The Role of Bezlotoxumab for the Prevention of Recurrent Clostridioides difficile Infections: A Review of the Current Literature and Paradigm Shift after 2021
Abstract
:1. Introduction
2. Methods
3. Background
4. Trials Referenced in the 2021 Focused Guideline Update
5. Trials Not Included in the 2021 Focused CDI Guideline Update
5.1. Studies from the MODIFY Trials
5.2. Real-World Trials
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Emerging Infections Program Clostridioides difficile Infection Working Group. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States 2019. December 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 22 July 2022).
- Heinrich, K.; Harnett, J.; Vietri, J.; Chambers, R.; Yu, H.; Zilberberg, M. Impaired quality of life, work, and activities among adults with Clostridium difficile infection: A multinational survey. Dig. Dis. Sci. 2018, 63, 2864–2873. [Google Scholar] [CrossRef]
- Lurienne, L.; Bandinelli, P.A.; Galvain, T.; Coursel, C.A.; Oneto, C.; Feuerstadt, P. Perception of quality of life in people experiencing or having experienced a Clostridioides difficile infection: A US population survey. J. Patient-Rep. Outcomes 2020, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Sheitoyan-Pesant, C.; Chakra, C.N.A.; Pépin, J.; Marcil-Héguy, A.; Nault, V.; Valiquette, L. Clinical and healthcare burden of multiple recurrences of Clostridium difficile infection. Clin. Infect. Dis. 2016, 62, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.W.; Arora, R.; Schlackman, J.L.; Shutt, K.A.; Curry, S.R.; Harrison, L.H. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J. Clin. Microbiol. 2012, 50, 4078–4082. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Bedi, P.; Bumrah, K.; Singh, J.; Rai, M.; Seelam, S. Updates in Treatment of Recurrent Clostridium difficile Infection. J. Clin. Med. Res. 2019, 11, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Tsigrelis, C. Recurrent Clostridioides difficile infection: Recognition, management, prevention. Clevel. Clin. J. Med. 2020, 87, 347–359. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 2021, 73, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.R.; Fischer, M.; Allegretti, J.R.; LaPlante, K.; Stewart, D.B.; Limketkai, B.N.; Stollman, N.H. ACG clinical guidelines: Prevention, diagnosis, and treatment of Clostridioides difficile infections. Am. J. Gastroenterol. 2021, 116, 1124–1147. [Google Scholar] [CrossRef]
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B.S. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 2013, 108, 478–499; quiz 499. [Google Scholar] [CrossRef] [PubMed]
- Fehér, C.; Rubio, E.M.; Amador, P.M.; Garcia-Campero, A.D.-I.; Salavert, M.; Merino, E.; Garrido, E.M.; Díaz-Brito, V.; Álvarez, M.J.; Mensa, J. The efficacy of fidaxomicin in the treatment of Clostridium difficile infection in a real-world clinical setting: A Spanish multi-centre retrospective cohort. Eur. J. Clin. Microbiol. 2017, 36, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.D.; Brown, S.; Edwards, L.; Gnanarajah, D.; Howard, P.; Jenkins, D.; Nayar, D.; Pásztor, M.; Oliver, S.; Planche, T.; et al. The impact of the introduction of fidaxomicin on the management of Clostridium difficile infection in seven NHS secondary care hospitals in England: A series of local service evaluations. Eur. J. Clin. Microbiol. Infect Dis. 2016, 35, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Mikamo, H.; Aoyama, N.; Sawata, M.; Fujimoto, G.; Dorr, M.B.; Yoshinari, T. The effect of bezlotoxumab for prevention of recurrent Clostridium difficile infection (CDI) in Japanese patients. J. Infect. Chemother. 2018, 24, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Pichenot, M.; Héquette-Ruz, R.; Le Guern, R.; Grandbastien, B.; Charlet, C.; Wallet, F.; Schiettecatte, S.; Loeuillet, F.; Guery, B.; Galperine, T. Fidaxomicin for treatment of Clostridium difficile infection in clinical practice: A prospective cohort study in a French University Hospital. Infection 2017, 45, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Merck & Co., Inc. Zinplava (Bezlotoxumab) [Package Insert]; Merck & Co., Inc.: Country Carlow, Ireland, 2016. [Google Scholar]
- Alonso, C.D.; Mahoney, M.V. Bezlotoxumab for the prevention of Clostridium difficile infection: A review of current evidence and safety profile. Infect. Drug Resist. 2018, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Denève, C.; Janoir, C.; Poilane, I.; Fantinato, C.; Collignon, A. New trends in Clostridium difficile virulence and pathogenesis. Int. J. Antimicrob. Agents 2009, 33, S24–S28. [Google Scholar] [CrossRef]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Bezlotoxumab: A Review in Preventing Clostridium difficile Infection Recurrence. Drugs 2017, 77, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G. Bezlotoxumab—A New Agent for Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.P.; Rood, J.I.; Lyras, D. The role of toxin A and toxin B in Clostridium difficile-associated disease: Past and present perspectives. Gut Microbes 2010, 1, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Ooijevaar, R.E.; van Beurden, Y.H.; Terveer, E.M.; Goorhuis, A.; Bauer, M.P.; Keller, J.J.; Mulder, C.J.J.; Kuijper, E.J. Update of treatment algorithms for Clostridium difficile infection. Clin. Microbiol. Infect. 2018, 24, 452–462. [Google Scholar] [CrossRef]
- Navalkele, B.D.; Chopra, T. Bezolotoxumab: An emerging monoclonal antibody therapy for prevention of Clostridium difficile infection. Biologics 2018, 12, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.L.; Kleijn, H.J.; Kerbusch, T.; Matthews, R.P.; Dorr, M.B.; Garey, K.W.; Wrishko, R.E. Population Pharmacokinetics and Pharmacodynamics of Bezlotoxumab in Adults with Primary and Recurrent Clostridium difficile Infection. Antimicrob. Agents Chemother. 2019, 63, e01971-18. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Zinplava Assessment Report; European Medicines Agency: London, UK, 2016; Available online: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004136/WC500222643.pdf (accessed on 5 June 2022).
- Giacobbe, D.R.; Dettori, S.; Di Bella, S.; Vena, A.; Granata, G.; Luzzati, R.; Petrosillo, N.; Bassetti, M. Bezlotoxumab for preventing recurrent Clostridioides difficile infection: A narrative review from pathophysiology to clinical studies. Infect. Dis. Ther. 2020, 9, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Kahl, A.; Yu, K.; DuPont, A.W. Recent advances in the treatment of Clostridioides difficile infection: The ever-changing guidelines. Fac Rev. 2020, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.L.; Kleijn, H.J.; Zajic, S.; Dorr, M.B.; Wrishko, R.E. A time-to-event analysis of the exposure-response relationship for bezlotoxumab concentrations and CDI recurrence. J. Pharmacokinet. Pharmacodyn. 2020, 47, 121–130. [Google Scholar] [CrossRef]
- Bezlotoxumab. In Drug Facts and Comparisons (Facts and Comparisons eAnswers) [AUHSOP Intranet]. St. Louis: Wolters Kluwer Clinical Drug Information [updated 2022 May 23, cited 2022 June 29]. [about 3 p.]. Available online: https://online.lexi.com/lco/action/doc/retrieve/docid/patch_f/6330293?cesid=1DJBV1QWHtW&searchUrl=%2Flco%2Faction%2Fsearch%3Fq%3Dbezlotoxumab%26t%3Dname%26acs%3Dtrue%26acq%3Dbezloto (accessed on 5 June 2022).
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef]
- Gerding, D.N.; Kelly, C.P.; Rahav, G.; Lee, C.; Dubberke, E.R.; Kumar, P.N.; Yacyshyn, B.; Kao, D.; Eves, K.; Ellison, M.C.; et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection in patients at increased risk for recurrence. Clin. Infect. Dis. 2018, 67, 649–656. [Google Scholar] [CrossRef]
- Birch, T.; Golan, Y.; Rizzardini, G.; Jensen, E.; Gabryelski, L.; Guris, D.; Dorr, M.B. Efficacy of bezlotoxumab based on timing of administration relative to start of antibacterial therapy for Clostridium difficile infection. J. Antimicrob. Chemother. 2018, 73, 2524–2528. [Google Scholar] [CrossRef] [PubMed]
- Oksi, J.; Aalto, A.; Säilä, P.; Partanen, T.; Anttila, V.J.; Mattila, E. Real-world efficacy of bezlotoxumab for prevention of recurrent Clostridium difficile infection: A retrospective study of 46 patients in five university hospitals in Finland. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Hengel, R.L.; Ritter, T.E.; Nathan, R.V.; Van Anglen, L.J.; Schroeder, C.P.; Dillon, R.J.; Marcella, S.W.; Garey, K.W. Real-world experience of bezlotoxumab for prevention of Clostridioides difficile infection: A retrospective multicenter cohort study. Open Forum. Infect. Dis. 2020, 7, ofaa097. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Prabhu, V.S.; Dorr, M.B.; Golan, Y.; Dubberke, E.R.; Cornely, O.A.; Heimann, S.M.; Pedley, A.; Xu, R.; Hanson, M.E.; et al. Bezlotoxumab is associated with a reduction in cumulative inpatient-days: Analysis of the hospitalization data from the MODIFY I and II clinical trials. Open Forum. Infect. Dis. 2018, 5, ofy218. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; Cornely, O.A.; Ramos-Martinez, A.; Plesniak, R.; Ellison, M.C.; Hanson, M.E.; Dorr, M.B. Analysis of C. difficile infection-related outcomes in European participants in the bezlotoxumab MODIFY I and II trials. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, M.; Son, C.; Cantu, S.; Chemaly, R.F.; Dickman, J.; Dubberke, E.; Engles, L.; Lafferty, T.; Liddell, G.; Lesperance, M.E.; et al. Hospital-onset Clostridium difficile infection rates in persons with cancer or hematopoietic stem cell transplant: A C3IC network report. Infect. Control Hosp. Epidemiol. 2012, 33, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Reveles, I.A.; Cabello, F.T.; Reveles, K.R. Poorer outcomes among cancer patients diagnosed with Clostridium difficile infections in United States community hospitals. BMC Infect. Dis. 2017, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Miller, M.A.; Fantin, B.; Mullane, K.; Kean, Y.; Gorbach, S. Resolution of Clostridium difficile associated diarrhea in patients with cancer treated with fidaxomicin or vancomycin. J. Clin. Oncol. 2013, 31, 2493–2499. [Google Scholar] [CrossRef]
- Chung, M.S.; Kim, J.; Kang, J.O.; Pai, H. Impact of malignancy on Clostridium difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Tariq, R.; Frank, R.D.; Jean, G.W.; Beg, M.S.; Pardi, D.S.; Johnson, D.H.; Khanna, S. Trends in the incidence and outcomes of hospitalized cancer patients with Clostridium difficile infection: A nationwide analysis. J. Natl. Compr. Cancer Netw. 2017, 15, 466–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornely, O.A.; Mullane, K.M.; Birch, T.; Hazan-Steinberg, S.; Nathan, R.; Bouza, E.; Calfee, D.P.; Ellison, M.C.; Wong, M.T.; Dorr, M.B. Exploratory evaluation of bezlotoxumab on outcomes associated with Clostridioides difficile infection in MODIFY I/II participants with cancer. Open Forum. Infect. Dis. 2020, 7, ofaa038. [Google Scholar] [CrossRef] [PubMed]
- Dubberke, E.R.; Gerding, D.N.; Kelly, C.P.; Garey, K.W.; Rahav, G.; Mosley, A.; Tipping, R.; Dorr, M.B. Efficacy of bezlotoxumab in participants receiving metronidazole, vancomycin, or fidaxomicin for treatment of Clostridioides (Clostridium) difficile infection. Open Forum. Infect. Dis. 2020, 7, ofaa157. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, V.S.; Cornely, O.A.; Golan, Y.; Dubberke, E.R.; Heimann, S.M.; Hanson, M.E.; Liao, J.; Pedley, A.; Dorr, M.B.; Marcella, S. Thirty-day readmissions in hospitalized patients who received bezlotoxumab with antibacterial drug treatment for Clostridium difficile infection. Clin. Infect. Dis. 2017, 65, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.C.; Citron, D.M.; Gerding, D.N. Bezlotoxumab for the prevention of recurrent Clostridioides difficile infection: 12-month observational data from the randomized phase III trial, MODIFY II. Clin. Infect. Dis. 2020, 71, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Sanchez, R.; García, A.M.; Fernández, S.G.; Alijo, A.V.; Pitarch, M.T.; De Lucas, E.M.; Rojas, A.G.; Martínez, A.R.; Lletí, M.S.; Giner, L.; et al. Fidaxomicin monotherapy versus standard therapy combined with bezlotoxumab for treating patients with Clostridioides difficile infection at high risk of recurrence: A matched cohort study. J. Antimicrob. Chemother. 2022, 77, 1996–2002. [Google Scholar] [CrossRef]
- Escudero-Sánchez, R.; Ruíz-Ruizgómez, M.; Fernández-Fradejas, J.; Fernández, S.G.; Samperio, M.O.; Yuste, A.C.; Alijo, A.V.; Díaz-Pollán, B.; Hernández, M.J.R.; De Lucas, E.M.; et al. Real-world experience with bezlotoxumab for prevention of recurrence of Clostridioides difficile infection. J. Clin. Med. 2020, 10, 2. [Google Scholar] [CrossRef]
- Askar, S.F.; Kenney, R.M.; Tariq, Z.; Conner, R.; Williams, J.; Ramesh, M.; Alangaden, G.J. Bezlotoxumab for prevention of recurrent Clostridioides difficile infection with a focus on immunocompromised patients. J. Pharm. Pract. 2022. [Google Scholar] [CrossRef]
- Johnson, T.M.; Molina, K.C.; Howard, A.H.; Schwarz, K.; Allen, L.; Huang, M.; Bajrovic, V.; Miller, M.A. Real-world comparison of bezlotoxumab to standard of care therapy for prevention of recurrent Clostridioides difficile infection in patients at high risk for recurrence. Clin. Infect. Dis. 2022, 74, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.M.; Howard, A.H.; Miller, M.A.; Allen, L.L.; Huang, M.; Molina, K.C.; Bajrovic, V. Effectiveness of bezlotoxumab for prevention of recurrent Clostridioides difficile infection among transplant recipients. Open Forum. Infect. Dis. 2021, 8, ofab294. [Google Scholar] [CrossRef]
- Olmedo, M.; Kestler, M.; Valerio, M.; Padilla, B.; González, C.R.; Chamorro, E.; Machado, M.; Álvarez-Uría, A.; Alcalá, L.; Muñoz, P.; et al. Bezlotoxumab in the treatment of Clostridioides difficile infections: A real-life experience. Rev. Esp. Quimioter. 2022, 35, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Sánchez, R.; Valencia-Alijo, A.; Cuéllar Tovar, S.; Merino-de Lucas, E.; García Fernández, S.; Gutiérrez-Rojas, Á.; Ramos-Martínez, A.; Salavert Lletí, M.; Castro Hernández, I.; Giner, L.; et al. Real-life experience with fidaxomicin in Clostridioides difficile infection: A multicentre cohort study on 244 episodes. Infection 2021, 49, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Revolinski, S.L.; Munoz-Price, L.S. Clostridium difficile in immunocompromised hosts: A review of epidemiology, risk factors, treatment, and prevention. Clin. Infect. Dis. 2019, 68, 2144–2153. [Google Scholar] [CrossRef]
- Johnson, S.; Louie, T.J.; Gerding, D.N.; Cornely, O.A.; Chasan-Taber, S.; Fitts, D.; Gelone, S.P.; Broom, C.; Davidson, D.M.; Polymer Alternative for CDI Treatment (PACT) Investigators. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: Results from two multinational, randomized, controlled trials. Clin. Infect. Dis. 2014, 59, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Zar, F.A.; Bakkanagari, S.R.; Moorthi, K.M.; Davis, M.B. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin. Infect. Dis. 2007, 45, 302–307. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.-K. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef]
- Cornely, O.A.; Crook, D.W.; Esposito, R.; Poirier, A.; Somero, M.S.; Weiss, K.; Sears, P.; Gorbach, S. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: A double-blind, non-inferiority, randomised controlled trial. Lancet Infect. Dis. 2012, 12, 281–289. [Google Scholar] [CrossRef]
- Guery, B.; Menichetti, F.; Anttila, V.-J.; Adomakoh, N.; Aguado, J.M.; Bisnauthsing, K.; Georgopali, A.; Goldenberg, S.D.; Karas, A.; Kazeem, G.; et al. Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): A randomised, controlled, open-label, phase 3b/4 trial. Lancet Infect. Dis. 2018, 18, 296–307. [Google Scholar] [CrossRef]
- Mikamo, H.; Tateda, K.; Yanagihara, K.; Kusachi, S.; Takesue, Y.; Miki, T.; Oizumi, Y.; Gamo, K.; Hashimoto, A.; Toyoshima, J.; et al. Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative phase III study in Japan. J. Infect. Chemother. 2018, 24, 744–752. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, W.I.; Bloom, C.I.; Moore, S.; Chung, E.; Marzella, N. Bezlotoxumab (zinplava) for Clostridium difficile infection: The first monoclonal antibody approved to prevent the recurrence of a bacterial infection. P T 2017, 42, 735–738. [Google Scholar]
- Salavert, M.; Cobo, J.; Pascual, Á.; Aragón, B.; Maratia, S.; Jiang, Y.; Aceituno, S.; Grau, S. Cost-effectiveness analysis of bezlotoxumab added to standard of care versus standard of care alone for the prevention of recurrent Clostridium difficile infection in high-risk patients in Spain. Adv. Ther. 2018, 35, 1920–1934. [Google Scholar] [CrossRef]
- Prabhu, V.S.; Dubberke, E.R.; Dorr, M.B.; Elbasha, E.; Cossrow, N.; Jiang, Y.; Marcella, S. Cost-effectiveness of bezlotoxumab compared with placebo for the prevention of recurrent Clostridium difficile infection. Clin. Infect. Dis. 2018, 66, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
American College of Gastroenterology Guidelines | |
2013 | Not addressed since bezlotoxumab was not available |
2021 | Bezlotoxumab should be considered for prevention of CDI recurrence in patients who are at high risk of recurrence. * (Conditional recommendation, moderate quality of evidence) |
Rationale |
|
Infectious Diseases Society of America/Society for Healthcare Epidemiology of America Guidelines | |
2017 | These guidelines note the availability of BEZ, but specific recommendations were not made because the guidelines had been completed by the time of BEZ approval. |
2021 |
|
Rationale |
|
Risk Factor | BEZ, % | Placebo, % | Difference, % [95% CI] |
---|---|---|---|
Age > 65 years | 19.3 | 39.4 | −20.1 [−27.0 to −13.2] |
History of CDI | 31.6 | 49.5 | −17.9 [−27.7 to −7.6] |
Immunocompromised | 19.0 | 36.0 | −17.0 [−28.0 to −6.0] |
Severe CDI | 15.9 | 31.5 | −15.6 [−28.0 to −2.8] |
Ribotype 027/078/244 | 28.2 | 41.1 | −12.9 [−26.8 to 1.6] |
NO. OF RISK FACTORS | BEZ, % | PLACEBO, % | DIFFERENCE, % [95% CI] |
---|---|---|---|
0 | 18.8 | 20.9 | −2.1 [−11.1 to 6.9] |
≥1 | 21.2 | 37.2 | −15.9 [−21.6 to −10.2] |
1 | 17.1 | 31.3 | −14.2 [−21.9 to −6.4] |
2 | 26.9 | 41.1 | −14.2 [−24.0 to −4.1 |
≥3 | 21.2 | 46.1 | −24.8 [−39.1 to −9.3] |
Reference | Design | Regimen | Number of Patients | Patient Demographics (%) | C. diff Recurrence Rate (%) | Statistics | |||
---|---|---|---|---|---|---|---|---|---|
Escudero-Sanchez et al. [49] | Matched cohort study of FDX monotherapy vs. SoC + BEZ | - | ≥65 YOA | Immunosuppressed | Severe C. diff | OR 1.45 95% CI 0.71–2.96 p = 0.29 | |||
FDX 200 mg BID | 244 | FDX | 60.7 | 38.9 | 40.2 | 19.3 | |||
BEZ 10 mg/kg IV + SoC (VAN +/− MTZ) | 78 | BEZ + SoC | 64.1 | 66.7 | 38.5 | 14.1 | |||
Escudero-Sanchez et al. [50] | Retrospective, multi-center, cohort study to examine eight risk factors for rCDI | BEZ 10 mg/kg IV + SoC | 91 | % | ≥65 YOA | IS | Severe C. diff | 14.2 | Risk factors assessed individually |
Recurrence | 61.5 | 53.9 | 53.9 | ||||||
No recurrence | 68 | 62.8 | 43.6 | ||||||
Askar et al. [51] | Retrospective cohort of SoC +/− BEZ at 12 weeks | % | ≥60 YOA | IS | Severe C. diff | p = 0.3464 | |||
SoC alone (VAN, MTZ, or FDX) for 10–14 days | 30 | SoC | 43.3 | 83.3 | - | 23.3 | |||
SoC + BEZ 10 mg/kg IV | 23 | SoC + BEZ | 52.2 | 82.6 | - | 13.04 | |||
Johnson et al. [52] | Matched, retrospective cohort study of SoC +/− BEZ at 90 days | % | ≥65 YOA | IS | Severe C. diff | ARR 32.1 95% CI 16.2–47.9 p ≤ 0.001 | |||
SoC = VAN or FDX | 53 | SoC | 28 | 49 | 34 | 43 | |||
BEZ 10 mg/kg IV + SoC | 53 | BEZ | 38 | 77 | 23 | 11 | |||
Johnson et al. [53] | Single-center retrospective analysis of SoC +/− BEZ in transplant patients | % | ≥65 YOA | IS | Severe C. diff | p = 0.13 | |||
SoC = VAN, MTZ, or FDX | 56 | SoC | 21 | 100 | 32 | 29 | |||
SoC + BEZ 10 mg/kg IV | 38 | SoC + BEZ | 26 | 100 | 13 | 16 | |||
Olmedo et al. [54] | Retrospective study to describe outcomes in patients treated with BEZ at high risk of rCDI | BEZ 10 mg/kg IV | 16 | % | ≥65 YOA | IS | Severe C. diff | 21.4 * | Not provided |
BEZ | 69 | 87.5 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyte, M.L.; Arphai, L.J.; Vaughn, C.J.; Durham, S.H. The Role of Bezlotoxumab for the Prevention of Recurrent Clostridioides difficile Infections: A Review of the Current Literature and Paradigm Shift after 2021. Antibiotics 2022, 11, 1211. https://doi.org/10.3390/antibiotics11091211
Hyte ML, Arphai LJ, Vaughn CJ, Durham SH. The Role of Bezlotoxumab for the Prevention of Recurrent Clostridioides difficile Infections: A Review of the Current Literature and Paradigm Shift after 2021. Antibiotics. 2022; 11(9):1211. https://doi.org/10.3390/antibiotics11091211
Chicago/Turabian StyleHyte, Melanie L., Lee J. Arphai, Charles J. Vaughn, and Spencer H. Durham. 2022. "The Role of Bezlotoxumab for the Prevention of Recurrent Clostridioides difficile Infections: A Review of the Current Literature and Paradigm Shift after 2021" Antibiotics 11, no. 9: 1211. https://doi.org/10.3390/antibiotics11091211
APA StyleHyte, M. L., Arphai, L. J., Vaughn, C. J., & Durham, S. H. (2022). The Role of Bezlotoxumab for the Prevention of Recurrent Clostridioides difficile Infections: A Review of the Current Literature and Paradigm Shift after 2021. Antibiotics, 11(9), 1211. https://doi.org/10.3390/antibiotics11091211