First Report of IMI-2-Producing Enterobacter bugandensis and CTX-M-55-Producing Escherichia coli isolated from Healthy Volunteers in Tunisia
Abstract
:1. Introduction
2. Results
2.1. The Fecal Carriage Rate of Detected ESBL and Carbapenemase-Producing Enterobacteriaceae and Beta-Lactamases
2.2. Phenotypic and Genotypic Antimicrobial-Resistance Patterns of ESBL-Producing E.coli Isolates
2.3. Molecular Typing of Isolates
2.4. Genotypic and Phenotypic Characterization of the Carbapenem-Resistant Isolate
3. Discussion
4. Materials and Methods
4.1. Isolation and Identification
4.1.1. Antibiotic Susceptibility Tests
4.1.2. Genetic Typing of Isolates
4.2. Detection and Characterization of Beta-Lactamase Genes and Other Resistance Genes
4.3. Whole-Genome Sequencing (WGS), Assembly, and Annotation of E. bugandensis 9i
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caruso, G. Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. J. AOAC Int. 2018, 101, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Ben Sallem, R.; Ben Slama, K.; Rojo-Bezares, B.; Porres-Osante, N.; Jouini, A.; Klibi, N.; Boudabous, A.; Sáenz, Y.; Torres, C. IncI1 plasmids carrying bla(CTX-M-1) or bla(CMY-2) genes in Escherichia coli from healthy humans and animals in Tunisia. Microb. Drug Resist. 2014, 20, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Lübbert, C.; Straube, L.; Stein, C.; Makarewicz, O.; Schubert, S.; Mössner, J.; Pletz, M.W.; Rodloff, A.C. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int. J. Med. Microbiol. 2015, 305, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Manenzhe, R.I.; Zar, H.J.; Nicol, M.P.; Kaba, M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J. Antimicrob. Chemother. 2015, 70, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Dziri, R.; Ayari, I.; Barguellil, F.; Ouzari, H.I.; El Asli, M.S.; Klibi, N. First Report of NDM and VIM Coproducing Klebsiella pneumoniae in Tunisia and Emergence of Novel Clones. Microb. Drug Resist. 2019, 25, 1282–1286. [Google Scholar] [CrossRef]
- Hammami, S.; Dahdeh, C.; Mamlouk, K.; Ferjeni, S.; Maamar, E.; Hamzaoui, Z.; Saidani, M.; Ghedira, S.; Houissa, M.; Slim, A.; et al. Rectal Carriage of Extended-Spectrum Beta-Lactamase and Carbapenemase Producing Gram-Negative Bacilli in Intensive Care Units in Tunisia. Microb. Drug Resist. 2017, 23, 695–702. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Ben Slama, K.; Estepa, V.; Jouini, A.; Gharsa, H.; Klibi, N.; Sáenz, Y.; Ruiz-Larrea, F.; Boudabous, A.; Torres, C. Prevalence and characterisation of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in healthy volunteers in Tunisia. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1511–1516. [Google Scholar] [CrossRef]
- Dziri, R.; Talmoudi, A.; Barguellil, F.; Ouzari, H.I.; El Asli, M.S.; Klibi, N. Huge Diversity of TEM and SHV β-Lactamases Types Among CTX-M-15-Producing Enterobacteriaceae Species in Tunisia. Microb. Drug Resist. 2019, 25, 1149–1154. [Google Scholar] [CrossRef]
- Lahlaoui, H.; Ben Haj Khalifa, A.; Ben Moussa, M. Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Med. Mal. Infect. 2014, 44, 400–404. [Google Scholar] [CrossRef]
- Sghaier, S.; Abbassi, M.S.; Pascual, A.; Serrano, L.; Díaz-De-Alba, P.; Said, M.B.; Hassen, B.; Ibrahim, C.; Hassen, A.; López-Cerero, L. Extended-spectrum β-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: First detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J. Glob. Antimicrob. Resist. 2019, 17, 189–194. [Google Scholar] [CrossRef]
- Saidani, M.; Messadi, L.; Mefteh, J.; Chaouechi, A.; Soudani, A.; Selmi, R.; Dâaloul-Jedidi, M.; Ben Chehida, F.; Mamlouk, A.; Jemli, M.H.; et al. Various Inc-type plasmids and lineages of Escherichia coli and Klebsiella pneumoniae spreading blaCTX-M-15,blaCTX-M-1 and mcr-1 genes in camels in Tunisia. J. Glob. Antimicrob. Resist. 2019, 19, 280–283. [Google Scholar] [CrossRef]
- Hassen, B.; Saloua, B.; Abbassi, M.S.; Ruiz-Ripa, L.; Mama, O.M.; Hassen, A.; Hammami, S.; Torres, C. mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15- producing Escherichia coli isolates of bovine and caprine origins in Tunisia. First report of CTX-M-15-ST394/D E. coli from goats. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101366. [Google Scholar] [CrossRef]
- Hassen, B.; Abbassi, M.S.; Ruiz-Ripa, L.; Mama, O.M.; Hassen, A.; Torres, C.; Hammami, S. High prevalence of mcr-1 encoding colistin resistance and first identification of blaCTX-M-55 in ESBL/CMY-2-producing Escherichia coli isolated from chicken faeces and retail meat in Tunisia. Int. J. Food. Microbiol. 2020, 318, 108478. [Google Scholar] [CrossRef]
- Hazirolan, G.; Mumcuoglu, I.; Altan, G.; Özmen, B.B.; Aksu, N.; Karahan, Z.C. Fecal carriage of extended-spectrum beta-lactamase and ampc beta-lactamase-producing enterobacteriaceae in a turkish community. Niger. J. Clin. Pract. 2018, 21, 81–86. [Google Scholar] [CrossRef]
- Tellevik, M.G.; Blomberg, B.; Kommedal, Ø.; Maselle, S.Y.; Langeland, N.; Moyo, S.J. High Prevalence of Faecal Carriage of ESBL-Producing Enterobacteriaceae among Children in Dar es Salaam, Tanzania. PLoS ONE 2016, 11, e0168024. [Google Scholar] [CrossRef] [Green Version]
- Araque, M.; Labrador, I. Prevalence of Fecal Carriage of CTX-M-15 Beta-Lactamase-Producing Escherichia coli in Healthy Children from a Rural Andean Village in Venezuela. Osong Public Health Res. Perspect. 2018, 9, 9–15. [Google Scholar] [CrossRef]
- González, D.; Gallagher, E.; Zúñiga, T.; Leiva, J.; Vitas, A.I. Prevalence and characterization of β-lactamase-producing Enterobacteriaceae in healthy human carriers. Int. Microbiol. 2020, 23, 171–177. [Google Scholar] [CrossRef]
- Van Hoek, A.H.; Schouls, L.; van Santen, M.G.; Florijn, A.; de Greeff, S.C.; van Duijkeren, E. Molecular characteristics of extended-spectrum cephalosporin-resistant Enterobacteriaceae from humans in the community. PLoS ONE 2015, 10, e0129085. [Google Scholar] [CrossRef]
- Nakane, K.; Kawamura, K.; Goto, K.; Arakawa, Y. Long-Term Colonization by bla(CTX-M)-Harboring Escherichia coli in Healthy Japanese People Engaged in Food Handling. Appl. Environ. Microbiol. 2016, 82, 1818–1827. [Google Scholar] [CrossRef]
- Mathai, D.; Kumar, V.A.; Paul, B.; Sugumar, M.; John, K.R.; Manoharan, A.; Kesavan, L.M. Fecal carriage rates of extended-spectrum β-lactamase-producing Escherichia coli among antibiotic naive healthy human volunteers. Drug Resist. 2015, 21, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Ali, M.M.; Mohamed, Z.K.; Moussa, T.A.; Klena, J.D. Fecal carriage of extended-spectrum β-lactamases and AmpC-producing Escherichia coli in a Libyan community. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ny, S.; Löfmark, S.; Börjesson, S.; Englund, S.; Ringman, M.; Bergström, J.; Nauclér, P.; Giske, C.G.; Byfors, S. Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: A Swedish nationwide study. J. Antimicrob. Chemother. 2017, 72, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Kader, A.A.; Kamath, K.A. Faecal carriage of extended-spectrum beta-lactamase-producing bacteria in the community. East. Mediterr. Health J. 2009, 15, 1365–1370. [Google Scholar] [PubMed]
- Bassyouni, R.H.; Gaber, S.N.; Wegdan, A.A. Fecal carriage of extended-spectrum β-lactamase- and AmpC- producing Escherichia coli among healthcare workers. J. Infect. Dev. Ctries. 2015, 9, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Moghnia, O.H.; Rotimi, V.O.; Al-Sweih, N.A. Monitoring antibiotic resistance profiles of faecal isolates of Enterobacteriaceae and the prevalence of carbapenem-resistant isolates among food handlers in Kuwait. J. Glob. Antimicrob. Resist. 2021, 25, 370–376. [Google Scholar] [CrossRef]
- Eltai, N.O.; Yassine, H.M.; Al Thani, A.A.; Abu Madi, M.A.; Ismail, A.; Ibrahim, E.; Alali, W.Q. Prevalence of antibiotic resistant Escherichia coli isolates from fecal samples of food handlers in Qatar. Antimicrob. Resist. Infect Control. 2018, 7, 78. [Google Scholar] [CrossRef]
- Kothari, C.; Gaind, R.; Singh, L.C.; Sinha, A.; Kumari, V.; Arya, S.; Chellani, H.; Saxena, S.; Deb, M. Community acquisition of β-lactamase producing Enterobacteriaceae in neonatal gut. BMC Microbiol. 2013, 13, 136. [Google Scholar] [CrossRef] [Green Version]
- Karami, N.; Nowrouzian, F.; Adlerberth, I.; Wold, A.E. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents Chemother. 2006, 50, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Jallad, M.A.; Naoufal, R.; Irani, J.; Azar, E. Extended spectrum beta-lactamase carriage state among elderly nursing home residents in beirut. Sci. World J. 2015, 2015, 987580. [Google Scholar] [CrossRef]
- Dandachi, I.; Salem Sokhn, E.; Najem, E.; Azar, E.; Daoud, Z. Carriage of beta-lactamase-producing enterobacteriaceae among nursing home residents in north Lebanon. Int. J. Infect. Dis. 2016, 45, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Liakopoulos, A.; van den Bunt, G.; Geurts, Y.; Bootsma, M.C.J.; Toleman, M.; Ceccarelli, D.; van Pelt, W.; Mevius, D.J. High Prevalence of Intra-Familial Co-colonization by Extended-Spectrum Cephalosporin Resistant Enterobacteriaceae in Preschool Children and Their Parents in Dutch Households. Front. Microbiol. 2018, 9, 293. [Google Scholar] [CrossRef]
- Matsui, Y.; Hu, Y.; Rubin, J.; de Assis, R.S.; Suh, J.; Riley, L.W. Multilocus sequence typing of Escherichia coli isolates from urinary tract infection patients and from fecal samples of healthy subjects in a college community. MicrobiologyOpen 2020, 9, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Doijad, S.; Imirzalioglu, C.; Yao, Y.; Pati, N.B.; Falgenhauer, L.; Hain, T.; Foesel, B.U.; Abt, B.; Overmann, J.; Mirambo, M.M.; et al. Enterobacter bugandensis sp. nov., isolated from neonatal blood. Int. J. Syst. Evol. Microbiol. 2016, 66, 968–974. [Google Scholar] [CrossRef]
- Singh, N.K.; Bezdan, D.; Checinska Sielaff, A.; Wheeler, K.; Mason, C.E.; Venkateswaran, K. Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol. 2018, 18, 175. [Google Scholar] [CrossRef]
- Falgenhauer, J.; Imirzalioglu, C.; Falgenhauer, L.; Yao, Y.; Hauri, A.M.; Erath, B.; Schwengers, O.; Goesmann, A.; Seifert, H.; Chakraborty, T.; et al. Whole-Genome Sequences of Clinical Enterobacter bugandensis Isolates from Germany. Microbiol. Resour. Announc. 2019, 8, e00465-19. [Google Scholar] [CrossRef] [Green Version]
- Matteoli, F.P.; Passarelli-Araujo, H.; Pedrosa-Silva, F.; Olivares, F.L.; Venancio, T.M. Population structure and pangenome analysis of Enterobacter bugandensis uncover the presence of blaCTX-M-55, blaNDM-5 and blaIMI-1, along with sophisticated iron acquisition strategies. Genomics 2020, 112, 1182–1191. [Google Scholar] [CrossRef]
- M100-S27; Performance Standards for Antimicrobial Susceptibility Testing. 27th ed, Clinical and Laboratory 316 Standards Institute: Wayne, PA, USA, 2018.
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents. Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef] [Green Version]
- Tartof, S.Y.; Solberg, O.D.; Manges, A.R.; Riley, L.W. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J. Clin. Microbiol. 2005, 43, 5860–5864. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Jouini, A.; Vinué, L.; Slama, K.B.; Sáenz, Y.; Klibi, N.; Hammami, S.; Boudabous, A.; Torres, C. Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 2007, 60, 1137–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.S.; Kim, K.; Huh, J.Y.; Jung, B.; Kang, M.S.; Hong, S.G. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Clin. Microbiol. Infect. 2010, 16, S552. [Google Scholar] [CrossRef] [Green Version]
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Lux, M.; Krüger, J.; Rinke, C.; Maus, I.; Schlüter, A.; Woyke, T.; Sczyrba, A.; Hammer, B. acdc—Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinform. 2016, 17, 543. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated highthroughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [Green Version]
- Farris, J.S. Estimating phylogenetic trees from distance matrices. Am. Nat. 1972, 106, 645–668. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Rodriguez-R, L.M.; Konstantinidis, K.T. Bypassing Cultivation to Identify Bacterial Species: Culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag. 2014, 9, 111–118. [Google Scholar] [CrossRef]
Variable | Healthy Volunteers | ESBL-E Carriers | |
---|---|---|---|
Sex | Men n (%) | 22 (43.2 %) | 7 (31.8 %) |
Women n (%) | 29 (56.8%) | 9 (31%) | |
Age group | 3 m–10 y n (%) | 12 (23.53%) | 3 (25 %) |
11 y–20 y n (%) | 16 (31.37%) | 5 (31.2 %) | |
21 y–55 y n (%) | 23 (45.1 %) | 8 (34.8 %) | |
Total | 51 | 16 |
Strain | Resistance Profile to Non Beta-Lactams | Beta-Lactamases | MLST | Phylogroup | PFGE | Class 1 Integron | Other Resistance Genes Detected Outside Integron | |
---|---|---|---|---|---|---|---|---|
IntI1/ qacEΔ1 + sul1 | Gene Cassette Arrangement | |||||||
3i | CIP, NAL, SXT, SUL, S, TET | CTX-M-15 | ND | A | P1 | +/+ | aadA1 | sul2, sul3, tetA |
5c | CIP, NAL, SUL, TET | CTX-M-1 | ST131 | B2 | P2 | −/− | - | sul2, tetA |
13c | NAL, SUL, S, GN, CHL | CTX-M-1 | ST1158 | D | P3 | −/− | - | sul2 |
19c | SXT, SUL, S, TET | CTX-M-15 | ST925 | D | P4 | −/− | - | sul2, tetA |
25c | CIP, NAL, SXT, SUL, AK, K, T, S, GN, CHL, TET | CTX-M-15, TEM-1 | ST5100 | A | P5 | +/+ | dfrA12-orf-aadA2 | sul1, sul2, tetB |
26c | SUL, TET | CTX-M-15 | ND | A | P6 | −/− | - | - |
30c | SXT, SUL, S, TET | CTX-M-27 | ST2887 | D | P7 | −/− | - | sul1, sul2, tetA |
32c | SXT, SUL, S, RAM, CHL | CTX-M-15 | ND | A | P8 | −/− | - | sul3 |
35c | SXT, SUL, S, TET | CTX-M-27 | ND | D | P9 | −/− | - | sul2, sul3, tetA |
37c | SXT, SUL | CTX-M-15 | ND | A | P10 | +/+ | dfrA5 | sul2, tetA |
39c | SXT, SUL, S, TET | CTX-M-15 | ND | A | P11 | −/− | - | sul2, tetA |
42c | SXT, SUL, S, TET | CTX-M-15, TEM-1 | ND | A | P12 | +/+ | dfrA12-orf-aadA2 | sul2, tetA |
45c | SUL, K, S, TET | CTX-M-27 | ND | D | P13 | −/− | - | sul2, tetA |
46c | CIP, NAL, SXT, SUL, K, T, S, GN, CHL, TET | CTX-M-55 | ST744 | D | P14 | +/+ | dfrA17-aadA5 | sul2, tetA |
47c | CIP, NAL, SXT, SUL, S, TET | CTX-M-15 | ND | A | P15 | −/− | - | sul2 |
49c | CIP, NAL, SXT, SUL, S, TET | CTX-M-1, TEM1 | St7366 | A | P16 | +/+ | dfrA5 | sul2, tetA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Sallem, R.; Arfaoui, A.; Najjari, A.; Carvalho, I.; Lekired, A.; Ouzari, H.-I.; Ben Slama, K.; Wong, A.; Torres, C.; Klibi, N. First Report of IMI-2-Producing Enterobacter bugandensis and CTX-M-55-Producing Escherichia coli isolated from Healthy Volunteers in Tunisia. Antibiotics 2023, 12, 116. https://doi.org/10.3390/antibiotics12010116
Ben Sallem R, Arfaoui A, Najjari A, Carvalho I, Lekired A, Ouzari H-I, Ben Slama K, Wong A, Torres C, Klibi N. First Report of IMI-2-Producing Enterobacter bugandensis and CTX-M-55-Producing Escherichia coli isolated from Healthy Volunteers in Tunisia. Antibiotics. 2023; 12(1):116. https://doi.org/10.3390/antibiotics12010116
Chicago/Turabian StyleBen Sallem, Rym, Ameni Arfaoui, Afef Najjari, Isabel Carvalho, Abdelmalek Lekired, Hadda-Imen Ouzari, Karim Ben Slama, Alex Wong, Carmen Torres, and Naouel Klibi. 2023. "First Report of IMI-2-Producing Enterobacter bugandensis and CTX-M-55-Producing Escherichia coli isolated from Healthy Volunteers in Tunisia" Antibiotics 12, no. 1: 116. https://doi.org/10.3390/antibiotics12010116
APA StyleBen Sallem, R., Arfaoui, A., Najjari, A., Carvalho, I., Lekired, A., Ouzari, H. -I., Ben Slama, K., Wong, A., Torres, C., & Klibi, N. (2023). First Report of IMI-2-Producing Enterobacter bugandensis and CTX-M-55-Producing Escherichia coli isolated from Healthy Volunteers in Tunisia. Antibiotics, 12(1), 116. https://doi.org/10.3390/antibiotics12010116