Enhancing Antibiotics Efficacy by Combination of Kuraridin and Epicatechin Gallate with Antimicrobials against Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. The Combination of ECG and Kuraridin Could Potently Inhibit the Growth of MRSA
2.2. The Combination of ECG and Kuraridin Could Enhance the Efficacy of Gentamicin, Fusidic Acid, and Vancomycin Additively against MRSA
2.3. ECG and Kuraridin Are Non-Cytotoxic and Could Dose Dependently Inhibit Inflammatory Cytokines Released from Peptidoglycan-Induced and Staphylococcal-Enterotoxin-B-Induced Human Peripheral Blood Mononuclear Cells (PBMC)
2.4. Mouse Pneumonia Model
3. Discussion
4. Materials and Methods
4.1. Antibiotics, Epicatechin Gallate (ECG) and Kuraridin
4.2. Bacterial Strains and Preparation of Bacteria Culture
4.3. Checkerboard and Time Kill Assay
4.4. Anti-Inflammation Effects and Cytotoxicity of Epicatechin Gallate (ECG) and Kuraridin
4.5. Mouse Pneumonia Model
4.6. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, C.M.; Therien, A.G.; Lu, J.; Lee, S.H.; Caron, A.; Gill, C.J.; Lebeau-Jacob, C.; Benton-Perdomo, L.; Monteiro, J.M.; Pereira, P.M.; et al. Restoring methicillin-resistant Staphylococcus aureus susceptibility to beta-lactam antibiotics. Sci. Transl. Med. 2012, 4, 126ra135. [Google Scholar] [CrossRef] [Green Version]
- Spentzas, T.; Kudumula, R.; Acuna, C.; Talati, A.J.; Ingram, K.C.; Savorgnan, F.; Meals, E.A.; English, B.K. Role of bacterial components in macrophage activation by the LAC and MW2 strains of community-associated, methicillin-resistant Staphylococcus aureus. Cell Immunol. 2011, 269, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Moellering, R.C., Jr. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin. Infect. Dis. 2008, 46 (Suppl. 5), S360–S367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.C.; Ip, M.; Lau, C.B.; Han, Q.B.; Jolivalt, C.; Paris, J.; Rainer, N.E.; See, R.H.; Fung, K.P.; Leung, P.C. Role of Medicinal Herbs in Treatment Against Methicillin Resistant Staphylococcus Aureus MRSA Infections; Studium Press: New Delhi, India, 2012; Volume 34, pp. 1–19. [Google Scholar]
- Chan, B.C.; Yu, H.; Wong, C.W.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Paris, J.M.; Morleo, B.; Litaudon, M.; Lau, C.B.; et al. Quick identification of kuraridin, a noncytotoxic anti-MRSA (methicillin-resistant Staphylococcus aureus) agent from Sophora flavescens using high-speed counter-current chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 880, 157–162. [Google Scholar] [CrossRef]
- Chan, B.C.-L.; Chan, L.; Lau, C.B.-S.; Lau, S.; Jolivalt, C.; Lui, S.-L.; Ganem, C.; Ganem-Elba Paris, J.-M.; Litaudon, M.; Fung, K.-P.; et al. Chinese Medicinal Herbs Against Antibiotic-Resistant Bacterial Pathogens; FORMATEX: Badajoz, Spain, 2011; Volume 2, pp. 773–781. [Google Scholar]
- Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011, 137, 767–773. [Google Scholar] [CrossRef]
- Gibbons, S.; Moser, E.; Kaatz, G.W. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med. 2004, 70, 1240–1242. [Google Scholar] [CrossRef]
- Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3133–3141. [Google Scholar] [CrossRef] [Green Version]
- Hagihara, M.; Crandon, J.L.; Nicolau, D.P. The efficacy and safety of antibiotic combination therapy for infections caused by Gram-positive and Gram-negative organisms. Expert Opin. Drug Saf. 2012, 11, 221–233. [Google Scholar] [CrossRef]
- Rubinstein, E.; Keynan, Y. Vancomycin revisited—60 years later. Front. Public Health 2014, 2, 217. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Rock, C.O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J. Biol. Chem. 2004, 279, 30994–31001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios, L.; Rosado, H.; Micol, V.; Rosato, A.E.; Bernal, P.; Arroyo, R.; Grounds, H.; Anderson, J.C.; Stabler, R.A.; Taylor, P.W. Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic beta-lactam resistance modifiers. PLoS ONE 2014, 9, e93830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, H.; Nakano, T.; Parvez, M.A.; Furukawa, Y.; Tomoishi, A.; Niimi, S.; Arakaki, N.; Higuti, T. Triple combinations of lower and longer alkyl gallates and oxacillin improve antibiotic synergy against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2218–2220. [Google Scholar] [CrossRef] [Green Version]
- Song, H.S.; Choi, T.R.; Bhatia, S.K.; Lee, S.M.; Park, S.L.; Lee, H.S.; Kim, Y.G.; Kim, J.S.; Kim, W.; Yang, Y.H. Combination Therapy Using Low-Concentration Oxacillin with Palmitic Acid and Span85 to Control Clinical Methicillin-Resistant Staphylococcus aureus. Antibiotics 2020, 9, 682. [Google Scholar] [CrossRef]
- Snydman, D.R.; McDermott, L.A.; Jacobus, N.V. Evaluation of in vitro interaction of daptomycin with gentamicin or beta-lactam antibiotics against Staphylococcus aureus and Enterococci by FIC index and timed-kill curves. J. Chemother. 2005, 17, 614–621. [Google Scholar] [CrossRef]
- Sasaki, T.; Li, W.; Higai, K.; Quang, T.H.; Kim, Y.H.; Koike, K. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens. Planta Med. 2014, 80, 557–560. [Google Scholar] [CrossRef]
- Jung, H.A.; Yokozawa, T.; Kim, B.W.; Jung, J.H.; Choi, J.S. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am. J. Chin. Med. 2010, 38, 415–429. [Google Scholar] [CrossRef]
- Jung, H.A.; Yoon, N.Y.; Kang, S.S.; Kim, Y.S.; Choi, J.S. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol. 2008, 60, 1227–1236. [Google Scholar] [CrossRef]
- Kim, J.H.; Ryu, Y.B.; Kang, N.S.; Lee, B.W.; Heo, J.S.; Jeong, I.Y.; Park, K.H. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol. Pharm. Bull. 2006, 29, 302–305. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.Y.; Rho, M.C.; Ko, J.S.; Ryu, S.Y.; Jeune, K.H.; Kim, K.; Lee, H.S.; Kim, Y.K. In vitro inhibition of diacylglycerol acyltransferase by prenylflavonoids from Sophora flavescens. Planta Med. 2004, 70, 258–260. [Google Scholar]
- Kim, S.J.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol. Pharm. Bull. 2003, 26, 1348–1350. [Google Scholar] [CrossRef] [PubMed]
- Ohlsen, K.; Donat, S. The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int. J. Med. Microbiol. 2010, 300, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Liu, G.; Ton-That, H.; Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 1999, 285, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Labandeira-Rey, M.; Couzon, F.; Boisset, S.; Brown, E.L.; Bes, M.; Benito, Y.; Barbu, E.M.; Vazquez, V.; Hook, M.; Etienne, J.; et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 2007, 315, 1130–1133. [Google Scholar] [CrossRef] [Green Version]
- Zuluaga, A.F.; Salazar, B.E.; Rodriguez, C.A.; Zapata, A.X.; Agudelo, M.; Vesga, O. Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: Characterization and applicability to diverse experimental models of infectious diseases. BMC Infect. Dis. 2006, 6, 55. [Google Scholar] [CrossRef]
Strains | Category | MIC Alone (μg/mL) | MIC Combine (μg/mL) | FIC | FICI | Outcome | |||
---|---|---|---|---|---|---|---|---|---|
ECG | Kur | ECG | Kur | ECG | Kur | ||||
W44 | CA MRSA | 512 | 8 | 2 | 2 | 0.004 | 0.25 | 0.25 | Synergy |
W45 | CA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W46 | CA MRSA | 512 | 8 | 8 | 4 | 0.015 | 0.5 | 0.52 | Additive |
W47 | CA MRSA | 512 | 8 | 2 | 4 | 0.004 | 0.5 | 0.50 | Synergy |
W48 | CA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W101 | CA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W103 | CA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W106 | CA MRSA | 512 | 8 | 1 | 2 | 0.002 | 0.25 | 0.25 | Synergy |
W113 | CA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W114 | CA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
ST30 | CA MRSA | 512 | 8 | 0.25 | 4 | 0.0004 | 0.5 | 0.50 | Synergy |
W231 | HA MRSA | 512 | 4 | 8 | 1 | 0.016 | 0.25 | 0.27 | Synergy |
W232 | HA MRSA | 512 | 8 | 4 | 2 | 0.008 | 0.25 | 0.26 | Synergy |
W233 | HA MRSA | 512 | 4 | 2 | 2 | 0.004 | 0.5 | 0.50 | Synergy |
W234 | HA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W235 | HA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W238 | HA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W239 | HA MRSA | 512 | 8 | 1 | 4 | 0.002 | 0.5 | 0.50 | Synergy |
W240 | HA MRSA | 512 | 8 | 4 | 4 | 0.008 | 0.5 | 0.51 | Additive |
ST239 | HA MRSA | 512 | 8 | 2 | 4 | 0.004 | 0.5 | 0.50 | Synergy |
ATCC 25923 | MSSA | 512 | 8 | 4 | 4 | 0.008 | 0.5 | 0.51 | Additive |
MIC Alone (μg/mL) | MIC Combine (μg/mL) | FIC | FICI | Outcome | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Strains/ Antibiotics (An) | ECG | Kur | An | ECG | Kur | An | ECG | Kur | An | ||
1199B | 512 | 16 | 16 | 32 | 4 | 8 | 0.06 | 0.25 | 0.5 | 0.81 | Additive |
Ciprofloxacin | 512 | 16 | - | 32 | 4 | - | 0.06 | 0.25 | - | 0.31 | Synergy |
RN4220 | 512 | 8 | 256 | 8 | 2 | 128 | 0.01 | 0.26 | 0.5 | 0.76 | Additive |
Erythromycin | 512 | 8 | - | 8 | 2 | - | 0.01 | 0.26 | 0.5 | Synergy | |
APH2 | 512 | 8 | 512 | 0.25 | 2 | 16 | 0.0005 | 0.25 | 0.0312 | 0.28 | Synergy |
Gentamicin | 512 | 8 | - | 0.5 | 2 | - | 0.0009 | 0.25 | - | 0.25 | Synergy |
APH3 | 512 | 8 | 256 | 0.5 | 2 | 128 | 0.0009 | 0.25 | 0.5 | 0.75 | Additive |
Kanamycin | 512 | 8 | - | 0.5 | 2 | - | 0.0009 | 0.25 | 0.25 | Synergy | |
ANT4 | 512 | 8 | 64 | 4 | 2 | 8 | 0.0007 | 0.25 | 0.125 | 0.38 | Synergy |
Fusidic acid | 512 | 8 | - | 16 | 2 | 0.03 | 0.25 | 0.28 | Synergy |
Strains | MIC Alone (μg/mL) | MIC Combine (μg/mL) | FIC | FICI | Outcome | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECG | Kur | Gen | ECG | Kur | Gen | ECG | Kur | Gen | |||
W231 | 512 | 8 | 64 | 0.25 | 2 | 1 | 0.0004 | 0.25 | 0.015 | 0.27 | Synergy |
512 | 8 | - | 4 | 2 | - | 0.008 | 0.25 | - | 0.26 | Synergy | |
W233 | 512 | 8 | 512 | 0.25 | 4 | 16 | 0.0005 | 0.5 | 0.03 | 0.53 | Additive |
512 | 8 | - | 16 | 8 | - | 0.03 | 1 | - | 1.03 | Indiffferent | |
W238 | 512 | 8 | 512 | 0.25 | 2 | 16 | 0.0004 | 0.25 | 0.03 | 0.28 | Synergy |
512 | 8 | - | 0.5 | 4 | - | 0.0004 | 0.5 | - | 0.50 | Synergy |
Strains | MIC Alone (μg/mL) | MIC Combine (μg/mL) | FIC | FICI | Outcome | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECG | Kur | Fus | ECG | Kur | Fus | ECG | Kur | Fus | |||
82356 | 512 | 8 | 32 | 0.25 | 4 | 1 | 0.008 | 0.25 | 0.03 | 0.53 | Additive |
512 | 8 | - | 8 | 4 | - | 0.016 | 0.5 | - | 0.52 | Additive | |
73621 | 512 | 8 | 32 | 0.25 | 4 | 1 | 0.004 | 0.5 | 0.03 | 0.53 | Additive |
512 | 8 | - | 16 | 4 | - | 0.003 | 0.5 | - | 0.53 | Additive | |
96591 | 512 | 4 | 32 | 0.25 | 2 | 1 | 0.002 | 0.5 | 0.03 | 0.53 | Additive |
512 | 8 | - | 16 | 4 | - | 0.003 | 0.5 | - | 0.53 | Additive |
Strains | MIC Alone | MIC Combine | FIC | FICI | Outcome | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECG | Kur | Van | ECG | Kur | Van | ECG | Kur | Van | |||
W44 | 512 | 8 | 1 | 0.25 | 2 | 0.5 | 0.0004 | 0.25 | 0.5 | 0.75 | Additive |
W45 | 512 | 8 | 1 | 0.25 | 2 | 0.5 | 0.0004 | 0.25 | 0.5 | 0.75 | Additive |
W46 | 512 | 8 | 1 | 1 | 4 | 0.5 | 0.002 | 0.5 | 0.5 | 1.00 | Additive |
W47 | 512 | 8 | 1 | 0.25 | 2 | 0.25 | 0.0004 | 0.25 | 0.25 | 0.50 | Synergy |
W48 | 512 | 8 | 1 | 1 | 2 | 0.5 | 0.002 | 0.25 | 0.5 | 0.75 | Additive |
W231 | 512 | 8 | 1 | 0.25 | 1 | 0.5 | 0.0004 | 0.125 | 05 | 0.62 | Additive |
W232 | 512 | 8 | 1 | 8 | 2 | 0.5 | 0.03 | 0.25 | 0.5 | 0.75 | Additive |
W233 | 512 | 8 | 1 | 8 | 2 | 0.5 | 0.03 | 0.25 | 0.5 | 0.75 | Additive |
W238 | 512 | 8 | 1 | 0.25 | 2 | 0.5 | 0.0004 | 0.25 | 0.5 | 0.75 | Additive |
W239 | 512 | 8 | 1 | 0.5 | 2 | 0.5 | 0.0009 | 0.25 | 0.5 | 0.75 | Additive |
ST30 | 512 | 8 | 1 | 0.25 | 1 | 0.5 | 0.0004 | 0.125 | 0.5 | 0.62 | Additive |
ST239 | 512 | 8 | 1 | 0.25 | 1 | 0.5 | 0.0004 | 0.125 | 0.5 | 0.62 | Additive |
S. aureus Strains | Resistance | Mechanism |
---|---|---|
1199B | ciprofloxacin | overexpression of the NorA efflux pump |
RN4220-pUL5054 | erythromycin | multicopy plasmid pUL5054 coding for MsrA |
APH2″-AAC6′ | gentamicin | experimentally induced aminoglycosides resistance by methylation of specific nucleotides within the A-site of rRNA (aminoglycoside- 6′-N-acetyltransferase/2″-O- phosphoryl transferase) |
APH3′ | kanamycin | experimentally induced aminoglycosides resistance by methylation of specific nucleotides within the A-site of rRNA (aminoglycoside-3′-O- phosphoryl transferase) |
ANT4′ | fusidic acid | experimentally induced aminoglycosides resistance by methylation of specific nucleotides within the A-site of rRNA (aminoglycoside-4′-O- phosphoryl transferase) is |
MSSA ATCC25923 a | methicillin-sensitive | Control strain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, B.C.-L.; Barua, N.; Lau, C.B.-S.; Leung, P.-C.; Fung, K.-P.; Ip, M. Enhancing Antibiotics Efficacy by Combination of Kuraridin and Epicatechin Gallate with Antimicrobials against Methicillin-Resistant Staphylococcus aureus. Antibiotics 2023, 12, 117. https://doi.org/10.3390/antibiotics12010117
Chan BC-L, Barua N, Lau CB-S, Leung P-C, Fung K-P, Ip M. Enhancing Antibiotics Efficacy by Combination of Kuraridin and Epicatechin Gallate with Antimicrobials against Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2023; 12(1):117. https://doi.org/10.3390/antibiotics12010117
Chicago/Turabian StyleChan, Ben Chung-Lap, Nilakshi Barua, Clara Bik-San Lau, Ping-Chung Leung, Kwok-Pui Fung, and Margaret Ip. 2023. "Enhancing Antibiotics Efficacy by Combination of Kuraridin and Epicatechin Gallate with Antimicrobials against Methicillin-Resistant Staphylococcus aureus" Antibiotics 12, no. 1: 117. https://doi.org/10.3390/antibiotics12010117
APA StyleChan, B. C. -L., Barua, N., Lau, C. B. -S., Leung, P. -C., Fung, K. -P., & Ip, M. (2023). Enhancing Antibiotics Efficacy by Combination of Kuraridin and Epicatechin Gallate with Antimicrobials against Methicillin-Resistant Staphylococcus aureus. Antibiotics, 12(1), 117. https://doi.org/10.3390/antibiotics12010117