Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Literature Search
2.2. Study Characteristics and Risk of Bias
2.3. Bacterial Identification and Resistance Testing Methods
2.4. Microorganisms Isolated
2.5. Antimicrobial Resistance
3. Discussion
4. Materials and Methods
4.1. Literature Search Strategy and Selection
4.2. Inclusion and Exclusion Criteria
4.3. Data Extraction and Quality Appraisal
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hazarika, N. Acne vulgaris: New evidence in pathogenesis and future modalities of treatment. J. Dermatol. Treat. 2021, 32, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Efthimiou, J.; Dréno, B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect. Dis. 2016, 16, e23–e33. [Google Scholar] [CrossRef] [Green Version]
- Karadag, A.S.; Aslan Kayıran, M.; Wu, C.Y.; Chen, W.; Parish, L.C. Antibiotic resistance in acne: Changes, consequences and concerns. J. Eur. Acad. Derm. Venereol. 2021, 35, 73–78. [Google Scholar] [CrossRef]
- Adler, B.L.; Kornmehl, H.; Armstrong, A.W. Antibiotic Resistance in Acne Treatment. JAMA Dermatol. 2017, 153, 810–811. [Google Scholar] [CrossRef] [PubMed]
- Claudel, J.P.; Auffret, N.; Leccia, M.T.; Poli, F.; Corvec, S.; Dréno, B. Staphylococcus epidermidis: A Potential New Player in the Physiopathology of Acne? Dermatology 2019, 235, 287–294. [Google Scholar] [CrossRef]
- Dreno, B.; Martin, R.; Moyal, D.; Henley, J.B.; Khammari, A.; Seité, S. Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne. Exp. Dermatol. 2017, 26, 798–803. [Google Scholar] [CrossRef] [Green Version]
- Acne Group Combination of Traditional Western Medicine; Chinese Society of Dermatology Acne Group; Chinese Dermatologist. Chinese Guidelines for the Management of Acne Vulgaris: 2019 Update. Int. J. Dermatol. Venereol. 2019, 2, 129–137. [Google Scholar] [CrossRef]
- Thiboutot, D.M.; Dréno, B.; Abanmi, A.; Alexis, A.F.; Araviiskaia, E.; Cabal, M.I.B.; Bettoli, V.; Casintahan, F.; Chow, S.; da Costa, A.; et al. Practical management of acne for clinicians: An international consensus from the Global Alliance to Improve Outcomes in Acne. J. Am. Acad. Dermatol. 2018, 78, S1–S23.e1. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.L.; Abad-Casintahan, F.; Aw, D.C.; Baba, R.; Chan, L.C.; Hung, N.T.; Kulthanan, K.; Leong, H.N.; Medina-Oblepias, M.S.; Noppakun, N.; et al. South-East Asia study alliance guidelines on the management of acne vulgaris in South-East Asian patients. J. Derm. 2015, 42, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S.; et al. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973.e33. [Google Scholar] [CrossRef]
- Nast, A.; Dréno, B.; Bettoli, V.; Bukvic Mokos, Z.; Degitz, K.; Dressler, C.; Finlay, A.Y.; Haedersdal, M.; Lambert, J.; Layton, A.; et al. European evidence-based (S3) guideline for the treatment of acne–update 2016–short version. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1261–1268. [Google Scholar] [CrossRef]
- Yang, J.; Yang, H.; Xu, A.; He, L. A Review of Advancement on Influencing Factors of Acne: An Emphasis on Environment Characteristics. Front. Public Health 2020, 8, 450. [Google Scholar] [CrossRef]
- Sitohang, I.B.S.; Fathan, H.; Effendi, E.; Wahid, M. The susceptibility of pathogens associated with acne vulgaris to antibiotics. Med. J. Indones. 2019, 28, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Sari, L.; Jusuf, N.K.; Putra, I.B. Bacterial identification of acne vulgaris. Bali Med. J. 2020, 9, 4. [Google Scholar] [CrossRef]
- Jusuf, N.K.; Putra, I.B.; Sari, L. Differences of Microbiomes Found in Non-Inflammatory and Inflammatory Lesions of Acne Vulgaris. Clin. Cosmet. Investig. Dermatol. 2020, 13, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Sari, L.; Jusuf, N.K.; Putra, I.B. Bacterial sensitivity pattern to antibiotics in acne vulgaris at Universitas Sumatera Utara Hospital Medan, Indonesia in 2019. J. Gen Proced Derm. Venereol. Indones 2022, 6, 1–6. [Google Scholar] [CrossRef]
- Soelistina, I.; Widjaja, E.S. Kepekaan kuman P. acnes di divisi kosmetik medik unit rawat jalan penyakit kulit dan kelamin RSUD Dr. Soetomo Surabaya. Media Derm. Venereol Indones 2001, 28, 258–261. [Google Scholar]
- Barira, S.; Pratomo, U.S.; Sudharmono, A. Positivity Proportion and Resistance Pattern of Propionibacterium Acnes to Oral Antibiotics in Patients with Moderate and Severe Acne Vulgaris in Department of Dermatology and Venerelogy, DR. Cipto Mangunkusumo Hospital Jakarta; Universitas Indonesia: Jakarta, Indonesia, 2006. [Google Scholar]
- Syahrial, M. Pola Resistensi Propionibacterium Acnes Terhadap Antibiotika Oral Pada Pasien Akne Vulgaris di RSUP H. Adam Malik Medan. Master’s Thesis, Universitas Sumatera Utara, Medan, Indonesia, 2009. [Google Scholar]
- Sylvia, L. Hubungan Antara Jenis Mikroorganisme Yang Ditemukan Pada Lesi Akne Dengan Bentuk Lesi Akne. Master’s Thesis, Universitas Andalas, Padang, Indonesia, 2010. [Google Scholar]
- Anasyifa, H. Uji Sensitivitas Isolat Bakteri Propionibacterium Acnes Terhadap Pemberian Antibiotik Tetrasiklin, Doksisiklin, Klindamisin, dan Eritromisin; Undergraduate, Universitas Pembangunan Nasional Veteran Jakarta: Jakarta, Indonesia, 2016. [Google Scholar]
- Hindritiani, R.; Soedarwoto, A.; Ruchiatan, K.; Suwarsa, O.; Budiarti, M.U.; Husadani, D.; Pranata, A.Y. Antibiotic resistance of propionibacterium acnes from acne vulgaris lesions in dr. Hasan Sadikin Hospital Bandung. Media Derm. Venereol Indones 2017, 44, 15–19. [Google Scholar]
- Iryani, N.P.N. Analysis of the Association between Sebum Levels and Staphylococcus Epidermidis Infection Identified by PCR in Comedonal, Papular, and Nodular Type of Acne Vulgaris. Master’s Thesis, Universitas Hasanuddin, Makassar, Indonesia, 2018. [Google Scholar]
- Asditya, A.; Rahmadewi; Zulkarnain, I.; Hidayati, A.N. Uji kepekaan antibiotik oral terhadap bakteri Propionilbacterium acnes pasien akne vulgaris derajat sedang berat. Berk. Ilmu Kesehat. Kulit Dan Kelamin 2019, 31, 228–235. [Google Scholar] [CrossRef]
- Hapsari, Y.; Hidajat, D.; Hartati, F. Susceptibility of acne microbiota to antibiotics in high school students with moderate-sever acne in Mataram, West Nusa Tenggara. J. Kedokt. UNRAM 2019, 8, 1–6. [Google Scholar] [CrossRef]
- Tabri, F. The association between Staphylococcus epidermidis and palmitic acid level in patients with acne vulgaris. Surg. Cosmet Derm. 2019, 11, 105–109. [Google Scholar] [CrossRef]
- Fadilla, Y.; Hindritiani, R.; Ruchiatan, K.; Rowawi, R.; Darmadji, H.P.; Dwiyana, R.F.; Haryati, N.S. Bacterial pattern and antibiotic resistance from pustule of acne vulgaris patients in Dr. Hasan Sadikin General Hospital Bandung. In Proceedings of the Pertemuan Ilmiah Tahunan XVII PERDOSKI, Medan, Indonesia, 24 August 2019. [Google Scholar]
- Ruchiatan, K.; Hindritiani, R.; Hafinah, R.; Suwarsa, O.; Dwiyana, R.F.; Gunawan, H.; Rowawi, R.; Sutedja, E. Bacterial profile and antibiotic resistance from comedone of acne vulgaris patients in West Java, Indonesia. Sapporo Med. J. 2020, 54, 1–5. [Google Scholar]
- Hermawan, M.; Tjoa, E.; Hidajat, I.J.; Teressa, M.; Layadi, E.B.; Wolter, A. Prevalence of Cutibacterium acnes and Staph spp. in the lesions of acne vulgaris in Jakarta. J. Gen. Proced. Derm. Venereol. Indones 2021, 5, 86–91. [Google Scholar] [CrossRef]
- Muhammad, N.I.; Dabbagh, R.A. Isolation and identification of microorganisms in acne patients. Zanco J. Med. Sci. 2016, 20, 1330–1336. [Google Scholar] [CrossRef]
- El-Tonsy, T.M.K.; Mohammed, M.A.; Hamed, Y.A.E.-E.; Tawfik, S.H. Bacteriological study of Acne Vulgaris in Cairo Egypt. Egypt J. Hosp. Med. 2018, 72, 5203–5209. [Google Scholar] [CrossRef]
- Moon, S.H.; Roh, H.S.; Kim, Y.H.; Kim, J.E.; Ko, J.Y.; Ro, Y.S. Antibiotic resistance of microbial strains isolated from Korean acne patients. J. Dermatol. 2012, 39, 833–837. [Google Scholar] [CrossRef]
- Akaza, N.; Takasaki, K.; Nishiyama, E.; Usui, A.; Miura, S.; Yokoi, A.; Futamura, K.; Suzuki, K.; Yashiro, Y.; Yagami, A. The Microbiome in Comedonal Contents of Inflammatory Acne Vulgaris is Composed of an Overgrowth of Cutibacterium Spp. and Other Cutaneous Microorganisms. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, H.S.; Lee, S.H.; Kim, S. Characterization and Analysis of the Skin Microbiota in Acne: Impact of Systemic Antibiotics. J. Clin. Med. 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ran, X.; Tang, J.; Pradhan, S.; Dai, Y.; Zhuang, K.; Ran, Y. Skin Microbiota in Non-inflammatory and Inflammatory Lesions of Acne Vulgaris: The Underlying Changes within the Pilosebaceous Unit. Mycopathologia 2021, 186, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Loss, M.; Thompson, K.G.; Agostinho-Hunt, A.; James, G.A.; Mongodin, E.F.; Rosenthal, I.; Cheng, N.; Leung, S.; Chien, A.L.; Kang, S. Noninflammatory comedones have greater diversity in microbiome and are more prone to biofilm formation than inflammatory lesions of acne vulgaris. Int. J. Dermatol. 2021, 60, 589–596. [Google Scholar] [CrossRef]
- Poomanee, W.; Chaiyana, W.; Mueller, M.; Viernstein, H.; Khunkitti, W.; Leelapornpisid, P. In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism of action against Propionibacterium acnes. Anaerobe 2018, 52, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.J.; Marito, S.; Yang, J.J.; Keshari, S.; Chew, C.H.; Chen, C.C.; Huang, C.M. A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. Int. J. Mol. Sci. 2018, 20, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyner, H.; Patel, R. Propionibacterium acnes biofilm–A sanctuary for Staphylococcus aureus? Anaerobe 2016, 40, 63–67. [Google Scholar] [CrossRef]
- Lo, C.-W.; Lai, Y.-K.; Liu, Y.-T.; Gallo, R.L.; Huang, C.-M. Staphylococcus aureus Hijacks a Skin Commensal to Intensify Its Virulence: Immunization Targeting β-Hemolysin and CAMP Factor. J. Investig. Dermatol. 2011, 131, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorvash, F.; Abdi, F.; Kashani, H.; Naeini, F.; Narimani, T. Staphylococcus aureus in acne pathogenesis: A case-control study. N. Am. J. Med. Sci. 2012, 4, 573–576. [Google Scholar] [CrossRef] [Green Version]
- Swallow, M.A.; Fan, R.; Cohen, J.M.; Bunick, C.G. Antibiotic Resistance Risk with Oral Tetracycline Treatment of Acne Vulgaris. Antibiotics 2022, 11, 1032. [Google Scholar] [CrossRef]
- Tang, J.J.; Heng, A.; Chan, L.C.; Tang, M.M.; Roshidah, B. Antibiotic sensitivity of pro pionibacterium acnes isolated from patients with acne vulgaris in Hospital Kuala Lumpur, Malaysia. Malay J. Derm. 2012, 28, 1–8. [Google Scholar]
- Jha, A.; Barkham, T.; Chan, S.P.; Tan, A.W.H.; Tang, M.B.Y.; Tan, H.H.; Koh, M.J.A.; Tee, S.; Tan, V. Antibiotic Sensitivity of Cutibacterium acnes Isolates from Acne Patients in a Skin Hospital in Singapore. J. Clin. Exp. Dermatol. Res. 2019, 10, 484. [Google Scholar] [CrossRef]
- Laochunsuwan, A.; Taweechotipatr, M.; Udompataikul, M. In vitro study of antibiotic susceptibility of Propionibacterium acnes strains isolated from acne vulgaris patients. J. Med. Assoc. Thai. 2012, 100, 24. [Google Scholar]
- Zhu, T.; Zhu, W.; Wang, Q.; He, L.; Wu, W.; Liu, J.; Li, Y.; Sun, D. Antibiotic susceptibility of Propionibacterium acnes isolated from patients with acne in a public hospital in Southwest China: Prospective cross-sectional study. BMJ Open 2019, 9, e022938. [Google Scholar] [CrossRef] [Green Version]
- Luk, N.M.; Hui, M.; Lee, H.C.; Fu, L.H.; Liu, Z.H.; Lam, L.Y.; Eastel, M.; Chan, Y.K.; Tang, L.S.; Cheng, T.S.; et al. Antibiotic-resistant Propionibacterium acnes among acne patients in a regional skin centre in Hong Kong. J. Eur. Acad. Derm. Venereol. 2013, 27, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Bhooshan, S.; Johnson, A.; Asati, D.P.; Nema, S.; Biswas, D. Association of Antimicrobial Susceptibility and Treatment Outcome in Acne Vulgaris Patients: A Pilot Study. J. Lab. Physicians 2020, 12, 233–238. [Google Scholar] [CrossRef]
- Zandi, S.; Vares, B.; Abdollahi, H. Determination of microbial agents of acne vulgaris and Propionibacterium acnes antibiotic resistance in patients referred to dermatology clinics in Kerman, Iran. Jundishapur J. Microbiol. 2011, 4, 17–22. [Google Scholar]
- Sheffer-Levi, S.; Rimon, A.; Lerer, V.; Shlomov, T.; Coppenhagen-Glazer, S.; Rakov, C.; Zeiter, T.; Nir-Paz, R.; Hazan, R.; Molho-Pessach, V. Antibiotic Susceptibility of Cutibacterium acnes Strains Isolated from Israeli Acne Patients. Acta Derm. Venereol. 2020, 100, adv00295. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Nakase, K.; Hayashi, N.; Nakaminami, H.; Noguchi, N. Increased prevalence of doxycycline low-susceptible Cutibacterium acnes isolated from acne patients in Japan caused by antimicrobial use and diversification of tetracycline resistance factors. J. Dermatol. 2021, 48, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Alkhawaja, E.; Hammadi, S.; Abdelmalek, M.; Mahasneh, N.; Alkhawaja, B.; Abdelmalek, S.M. Antibiotic resistant Cutibacterium acnes among acne patients in Jordan: A cross sectional study. BMC Dermatol. 2020, 20, 17. [Google Scholar] [CrossRef]
- Dumont-Wallon, G.; Moyse, D.; Blouin, E.; Dréno, B. Bacterial resistance in French acne patients. Int. J. Dermatol. 2010, 49, 283–288. [Google Scholar] [CrossRef]
- Nenoff, P.; Koch, D.; Krüger, C.; Neumeister, C.; Götz, M.R.; Schwantes, U.; Bödeker, R.H.; Borelli, C. Activity of nadifloxacin and three other antimicrobial agents against Cutibacterium acnes isolated from patients with acne vulgaris. J. Eur. Acad. Derm. Venereol. 2021, 35, e682–e684. [Google Scholar] [CrossRef]
- Giannopoulos, L.; Papaparaskevas, J.; Refene, E.; Daikos, G.; Stavrianeas, N.; Tsakris, A. MLST typing of antimicrobial-resistant Propionibacterium acnes isolates from patients with moderate to severe acne vulgaris. Anaerobe 2015, 31, 50–54. [Google Scholar] [CrossRef]
- Ross, J.I.; Snelling, A.M.; Carnegie, E.; Coates, P.; Cunliffe, W.J.; Bettoli, V.; Tosti, G.; Katsambas, A.; Galvan Peréz Del Pulgar, J.I.; Rollman, O.; et al. Antibiotic-resistant acne: Lessons from Europe. Br. J. Dermatol. 2003, 148, 467–478. [Google Scholar] [CrossRef]
- Bettoli, V.; Borghi, A.; Rossi, R.; Ferroni, M.; Rigolin, F.; Virgili, A. Antibiotic Resistance of Propionibacteria. Dermatology 2006, 212, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Skadins, I.; Zavorins, A.; Kroica, J.; Pavloviča, T.; Bruzgule, D.; Averjanova, T. Antibacterial Susceptibility Testing of Cutibacterium acnes in Acne Vulgaris Patients. Clin. Cosmet. Investig. Dermatol. 2021, 14, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Özel Kaya, N.; Usta, İ.; Demirçay, Z.; Ülger Toprak, N. Phylotyping and Determining the Antimicrobial Susceptibility of Cutibacterium acnes Isolated from Patients with Acne Vulgaris. Mikrobiyol. Bul. 2021, 55, 465–479. [Google Scholar] [CrossRef]
- Kuet, K.; Fryatt, E.; Eady, A.; Layton, A.M. Antibiotic resistance rates in cutaneous propionibacteria from UK patients with acne are not falling. Clin. Exp. Dermatol. 2018, 43, 467–468. [Google Scholar] [CrossRef]
- Toyne, H.; Webber, C.; Collignon, P.; Dwan, K.; Kljakovic, M. Propionibacterium acnes (P. acnes) resistance and antibiotic use in patients attending Australian general practice. Australas. J. Dermatol. 2012, 53, 106–111. [Google Scholar] [CrossRef]
- Mendoza, N.; Hernandez, P.O.; Tyring, S.K.; Haitz, K.A.; Motta, A. Antimicrobial susceptibility of Propionibacterium acnes isolates from acne patients in Colombia. Int. J. Dermatol. 2013, 52, 688–692. [Google Scholar] [CrossRef]
- Schafer, F.; Fich, F.; Lam, M.; Gárate, C.; Wozniak, A.; Garcia, P. Antimicrobial susceptibility and genetic characteristics of Propionibacterium acnes isolated from patients with acne. Int. J. Dermatol. 2013, 52, 418–425. [Google Scholar] [CrossRef]
- Solís, M.B.; Zurita, J.; Velasco, N.; Dressendorfer, L.M. Antimicrobial Susceptibility of Cutibacterium acnes Isolated from Ecuadorian Patients with Acne Vulgaris. Skinmed 2018, 16, 159–165. [Google Scholar]
- Abdel Fattah, N.S.; Darwish, Y.W. In vitro antibiotic susceptibility patterns of Propionibacterium acnes isolated from acne patients: An Egyptian university hospital-based study. J. Eur. Acad. Derm. Venereol. 2013, 27, 1546–1551. [Google Scholar] [CrossRef]
- González, R.; Welsh, O.; Ocampo, J.; Hinojosa-Robles, R.M.; Vera-Cabrera, L.; Delaney, M.L.; Gómez, M. In vitro antimicrobial susceptibility of Propionibacterium acnes isolated from acne patients in northern Mexico. Int. J. Dermatol. 2010, 49, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Dunaway, S.; Fleischer, A.B. Assessing adherence to evidence-based guidelines of care for acne vulgaris. J. Dermatol. Treat. 2022, 33, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Herawati, F.; Setiasih; Alhabsyi, M.M.; Gunawan, W.; Palijama, D.E.; Diah, L.F.; Adriansyah, N.A.; Yulia, R.; Avanti, C. A patient caregiver survey in Indonesia: Knowledge and perception of antibiotic use and microbial resistance. J. Infect. Public Health 2020, 13, 2087–2091. [Google Scholar] [CrossRef]
- Setiawan, E.; Cotta, M.O.; Abdul-Aziz, M.H.; Sosilya, H.; Widjanarko, D.; Wardhani, D.K.; Roberts, J.A. Indonesian healthcare providers’ perceptions and attitude on antimicrobial resistance, prescription and stewardship programs. Future Microbiol. 2022, 17, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Wasitaatmadja, S.M.; Arimuko, A.; Norawati, L.; Bernadette, I.B.S.; Legiawati, L. Pedoman Tata Laksana Akne di Indonesia, 2nd ed.; KSDKI: Jakarta, Indonesia, 2015. [Google Scholar]
- Limato, R.; Lazarus, G.; Dernison, P.; Mudia, M.; Alamanda, M.; Nelwan, E.J.; Sinto, R.; Karuniawati, A.; Van Doorn, H.R.; Hamers, R.L. Optimizing antibiotic use in Indonesia: A systematic review and evidence synthesis to inform opportunities for intervention. Lancet Reg. Health-Southeast Asia 2022, 2, 100013. [Google Scholar] [CrossRef]
- Limato, R.; Nelwan, E.J.; Mudia, M.; de Brabander, J.; Guterres, H.; Enty, E.; Mauleti, I.Y.; Mayasari, M.; Firmansyah, I.; Hizrani, M.; et al. A multicentre point prevalence survey of patterns and quality of antibiotic prescribing in Indonesian hospitals. JAC Antimicrob. Resist. 2021, 3, dlab047. [Google Scholar] [CrossRef]
- Pratiwi, W.; Handayani, T.P. Antibiotic self-medication among non-medical practitioners in Cirebon city, Indonesia. J. Pharm. Health Serv. Res. 2020, 11, 81–83. [Google Scholar] [CrossRef]
- George, S.; Muhaj, F.F.; Nguyen, C.D.; Tyring, S.K. Part I Antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J. Am. Acad. Dermatol. 2022, 86, 1189–1204. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, J.-H.; Lee, J. Antibiofilm activities of fatty acids including myristoleic acid against Cutibacterium acnes via reduced cell hydrophobicity. Phytomedicine 2021, 91, 153710. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lee, J.H.; Park, S.; Lee, J. The Anticancer Agent 3,3’-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans. Microbiol. Spectr. 2022, 10, e0205621. [Google Scholar] [CrossRef]
- Del Rosso, J.Q.; Webster, G.F.; Rosen, T.; Thiboutot, D.; Leyden, J.J.; Gallo, R.; Walker, C.; Zhanel, G.; Eichenfield, L. Status report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic prescribing patterns, sources of antibiotic exposure, antibiotic consumption and emergence of antibiotic resistance, impact of alterations in antibiotic prescribing, and clinical sequelae of antibiotic use. J. Clin. Aesthet. Dermatol. 2016, 9, 18–24. [Google Scholar]
- Wibisono, E.A.; Indramaya, D.M.; Rochmanti, M. Retrospective study: Initial pharmacotherapy profile of new acne vulgaris patients. J. Berk. Epidemiol. 2020, 8, 236. [Google Scholar] [CrossRef]
- Ruchiatan, K.; Rahardja, J.I.; Rezano, A.; Hindritiani, R.; Sutedja, E.; Gunawan, H. A five-year clinical acne patients profiles and its management based on Indonesian acne expert guideline in Bandung, Indonesia. J. Pak. Assoc. Derm. 2020, 30, 229–234. [Google Scholar]
- Wulandari, L.P.L.; Khan, M.; Liverani, M.; Ferdiana, A.; Mashuri, Y.A.; Probandari, A.; Wibawa, T.; Batura, N.; Schierhout, G.; Kaldor, J.; et al. Prevalence and determinants of inappropriate antibiotic dispensing at private drug retail outlets in urban and rural areas of Indonesia: A mixed methods study. BMJ Glob. Health 2021, 6, e004993. [Google Scholar] [CrossRef] [PubMed]
- Bunick, C.G.; Keri, J.; Tanaka, S.K.; Furey, N.; Damiani, G.; Johnson, J.L.; Grada, A. Antibacterial Mechanisms and Efficacy of Sarecycline in Animal Models of Infection and Inflammation. Antibiotics 2021, 10, 439. [Google Scholar] [CrossRef]
- Zhanel, G.; Critchley, I.; Lin, L.-Y.; Alvandi, N. Microbiological Profile of Sarecycline, a Novel Targeted Spectrum Tetracycline for the Treatment of Acne Vulgaris. Antimicrob. Agents Chemother. 2018, 63, e01297-18. [Google Scholar] [CrossRef] [Green Version]
- Rademacher, F.; Gläser, R.; Harder, J. Antimicrobial peptides and proteins: Interaction with the skin microbiota. Exp. Dermatol. 2021, 30, 1496–1508. [Google Scholar] [CrossRef]
- Tao, S.; Wang, Z.; Quan, C.; Ge, Y.; Qian, Q. The effects of ALA-PDT on microbiota in pilosebaceous units of patients with severe acne: A metagenomic study. Photodiagnosis Photodyn. Ther. 2021, 33, 102050. [Google Scholar] [CrossRef]
- Farfán, J.; Gonzalez, J.M.; Vives, M. The immunomodulatory potential of phage therapy to treat acne: A review on bacterial lysis and immunomodulation. PeerJ 2022, 10, e13553. [Google Scholar] [CrossRef]
- Sánchez-Pellicer, P.; Navarro-Moratalla, L.; Núñez-Delegido, E.; Ruzafa-Costas, B.; Agüera-Santos, J.; Navarro-López, V. Acne, Microbiome, and Probiotics: The Gut-Skin Axis. Microorganisms 2022, 10, 1303. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Brooke, B.S.; Schwartz, T.A.; Pawlik, T.M. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021, 156, 787–788. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid. Based Health 2015, 13, 147–153. [Google Scholar] [CrossRef] [PubMed]
No | Study (Author, Year) | Ref | Study Period | Region | Sample Size | Acne Severity | Type of Lesions | Identification Method | Bacteria Identified |
---|---|---|---|---|---|---|---|---|---|
1 | Soelistina, I. 2001 | [17] | 2000 | Surabaya | 67 | ND | Pustule | ANC | CA |
2 | Barira, S. 2006 | [18] | from 4/2005 to 9/2005 | Jakarta | 50 | Moderate to severe | Comedone | ANC | CA, SE, AGPB, AGNB, cocci, AHC, AD, BF |
3 | Syahrial, M.A. 2009 | [19] | from 12/2008 to 8/2009 | Medan | 43 | Moderate to severe | Comedone | ANC | CA, SE, cocci, BF, AHC |
4 | Sylvia, L. 2010 | [20] | from 8/2010 to 11/2010 | Padang | 33 | ND | Comedone and pustule | AEC, ANC | CA, SE, SA, KS, ES, coliform, |
5 | Anasyifa, H. 2016 | [21] | 4/2016 | Jakarta | 10 | Moderate to severe | ND | AEC | CA |
6 | Hindritiani, R. 2017 | [22] | 2014 | Bandung | 50 | Mild to severe | Comedone, pustule, and skin swabbing | ANC | CA |
7 | Iryani, F. 2018 | [23] | from 5/2016 to 6/2016 | Makassar | 45 | Mild to severe | Comedone, pustule, papule, and nodule | Culture (unspecified), PCR | CA, SE, SA, BS, ES |
8 | Sitohang, I.B.S. 2019 | [13] | from 12/2015 to 1/2016 | Jakarta | 93 | Mild to severe | Comedone | AEC, ANC | CA, SE, SA, SH, KP, SHa. AV, CB, CD, CG |
9 | Asditya, A. 2019 | [24] | 2018 | Surabaya | 40 | Moderate to severe | Pustule | ANC | CA, CU |
10 | Hapsari, Y. 2019 | [25] | 10/2018 | Mataram | 43 | Moderate to severe | ND | Culture (unspecified) | SE, SA, BC, BSu, PS, AeV |
11 | Tabri, F. 2019 | [26] | from 7/2017 to 8/2017 | Makassar | 43 | Mild to severe | Comedone | Culture (unspecified), PCR | CA, SE, SH, SW, SX, SA, SAu, SHa, SC, LP |
12 | Fadilla, Y. 2019 | [27] | from 1/2018 to 2/2018 | Bandung | 30 | Mild to moderate | Pustule | AEC, ANC | CA, SE, SH, AO, SC, SAu, SL, PA, CK, PAn |
13 | Ruchiatan, K. 2020 | [28] | from 1/2019 to 2/2019 | Bandung | 30 | Mild to severe | Comedone | AEC, ANC | CA, SE, SH, SC, SHa, SW, PAn, KP, EA |
14 | Jusuf N.K. 2020 | [15] | from 11/2019 to 12/2019 | Medan | 40 | Mild to severe | Comedone and pustule | AEC, ANC | CA, SE, SH, SA, SHa, LM, ML, KV, SV, SCo, SAr, DN |
15 | Hermawan, M. 2021 | [29] | ND | Jakarta | 36 | Mild to severe | Comedone, pustule, papule, and nodule | AEC, ANC | CA, SE, SA, others |
16 | Sari, L. 2022 | [16] | from 12/2019 to 1/2020 | Medan | 40 | Mild to severe | Comedone and pustule | AEC, ANC | CA, SE, SH, SA, SHa, LM, ML, KV, SV, SCo, SAr, DN |
No | Study (Author, Year) | Ref | Study Year | Region | AST | Tested Bacterial Species | Tested Antibiotics |
---|---|---|---|---|---|---|---|
1 | Soelistina, I. 2001 | [17] | 2000 | Surabaya | DD | CA | CLI, DOX, ERY, SXT, TET |
2 | Barira, S. 2006 | [18] | 2005 | Jakarta | DD | CA | CLI, DOX, ERY, MNO, TET |
3 | Syahrial, M.A. 2009 | [19] | 2009 | Medan | DD | CA | CLI, DOX, ERY, MNO, TET |
4 | Anasyifa, H. 2016 | [20] | 2016 | Jakarta | DD | CA | CLI, DOX, ERY, TET |
5 | Hindritiani, R. 2017 | [21] | 2014 | Bandung | DD | CA | CLI, DOX, ERY, MNO, TET |
6 | Sitohang, I.B.S. 2019 | [22] | 2016 | Jakarta | E-test | CA, SA, SE | CLI, DOX, ERY, MNO, TET |
7 | Asditya, A. 2019 | [24] | 2018 | Surabaya | DD | CA | AZI, CLI, DOX, ERY |
8 | Hapsari, Y. 2019 | [25] | 2018 | Mataram | DD | SA, SE | AMX, AZI, CHL, CIP, CLI, DOX, ERY, LVX, TET, SXT |
9 | Fadilla, Y. 2019 | [27] | 2018 | Bandung | DD | CA, SE, SH, AO, SC, SAu, SL, PA, CK, PAn | AZI, CFR, CLI, DOX, ERY, LVX, MNO, TET, SXT |
10 | Ruchiatan, K. 2020 | [28] | 2019 | Bandung | DD | CA, SE, SH, SC, SHa, SW, PA, KP, EA | AZI, CFR, CLI, DOX, ERY, LVX, MNO, TET, SXT |
11 | Sari, L. 2022 | [16] | 2020 | Medan | DD | CA, SE, SH, SA, SHa, LM, ML, KV, SV, SCo, SAr, DN | AZI, CIP, CLI, DOX, ERY, LVX, MNO, TET |
Antibiotics | No. of Studies | No. of Isolates | Resistance (%) [95% CIs] | I2 (%) | p-Value |
---|---|---|---|---|---|
Cutibacterium acnes | |||||
Tetracyclines | |||||
Tetracycline (TET) | 9 | 221 | 28.5 [10.7–50.1] | 90 | <0.01 |
Minocycline (MNO) | 7 | 179 | 9.0 [3.6–16.0] | 41 | 0.10 |
Doxycycline (DOX) | 10 | 258 | 5.6 [2.5–9.6] | 14 | 0.32 |
Macrolides | |||||
Erythromycin (ERY) | 10 | 258 | 60.1 [42.5–76.5] | 87 | <0.01 |
Azithromycin (AZI) | 4 | 108 | 53.6 [19.5–86.0] | 93 | <0.01 |
Lincosamide | |||||
Clindamycin (CLI) | 10 | 258 | 53.3 [38.4–68.0] | 82 | <0.01 |
Staphylococcus epidermidis | |||||
Tetracyclines | |||||
Tetracycline (TET) | 5 | 132 | 24.8 [13.2–38.5] | 60 | 0.04 |
Minocycline (MNO) | 4 | 111 | 0.0 [0.0–2.4] | 9 | 0.35 |
Doxycycline (DOX) | 5 | 132 | 11.9 [4.3–21.9] | 49 | 0.10 |
Macrolides | |||||
Erythromycin (ERY) | 5 | 132 | 58.5 [49.7–67.1] | 0 | 0.59 |
Azithromycin (AZI) | 4 | 86 | 52.4 [41.4–63.3] | 0 | 0.53 |
Lincosamide | |||||
Clindamycin (CLI) | 5 | 132 | 54.8 [40.5–68.7] | 58 | 0.05 |
Staphylococcus aureus | |||||
Tetracyclines | |||||
Tetracycline (TET) | 3 | 26 | 9.2 [0.0–34.7] | 52 | 0.12 |
Minocycline (MNO) | 2 | 14 | 0.0 [0.0–13.5] | N/A | N/A |
Doxycycline (DOX) | 3 | 26 | 13.2 [0.0–44.9] | 64 | 0.06 |
Macrolides | |||||
Erythromycin (ERY) | 3 | 26 | 42.1 [22.5–62.8] | 0 | 0.63 |
Azithromycin (AZI) | 2 | 19 | 5.4 [0.0–22.9] | N/A | N/A |
Lincosamide | |||||
Clindamycin (CLI) | 3 | 26 | 21.3 [0.0–67.3] | 80 | 0.01 |
Location | Year | TET | MNO | DOX | ERY | AZI | CLI | Any AB |
---|---|---|---|---|---|---|---|---|
Indonesia (this study) | 2010–2022 | 14 | 10 | 5 | 54 | 54 | 51 | ≥54 |
Southeast Asia | ||||||||
Malaysia [43] | 2012 | 2 | 0 | 6 | 8 | ND | 15 | 15 |
Singapore [44] | 2019 | 6 | 2 | 9 | 27 | ND | 27 | 29 |
Thailand [45] | 2017 | 1 | ND | 0 | 64 | ND | 63 | ≥64 |
Asia | ||||||||
China [46] | 2019 | 3 | ND | 1 | 58 | 59 | 56 | ≥59 |
Hong Kong [47] | 2013 | 16 | 16 | 16 | 21 | ND | 54 | 55 |
India [48] | 2020 | 7 | 0 | 2 | 31 | ND | 12 | ≥31 |
Iran [49] | 2011 | 7 | ND | 2 | 16 | 2 | 43 | ≥43 |
Israel [50] | 2020 | 9 | 11 | 19 | 25 | ND | 17 | 31 |
Japan [51] | 2019 | ND | 0 | 3 | 50 | ND | 43 | ≥43 |
Jordan [52] | 2020 | 36 | 3 | 37 | 73 | ND | 59 | ≥73 |
South Korea [32] | 2012 | 3 | 10 | 7 | 30 | ND | 27 | 37 |
Europe | ||||||||
France [53] | 2010 | 10 | ND | 10 | 75 | ND | ND | ≥75 |
Germany [54] | 2021 | 0 | ND | ND | 15 | ND | 4 | ≥15 |
Greece [55] | 2014 | ND | 0 | 1 | 32 | ND | 29 | ≥32 |
Hungary [56] | 2003 | 0 | ND | ND | 47 | ND | 45 | 52 |
Italy [57] | 2006 | 2 | 1 | ND | 50 | ND | 41 | 57 |
Latvia [58] | 2021 | ND | ND | ND | 30 | ND | 21 | ≥30 |
Spain [56] | 2003 | 5 | ND | ND | 91 | ND | 91 | 94 |
Sweden [56] | 2003 | 14 | ND | ND | 45 | ND | 57 | 58 |
Turkey [59] | 2021 | 4 | ND | 5 | 30 | 35 | 23 | ≥35 |
UK [60] | 2018 | 20 | ND | ND | 77 | ND | 77 | 82 |
Others | ||||||||
Australia [61] | 2012 | <9 | <9 | <9 | <6 | ND | <6 | 11 |
Colombia [62] | 2013 | <10 | ND | <10 | 35 | ND | 15 | ≥35 |
Chile [63] | 2013 | 0 | ND | 0 | 13 | ND | 8 | ≥26 |
Ecuador [64] | 2018 | 10 | 3 | ND | 30 | ND | 11 | ≥30 |
Egypt [65] | 2013 | 26 | ND | 16 | 91 | 9 | 72 | ≥91 |
Mexico [66] | 2010 | 14 | 0 | 20 | 46 | 82 | 36 | ≥82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legiawati, L.; Halim, P.A.; Fitriani, M.; Hikmahrachim, H.G.; Lim, H.W. Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics 2023, 12, 145. https://doi.org/10.3390/antibiotics12010145
Legiawati L, Halim PA, Fitriani M, Hikmahrachim HG, Lim HW. Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics. 2023; 12(1):145. https://doi.org/10.3390/antibiotics12010145
Chicago/Turabian StyleLegiawati, Lili, Paulus Anthony Halim, Magna Fitriani, Hardya Gustada Hikmahrachim, and Henry W. Lim. 2023. "Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis" Antibiotics 12, no. 1: 145. https://doi.org/10.3390/antibiotics12010145
APA StyleLegiawati, L., Halim, P. A., Fitriani, M., Hikmahrachim, H. G., & Lim, H. W. (2023). Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics, 12(1), 145. https://doi.org/10.3390/antibiotics12010145