Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study
Abstract
:1. Introduction
2. Results
2.1. Demographic Charateristics
2.2. Antibiotic Resistance Profiles
2.3. ESBL and Carbapenemase Production Profiles
2.4. Real-Time Multiplex PCR Analysis
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Ethical Approval
4.2. Study Plan and Timeframe
4.3. Sample Size and Sampling Method
4.4. Data Collection
4.5. Collection and Processing of Specimens
4.6. Identifying Bacterial Isolates
4.7. Antimicrobial Susceptibility Testing
4.8. Screening of ESBLs by Phenotypic Method
4.9. Detection of Carbapenemase Producers
4.10. Gene Confirmation through Real Time PCR
4.10.1. Extraction of DNA
4.10.2. Primer Designing
4.10.3. Multiplex Real Time PCR
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, A.B.; Anwar, K.A. Phenotypic and genotypic detection of extended spectrum beta lactamase enzyme in Klebsiella pneumoniae. PLoS ONE 2022, 17, e0267221. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.M.; Rasool, M.F.; Imran, I.; Khalid, A.; Saeed, A.; Ahmad, T.; Alqahtani, F. A Cross-Sectional Study to Evaluate Antimicrobial Susceptibility of Uropathogens from South Punjab, Pakistan. Infect. Drug Resist. 2022, 15, 1845–1855. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Alhumaid, S.; Mutair, A.A.; Garout, M.; Abulhamayel, Y.; Halwani, M.A.; Alestad, J.H.; Bshabshe, A.A.; Sulaiman, T.; AlFonaisan, M.K. Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates. Antibiotics 2022, 11, 784. [Google Scholar] [CrossRef]
- Iovleva, A.; Doi, Y. Carbapenem-resistant enterobacteriaceae. Clin. Lab. Med. 2017, 37, 303–315. [Google Scholar] [CrossRef]
- Khalid, F.; Saleem, S.; Ahmad, I. High prevalence of carbapenem-resistant Acinetobacter baumannii associated respiratory tract infections in Pakistani hospitals. J. Pak. Med. Assoc 2020, 70, 1630–1632. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.; Mulu, W.; Genet, C.; Kibret, M.; Belete, M.A. Emergence of high prevalence of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae species among patients in Northwestern Ethiopia Region. BioMed Res. Int. 2022, 2022, 5727638. [Google Scholar] [CrossRef] [PubMed]
- Machado, E.; Costa, P.; Carvalho, A.; Investigators, S. Occurrence of Healthcare-Associated Infections (HAIs) by Escherichia coli and Klebsiella spp. producing extended-spectrum β-lactamases (ESBL) and/or carbapenemases in portuguese long-term care facilities. Pathogens 2022, 11, 1019. [Google Scholar] [CrossRef]
- Nahid, F.; Khan, A.A.; Rehman, S.; Zahra, R. Prevalence of metallo-β-lactamase NDM-1-producing multi-drug resistant bacteria at two Pakistani hospitals and implications for public health. J. Infect. Public Health 2013, 6, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.M.; Saeed, A. Genetic and molecular mechanisms of multidrug-resistance in uropathogens and novel therapeutic combat. In Biochemistry of Drug Resistance; Springer: Washington, DC, USA, 2021; pp. 505–538. [Google Scholar]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Biedenbach, D.; Bouchillon, S.; Hackel, M.; Hoban, D.; Kazmierczak, K.; Hawser, S.; Badal, R. Dissemination of NDM metallo-β-lactamase genes among clinical isolates of Enterobacteriaceae collected during the SMART global surveillance study from 2008 to 2012. Antimicrob. Agents Chemother. 2015, 59, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.Y.; Norazzman, N.I.I.; Hakim, S.N.a.W.A.; Azlan, M.M.; Anthony, A.A.; Mustafa, F.H.; Ahmed, N.; Rabaan, A.A.; Almuthree, S.A.; Alawfi, A. Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 414. [Google Scholar] [CrossRef]
- Ahmed, N.; Tahir, K.; Aslam, S.; Cheema, S.M.; Rabaan, A.A.; Turkistani, S.A.; Garout, M.; Halwani, M.A.; Aljeldah, M.; Al Shammari, B.R. Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum β-Lactamase (ESBL) Producing Bacteria of Nosocomial Origin. Pharmaceuticals 2022, 15, 1426. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Eljaaly, K.; Alhumaid, S.; Albayat, H.; Al-Adsani, W.; Sabour, A.A.; Alshiekheid, M.A.; Al-Jishi, J.M.; Khamis, F.; Alwarthan, S. An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales. Medicina 2022, 58, 1675. [Google Scholar] [CrossRef]
- Nordmann, P.; Gniadkowski, M.; Giske, C.; Poirel, L.; Woodford, N.; Miriagou, V.; European Network on Carbapenemases. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. 2012, 18, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Baran, I.; Aksu, N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 20. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.S.; Thom, K.A.; Sharma, S.; Phillips, M.; Johnson, J.K.; Morgan, D.J. Emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. South. Med. J. 2011, 104, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.; Lo, S.; Villageois-Tran, K.; Petitjean, M.; Malik, S.A.; Armand-Lefevre, L.; Ruppe, E.; Zahra, R. Dissemination of carbapenemase-producing Enterobacterales in the community of Rawalpindi, Pakistan. PLoS ONE 2022, 17, e0270707. [Google Scholar] [CrossRef]
- Imkamp, F.; Kolesnik-Goldmann, N.; Bodendoerfer, E.; Zbinden, R.; Mancini, S. Detection of Extended-Spectrum β-Lactamases (ESBLs) and AmpC in Class A and Class B Carbapenemase-Producing Enterobacterales. Microbiol. Spectr. 2022, 10, e0213722. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ye, L.; Chan, E.W.-C.; Chen, S. Identification and characterization of a conjugative bla VIM-1-bearing plasmid in Vibrio alginolyticus of food origin. J. Antimicrob. Chemother. 2019, 74, 1842–1847. [Google Scholar] [CrossRef]
- Bonardi, S.; Pitino, R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital. J. Food Saf. 2019, 8, 7956. [Google Scholar] [CrossRef]
- Kalasseril, S.G.; Krishnan, R.; Vattiringal, R.K.; Paul, R.; Mathew, P.; Pillai, D. Detection of New Delhi metallo-β-lactamase 1 and cephalosporin resistance genes among carbapenem-resistant Enterobacteriaceae in water bodies adjacent to hospitals in India. Curr. Microbiol. 2020, 77, 2886–2895. [Google Scholar] [CrossRef]
- Nakayama, T.; Hoa, T.T.T.; Huyen, H.M.; Yamaguchi, T.; Jinnai, M.; Minh, D.T.N.; Hoang, O.N.; Le Thi, H.; Thanh, P.N.; Hoai, P.H. Isolation of carbapenem-resistant Enterobacteriaceae harbouring NDM-1, 4, 5, OXA48 and KPC from river fish in Vietnam. Food Control 2022, 133, 108594. [Google Scholar] [CrossRef]
- Thaden, J.T.; Fowler, V.G.; Sexton, D.J.; Anderson, D.J. Increasing incidence of extended-spectrum β-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect. Control Hosp. Epidemiol. 2016, 37, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Onduru, O.G.; Mkakosya, R.S.; Aboud, S.; Rumisha, S.F. Genetic determinants of resistance among ESBL-producing enterobacteriaceae in community and hospital settings in east, central, and Southern Africa: A systematic review and meta-analysis of prevalence. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 5153237. [Google Scholar] [CrossRef]
- Coque, T.M.; Baquero, F.; Canton, R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance 2008, 13, 19044. [Google Scholar] [CrossRef] [PubMed]
- Vink, J.; Edgeworth, J.; Bailey, S. Acquisition of MDR-GNB in hospital settings: A systematic review and meta-analysis focusing on ESBL-E. J. Hosp. Infect. 2020, 106, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.-S.; Kobori, H.; Kang, J.-H.; Matsuzaki, T.; Iino, M.; Nomura, H. Distribution of antibiotic resistance in urban watershed in Japan. Environ. Pollut. 2012, 162, 98–103. [Google Scholar] [CrossRef]
- Ssekatawa, K.; Byarugaba, D.K.; Wampande, E.; Ejobi, F. A systematic review: The current status of carbapenem resistance in East Africa. BMC Res. Notes 2018, 11, 629. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.R.; Soltani, B.; Moravveji, A.; Erami, M.; Soltani, N. Prevalence and risk factors associated with extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae isolates in hospitalized patients in Kashan (Iran). Electron. Physician 2016, 8, 2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Risk factors for acquisition of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae in North-Indian hospitals. Saudi J. Biol. Sci. 2015, 22, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legese, M.H.; Weldearegay, G.M.; Asrat, D. Extended-spectrum beta-lactamase-and carbapenemase-producing Enterobacteriaceae among Ethiopian children. Infect. Drug Resist. 2017, 10, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshetie, S.; Unakal, C.; Gelaw, A.; Ayelign, B.; Endris, M.; Moges, F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrob. Resist. Infect. Control 2015, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, A.-S.; Sanou, M.; Kissou, A.; Sanou, S.; Solaré, H.; Kaboré, F.; Poda, A.; Aberkane, S.; Bouzinbi, N.; Sano, I. High prevalence of extended-spectrum ß-lactamase producing enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect. Dis. 2016, 16, 326. [Google Scholar] [CrossRef] [Green Version]
- Anago, E.; Ayi-Fanou, L.; Akpovi, C.D.; Hounkpe, W.B.; Agassounon-Djikpo Tchibozo, M.; Bankole, H.S.; Sanni, A. Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 5. [Google Scholar] [CrossRef] [Green Version]
- Ampaire, L.; Nduhura, E.; Wewedru, I. Phenotypic prevalence of extended spectrum beta-lactamases among enterobacteriaceae isolated at Mulago National Referral Hospital: Uganda. BMC Res. Notes 2017, 10, 448. [Google Scholar] [CrossRef] [Green Version]
- Amladi, A.U.; Sudarsanam, T.D.; Kandasamy, S.; Kekre, N.; Veeraraghavan, B.; Sahni, R.D. Evaluation of CHROMagar™ TMmSuperCARBA™ as a Phenotypic Test for Detection of Carbapenemase Producing Organisms. J. Clin. Diagn. Res. 2019, 13, 11–15. [Google Scholar]
- Potter, R.F.; D’Souza, A.W.; Dantas, G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist. Updates 2016, 29, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Kengne, M.; Dounia, A.T.; Nwobegahay, J.M. Bacteriological profile and antimicrobial susceptibility patterns of urine culture isolates from patients in Ndjamena, Chad. Pan Afr. Med. J. 2017, 28, 258. [Google Scholar] [CrossRef]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Essack, S.Y. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob. Resist. Infect. Control 2018, 7, 37. [Google Scholar] [CrossRef]
- Apanga, P.A.; Ahmed, J.; Tanner, W.; Starcevich, K.; VanDerslice, J.A.; Rehman, U.; Channa, N.; Benson, S.; Garn, J.V. Carbapenem-resistant Enterobacteriaceae in sink drains of 40 healthcare facilities in Sindh, Pakistan: A cross-sectional study. PLoS ONE 2022, 17, e0263297. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Rehman, T.U.; Khan, M.A.; Hameed, F.; Jian, Z.G.; Han, J.; Yang, X. Molecular Epidemiology of mcr-1, blaKPC-2, and blaNDM-1 Harboring Clinically Isolated Escherichia coli from Pakistan. Infect. Drug Resist. 2021, 14, 1467–1479. [Google Scholar] [CrossRef]
- Braun, S.D.; Jamil, B.; Syed, M.A.; Abbasi, S.A.; Weiß, D.; Slickers, P.; Monecke, S.; Engelmann, I.; Ehricht, R. Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. Future Microbiol. 2018, 13, 1225–1246. [Google Scholar] [CrossRef] [Green Version]
- Vandepitte, J.; Verhaegen, J.; Engbaek, K.; Piot, P.; Heuck, C.C.; Rohner, P.; Heuck, C. Basic Laboratory Procedures in Clinical Bacteriology; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Wayne, P. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2011. [Google Scholar]
- Hasan, D.L.; Khalid, H.M.; Mero, W.M. Phenotypic and Molecular Study of Extended-Spectrum β-lactamases Producing Enterobacteriaceae from Urinary Tract Infection in Zakho city, Kurdistan Region/Iraq. Acad. J. Nawroz Univ. 2022, 11, 305–313. [Google Scholar] [CrossRef]
- Abe, R.; Akeda, Y.; Iida, T.; Hamada, S. Population Analysis Profiling: Is It Still the Gold Standard for the Determination of Heteroresistance in Carbapenemase-Producing Enterobacteriaceae? Int. J. Antimicrob. Agents 2022, 60, 106644. [Google Scholar] [CrossRef]
- Dhital, R.; Shen, Z.; Zhang, S.; Mustapha, A. Detection of virulence and extended spectrum β-lactamase genes in Salmonella by multiplex high-resolution melt curve real-time PCR assay. J. Appl. Microbiol. 2022, 132, 2355–2367. [Google Scholar] [CrossRef]
- Naderi Mezajin, M.; Fatemizadeh, M.; Rostami, Z.; Khaki, P.; Shirzad, M.; Noorbakhsh, F. Antibiotic resistance pattern and frequency of SHV, CTX, TEM, and OXA resistance gene among salmonella serotypes. Health Biotechnol. Biopharma 2022, 6, 64–77. [Google Scholar]
- Suranadee, Y.; Jyalathacrachchi, H.; Gamage, S.; Gunasekara, S. P32 Occurrence of bla KPC, bla NDM and bla OXA-48 genes among carbapenemase-producing Enterobacteriaceae (CRE) in National Cancer Institute, Sri Lanka. JAC-Antimicrob. Resist. 2022, 4, dlac004.031. [Google Scholar] [CrossRef]
- Vamsi, S.K.; Moorthy, R.S.; Hemiliamma, M.N.; Reddy, R.B.C.; Sirikonda, S. Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. Saudi Med. J. 2022, 43, 236–243. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Samples (n) | Positive Samples for Enterobacteriaceae (n) | Prevalence (%) | p-Value |
---|---|---|---|---|
Age (years) | 0.63 | |||
<18 | 59 | 11 | 2.8 | |
18–28 | 63 | 14 | 3.6 | |
29–38 | 58 | 14 | 3.6 | |
39–48 | 65 | 14 | 3.6 | |
49–60 | 45 | 13 | 3.3 | |
>60 | 94 | 34 | 8.8 | |
Gender | 0.35 | |||
Female | 174 | 48 | 12.4 | |
Male | 210 | 52 | 13.5 | |
Area of residence | <0.05 * | |||
Urban | 160 | 65 | 16.9 | |
Rural | 224 | 35 | 9.1 | |
Admission department | <0.05 * | |||
ICU | 92 | 27 | 7.0 | |
Medical | 107 | 43 | 11.1 | |
Surgery | 28 | 13 | 3.3 | |
OPD | 157 | 17 | 4.4 | |
Hospital setting | <0.01 * | |||
In–patient | 227 | 83 | 21.6 | |
Out–patient | 157 | 17 | 4.4 | |
Total | 384 | 100 | 26.0 |
Variables | E. coli | K. pneumoniae | P. aeruginosa | A. baumannii | E. cloacae | Proteus Spp. | Morganella Spp. |
---|---|---|---|---|---|---|---|
Specimen type | |||||||
Urine (n = 187) | 22 (11.7%) | 7 (3.7%) | 7 (3.7%) | 4 (2.1%) | 1 (0.5%) | 2 (1.0%) | 1 (0.5%) |
Blood (n = 124) | 3 (2.4%) | 13 (10.4%) | 2 (1.6%) | 3 (2.4%) | 2 (1.6%) | - | - |
Sputum (n = 27) | 2 (7.4%) | 5 (18.5%) | - | 2 (7.4%) | 1 (3.7%) | 1 (3.7%) | - |
Wound Sample (n = 46) | 8 (17.3%) | 6 (13.04%) | 1 (2.1%) | 3 (6.5%) | 1 (2.1%) | 2 (4.3%) | 1 (2.1%) |
Hospitalization status | |||||||
ICU (n = 92) | 10 (10.8%) | 5 (5.4%) | 3 (3.2%) | 6 (6.5%) | 1 (1.0%) | 1 (1.0%) | 1 (1.0%) |
Medical (n = 107) | 14 (13.0%) | 16 (14.9%) | 4 (3.7%) | 2 (1.8%) | 3 (2.8%) | 3 (2.8%) | 1 (0.9%) |
Surgery (n = 28) | 6 (21.4%) | 4 (14.2%) | - | 3 (10.7%) | - | - | - |
OPD (n = 157) | 5 (3.1%) | 6 (3.8%) | 3 (1.9%) | 1 (0.6%) | 1 (0.6%) | 1 (0.6%) | - |
Area of residence | |||||||
Urban (n = 160) | 19 (11.8%) | 14 (8.7%) | 6 (3.7%) | 5 (3.1%) | 3 (1.8%) | 3 (1.8%) | - |
Rural (n = 224) | 16 (7.1%) | 17 (7.5%) | 4 (1.7%) | 7 (3.1%) | 2 (0.8%) | 2 (0.8%) | 2 (0.8%) |
Total (n = 384) | 35 (9.1%) | 31 (8.0%) | 10 (2.6%) | 12 (3.1%) | 5 (1.3%) | 5 (1.3%) | 2 (0.5%) |
Antimicrobials | E. coli (n = 35) (n/%) | K. pneumoniae (n = 31) (n/%) | P. aeruginosa (n = 10) (n/%) | A. baumannii (n = 12) (n/%) | E. cloacae (n = 5) (n/%) |
---|---|---|---|---|---|
Amoxicillin–clavulanic acid | 34 (97.1) | 31 (100) | - | 1 (8.3) | 5 (100) |
Amikacin | 20 (57.1) | 21 (67.7) | 1 (10) | - | - |
Nitrofurantoin | 25 (71.4) | 23 (74.1) | - | - | 1 (20) |
Sulfamethaxazole-trimethoprin | 26 (74.2) | 23 (74.1) | - | 4 (33.3) | 4 (80) |
Gentamicin | 21 (60.0) | 19 (61.2) | 4 (40) | 3 (25) | 1 (20) |
Chloramphenicol | 25 (71.4) | 26 (83.8) | - | 9 (75) | 0 |
Cefotaxime | 33 (94) | 30 (96.7) | - | - | 5 (100) |
Ceftazidime | 32 (91.4) | 29 (93.5) | 6 (60) | 4 (33.3) | 4 (80) |
Cefepime | 26 (74.2) | 29 (93.5) | 5 (50) | 4 (33.3) | 4 (80) |
Meropenem | 11 (31.4) | 8 (25.8) | 5 (50) | 3 (25) | 1 (20) |
Imipenem | 11 (31.4) | 8 (25.8) | 5 (50) | 3 (25) | 1 (20) |
Piperacillin-tazobactam | 22 (62.8) | 24 (77.4) | 6 (60) | 3 (25) | 1 (20) |
Antimicrobials | E. coli (n = 28) (n/%) | K. pneumoniae (n = 29) (n/%) | P. aeruginosa (n = 5) (n/%) | A. baumannii (n = 5) (n/%) | E. cloacae (n = 4) (n/%) |
---|---|---|---|---|---|
Amoxicillin–clavulanic acid | 28 (100) | 29 (100) | - | 5 (100) | 4 (100) |
Amikacin | 18 (64.2) | 19 (65.5) | 1 (20) | - | - |
Nitrofurantoin | 21 (75) | 22 (75.8) | - | - | 1 (25) |
Sulfamethaxazole-trimethoprin | 22 (78.5) | 22 (75.8) | - | 4 (80) | 4 (100) |
Gentamicin | 17 (60.7) | 16 (55.1) | 4 (80) | 3 (60) | 1 (25) |
Chloramphenicol | 22 (78.5) | 24 (82.7) | - | 5 (100) | 0 |
Cefotaxime | 28 (100) | 29 (100) | - | 5 (100.) | 4 (100) |
Ceftazidime | 28 (100) | 29 (100) | - | 5 (100) | 4 (100) |
Cefepime | 21 (75) | 22 (75.8) | 5 (100) | 4 (80) | 4 (100) |
Meropenem | 11 (39.2) | 8 (27.5) | 5 (100) | 3 (60) | 1 (25) |
Imipenem | 11 (39.2) | 8 (27.5) | 5 (100) | 3 (60) | 1 (25) |
Piperacillin-tazobactam | 20 (71.4) | 22 (75.8) | 5 (100) | 3 (60) | 1 (25) |
Characteristics | ESBL Producers (n, %) | Carbapenems Resistance (n, %) | Carbapenemase Producers (n, %) | |
---|---|---|---|---|
Hospitalization status | ||||
E. coli | ICU | 6, 17.1 | 5, 14.2 | 3, 8.5 |
Medical | 8, 22.8 | 1, 2.8 | 3, 8.5 | |
Surgery | 3, 8.5 | 2, 5.7 | 1, 2.8 | |
OPD | 11, 31.4 | 3, 8.5 | 2, 5.7 | |
K. pneumoniae | ICU | 8, 25.8 | 3, 9.6 | 2, 6.4 |
Medical | 6, 19.3 | 2, 6.4 | 3, 9.6 | |
Surgery | 5, 16.1 | 2, 6.4 | 1, 3.2 | |
OPD | 10, 32.2 | 1, 3.2 | 2, 6.4 | |
P. aeruginosa | ICU | 2, 20.0 | 2, 20.0 | 2, 20.0 |
Medical | 1, 10.0 | - | - | |
Surgery | 1, 10.0 | 2, 20.0 | - | |
OPD | 1, 10.0 | 1, 10.0 | 1, 10.0 | |
A. baumannii | ICU | 2, 16.6 | 1, 8.3 | 1, 8.3 |
Medical | - | 1, 8.3 | - | |
Surgery | 1, 8.3 | - | ||
OPD | 2, 16.6 | 1, 8.3 | 1, 8.3 | |
E. cloacae | ICU | 2, 40.0 | - | - |
Medical | 1, 20.0 | - | - | |
Surgery | - | - | - | |
OPD | 1, 20.0 | 1, 20.0 | 1, 20.0 | |
Area of residence | ||||
E. coli | Urban | 17, 48.5 | 6, 17.1 | 6, 17.1 |
Rural | 11, 31.4 | 5, 14.2 | 3, 8.5 | |
K. pneumoniae | Urban | 16, 51.6 | 4, 12.9 | 5, 16.1 |
Rural | 13, 41.9 | 4, 12.9 | 9.6 | |
P. aeruginosa | Urban | 3, 30.0 | 2, 20.0 | 2, 20.0 |
Rural | 2, 20.0 | 3, 30.0 | 2, 20.0 | |
A. baumannii | Urban | 4, 33.3 | 1, 8.3 | 1, 8.3 |
Rural | 1, 8.3 | 2, 16.6 | 1, 8.3 | |
E. cloacae | Urban | 3, 60.0 | 1, 20.0 | 1, 20.0 |
Rural | 1, 20.0 | - | - |
Bacteria | Genes | Detection (n, %) |
---|---|---|
E. coli | KPC | 4, 14.2 |
NDM | 8, 28.5 | |
CTX | 8, 28.5 | |
OXA-48 | 11, 39.2 | |
K. pneumoniae | KPC | 6, 20.6 |
NDM | 13, 44.8 | |
CTX | 7, 24.1 | |
OXA-48 | 5, 17.2 | |
P. aeruginosa | KPC | 3, 60 |
NDM | 2, 40 | |
CTX | 1, 20 | |
OXA-48 | 2, 40 | |
A. baumannii | KPC | 2, 40 |
NDM | 1, 20 | |
CTX | 1, 20 | |
OXA-48 | 2, 40 | |
E. cloacae | KPC | 1, 25 |
NDM | 1, 25 | |
CTX | 2, 50 | |
OXA-48 | 1, 25 |
Target Genes | Primer Name | Sequence (5′–3′) | Amplicon Size | Primer Concentration | Reference |
---|---|---|---|---|---|
blaCTX | CTX-M CTX-R | TGGGTAAAATAGGTGACCAGA ATGTGCAGCACCAGTAAGGT | 650 | 0.1 | [51] |
blaKPC | KPC-F KPC-R | CGTCTAGTTCTGCTGTCTTG CTTGTCATCCTTGTTAGGCG | 798 | 0.5 | [52] |
blaNDM-1 | NDM-F NDM-R | GGTTTGGCGATCTGGTTTTC CGGAATGGCTCATCACGATC | 621 | 0.1 | [52] |
blaOXA-48 | OXA-48-F OXA-48-R | GCGTGGTTAAGGATGAACAC CATCAAGTTCAACCCAACCG | 438 | 0.2 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafai, M.M.; Hafeez, M.; Munawar, S.; Basha, S.; Rabaan, A.A.; Halwani, M.A.; Alawfi, A.; Alshengeti, A.; Najim, M.A.; Alwarthan, S.; et al. Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study. Antibiotics 2023, 12, 148. https://doi.org/10.3390/antibiotics12010148
Mustafai MM, Hafeez M, Munawar S, Basha S, Rabaan AA, Halwani MA, Alawfi A, Alshengeti A, Najim MA, Alwarthan S, et al. Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study. Antibiotics. 2023; 12(1):148. https://doi.org/10.3390/antibiotics12010148
Chicago/Turabian StyleMustafai, Muhammad Muqaddas, Mavra Hafeez, Safa Munawar, Sakeenabi Basha, Ali A. Rabaan, Muhammad A. Halwani, Abdulsalam Alawfi, Amer Alshengeti, Mustafa A. Najim, Sara Alwarthan, and et al. 2023. "Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study" Antibiotics 12, no. 1: 148. https://doi.org/10.3390/antibiotics12010148
APA StyleMustafai, M. M., Hafeez, M., Munawar, S., Basha, S., Rabaan, A. A., Halwani, M. A., Alawfi, A., Alshengeti, A., Najim, M. A., Alwarthan, S., AlFonaisan, M. K., Almuthree, S. A., Garout, M., & Ahmed, N. (2023). Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study. Antibiotics, 12(1), 148. https://doi.org/10.3390/antibiotics12010148