | 1 (0.16) | 1 (0.14) | 4 |
Acinetobacter junii * | 1 (0.14) | 1 (0.16) | 1 (0.14) | 3 |
Actinomyces spp. | Not isolated | 1 (0.16) | 1 (0.14) | 2 |
Aerococcus viridans | Not isolated | 1 (0.16) | Not isolated | 1 |
Total isolates (By year) | 715 | 603 | 693 | 2011 |
Bacterial Resistance to Antibiotics (%) in Feline Patients | Bacterial Resistance to Antibiotics (%) in Canine Patients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotic categories | Antibiotics | E. coli | Enterococcus spp. | Klebsiella spp. | Pseudomonas spp. | Staphylococcus spp. | E. coli | Enterococcus spp. | Klebsiella spp. | Proteus spp. | Staphylococcus spp. |
Aminoglycosides | Gentamicin | 12 | 98 | 42 | 22 | 16 | 16 | 100 | 24 | 8 | 38 |
Amikacin | |||||||||||
Carbapenems | Imipenem | 2 | 9 | 16 | |||||||
Meropenem | 38 | 2 | 8 | 16 | 30 | 20 | |||||
Cephalosporins | Cephalexin | 18 | 98 | 62 | 99 | 17 | 22 | 97 | 36 | 11 | 19 |
Cefovecin | 16 | 97 | 59 | 96 | 17 | 20 | 98 | 32 | 9 | 19 | |
Cefopodoxime | 17 | 98 | 61 | 98 | 18 | 21 | 99 | 32 | 9 | 19 | |
Ceftriaxone | 14 | 96 | 50 | 90 | 17 | 18 | 96 | 28 | 7 | 19 | |
Cephalothin | 19 | 96 | 62 | 96 | 17 | 24 | 97 | 37 | 10 | 19 | |
Fluoroquinolones | Ciprofloxacin | 14 | 42 | 59 | 29 | 15 | 21 | 30 | 34 | 10 | 24 |
Enrofloxacin | 14 | 42 | 60 | 34 | 18 | 22 | 32 | 34 | 15 | 22 | |
Marbofloxacin | 14 | 44 | 58 | 32 | 17 | 21 | 32 | 34 | 6 | 23 | |
Ofloxacin | 14 | 44 | 58 | 34 | 19 | 21 | 34 | 34 | 7 | 22 | |
Penicillins/Beta-lactamase inhibitors | Ticarcillin-clavulanic acid | 6 | 40 | 36 | 19 | 18 | 8 | 36 | 22 | 1 | 19 |
Piperacillin-tazobactam | 12 | 2 | 4 | 1 | |||||||
Penicillin | Amoxicillin | 47 | 28 | 98 | 99 | 60 | 50 | 24 | 96 | 22 | 78 |
Amoxicillin-clavulanate | 7 | 28 | 38 | 99 | 16 | 10 | 24 | 26 | 8 | 28 | |
Ampicillin | 48 | 28 | 98 | 99 | 60 | 52 | 24 | 96 | 21 | 78 | |
Penicillin | 22 | 4 | 58 | 19 | 70 | ||||||
Methicillin | |||||||||||
Oxacillin | 17 | 19 | |||||||||
Floxacillin | 12 | 4 | 2 | ||||||||
Piperacillin | 4 | 38 | 8 | 4 | 20 | 4 | |||||
Chloramphenicol | 10 | 24 | 50 | 99 | 14 | 12 | 26 | 30 | 30 | 26 | |
Doxycycline | 23 | 38 | 50 | 88 | 17 | 24 | 42 | 37 | 98 | 60 | |
Nitrofurantoin | 1 | 18 | 58 | 99 | 3 | 10 | 44 | 99 | 1 | ||
Trimethoprim-sulfamethoxazine | 14 | 97 | 52 | 90 | 17 | 22 | 95 | 38 | 28 | 36 | |
Rifampicin | 17 | ||||||||||
Vancomycin | 2 | ||||||||||
Mupirocin | 2 | ||||||||||
Clindamycin | 71 | 65 | 73 | 73 | 18 | 70 | 64 | 68 | 64 | 30 | |
Fusidic | 2 | 5 |
Resistant Isolates by Number (%) and Species | |||
---|---|---|---|
No of Antimicrobial Class | Total No. of Isolates (%) | Feline No. of Isolates (%) | Canine No. of Isolates (%) |
0 | 477 (8.14%) | 243 (11.78%) | 234 (6.15%) |
1 | 1324 (22.59%) | 524 (25.5%) | 800 (21.03%) |
2 | 843 (14.39%) | 260 (12.65%) | 583 (15.33%) |
3 | 912 (15.56%) | 237 (11.53%) | 675 (17.74%) |
4 | 598 (10.2%) | 183 (8.91%) | 415 (10.91%) |
5 | 498 (8.5%) | 145 (7.06%) | 353 (9.28%) |
6 | 387 (6.6%) | 141 (6.86%) | 246 (6.47%) |
7 | 367 (6.26%) | 134 (6.52%) | 233 (6.13%) |
8 | 307 (5.24%) | 118 (5.74%) | 189 (4.97%) |
9 | 131 (2.24%) | 65 (3.16%) | 66 (1.74%) |
10 | 16 (0.27%) | 6 (0.29%) | 10 (0.26%) |
Feline | Canine | |||
---|---|---|---|---|
Recommended Antibiotics by Classes | Resistance Percentage | Recommended Antibiotics by Classes | Resistance Percentage | |
First-line antibiotics | Amoxicillin for lower UTI | 40% | Amoxicillin for lower UTI | 40% |
Trimethoprim-sulfate for lower UTI | 15% | Trimethoprim-sulfate for lower UTI | 20% | |
Fluoroquinolone for pyelonephritis * | 15% | Fluoroquinolone for pyelonephritis * | 20% | |
Non first-line antibiotics | Ceftriazone ** | 15% | Ceftriazone ** | 20% |
Cefopodoxime ** | 15% | Cefopodoxime ** | 20% | |
Cefovecin ** | 15% | Cefovecin ** | 20% | |
Ofloxacin * | 15% | Ofloxacin * | 20% | |
Marbofloxacin * | 15% | Marbofloxacin * | 20% | |
Enrofloxacin * | 15% | Enrofloxacin * | 20% | |
Ciprofloxacin * | 15% | Ciprofloxacin * | 20% | |
Chloramphenicol | 15% | Chloramphenicol | 10% | |
Doxycycline | 40% | Doxycycline | 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, O.S.K.; Baranger-Ete, M.; Lam, W.W.T.; Wu, P.; Yeung, M.; Lee, E.; Bond, H.; Swan, O.; Tun, H.M. A Retrospective Study of Antimicrobial Resistant Bacteria Associated with Feline and Canine Urinary Tract Infection in Hong Kong SAR, China—A Case Study on Implication of First-Line Antibiotics Use. Antibiotics 2022, 11, 1140. https://doi.org/10.3390/antibiotics11091140
Chan OSK, Baranger-Ete M, Lam WWT, Wu P, Yeung M, Lee E, Bond H, Swan O, Tun HM. A Retrospective Study of Antimicrobial Resistant Bacteria Associated with Feline and Canine Urinary Tract Infection in Hong Kong SAR, China—A Case Study on Implication of First-Line Antibiotics Use. Antibiotics. 2022; 11(9):1140. https://doi.org/10.3390/antibiotics11091140
Chicago/Turabian StyleChan, Olivia S. K., Myriam Baranger-Ete, Wendy W. T. Lam, Peng Wu, Michelle Yeung, Elaine Lee, Helen Bond, Owen Swan, and Hein Min Tun. 2022. "A Retrospective Study of Antimicrobial Resistant Bacteria Associated with Feline and Canine Urinary Tract Infection in Hong Kong SAR, China—A Case Study on Implication of First-Line Antibiotics Use" Antibiotics 11, no. 9: 1140. https://doi.org/10.3390/antibiotics11091140
APA StyleChan, O. S. K., Baranger-Ete, M., Lam, W. W. T., Wu, P., Yeung, M., Lee, E., Bond, H., Swan, O., & Tun, H. M. (2022). A Retrospective Study of Antimicrobial Resistant Bacteria Associated with Feline and Canine Urinary Tract Infection in Hong Kong SAR, China—A Case Study on Implication of First-Line Antibiotics Use. Antibiotics, 11(9), 1140. https://doi.org/10.3390/antibiotics11091140