Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Setting
2.2. Data Collection
2.3. Pathogen Isolation and Identification
2.4. Antimicrobial Sensitivity Testing
2.5. Biofilm Formation
2.6. Genotyping of MRSA
2.7. Data Analysis
3. Results
3.1. Isolation of MRSA
3.2. Antimicrobial Sensitivity Testing (AST)
3.3. Biofilm Assay
3.3.1. Congo Red Agar
3.3.2. Quantitative Microtiter Plate Method
3.4. Detection of Biofilm Genes
3.5. Molecular Characterization of MRSA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwotzer, N.; Wahl, P.; Fracheboud, D.; Gautier, E.; Chuard, C. Optimal culture incubation time in orthopedic device-associated infections: A retrospective analysis of prolonged 14-day incubation. J. Clin. Microbiol. 2014, 52, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parveen, S.; Saqib, S.; Ahmed, A.; Shahzad, A.; Ahmed, N. Prevalence of MRSA colonization among healthcare-workers and effectiveness of decolonization regimen in ICU of a Tertiary care Hospital, Lahore, Pakistan. Adv. Life Sci. 2020, 8, 38–41. [Google Scholar]
- Crosby, H.A.; Tiwari, N.; Kwiecinski, J.M.; Xu, Z.; Dykstra, A.; Jenul, C.; Fuentes, E.J.; Horswill, A.R. The Staphylococcus aureus ArlRS two-component system regulates virulence factor expression through MgrA. Mol. Microbiol. 2020, 113, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Crandall, H.; Kapusta, A.; Killpack, J.; Heyrend, C.; Nilsson, K.; Dickey, M.; Daly, J.A.; Ampofo, K.; Pavia, A.T.; Mulvey, M.A. Clinical and molecular epidemiology of invasive Staphylococcus aureus infection in Utah children; continued dominance of MSSA over MRSA. PLoS ONE 2020, 15, e0238991. [Google Scholar] [CrossRef]
- Okorie-Kanu, O.J.; Anyanwu, M.U.; Ezenduka, E.V.; Mgbeahuruike, A.C.; Thapaliya, D.; Gerbig, G.; Ugwuijem, E.E.; Okorie-Kanu, C.O.; Agbowo, P.; Olorunleke, S. Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS ONE 2020, 15, e0232913. [Google Scholar] [CrossRef]
- Qayoom, I.; Verma, R.; Murugan, P.A.; Raina, D.B.; Teotia, A.K.; Matheshwaran, S.; Nair, N.N.; Tägil, M.; Lidgren, L.; Kumar, A. A biphasic nanohydroxyapatite/calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 2019, 57, e01405–e01418. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Joo, J.; Kang, J.; Kim, B.; Braun, G.B.; She, Z.-G.; Kim, D.; Mann, A.P.; Mölder, T.; Teesalu, T. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2018, 2, 95–103. [Google Scholar] [CrossRef]
- Peng, H.; Liu, D.; Ma, Y.; Gao, W. Comparison of community-and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012–2017. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.; Latif, Z. Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community-and health care-associated infections in central venous catheters. Rev. Soc. Bras. Med. Trop. 2018, 51, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Tursi, S.A.; Puligedda, R.D.; Szabo, P.; Nicastro, L.K.; Miller, A.L.; Qiu, C.; Gallucci, S.; Relkin, N.R.; Buttaro, B.A.; Dessain, S.K. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldan, R.; Sendi, P. Precision medicine in the diagnosis and management of orthopedic biofilm infections. Front. Med. 2020, 7, 580671. [Google Scholar] [CrossRef] [PubMed]
- Vanhommerig, E.; Moons, P.; Pirici, D.; Lammens, C.; Hernalsteens, J.-P.; De Greve, H.; Kumar-Singh, S.; Goossens, H.; Malhotra-Kumar, S. Comparison of biofilm formation between major clonal lineages of methicillin resistant Staphylococcus aureus. PloS ONE 2014, 9, e104561. [Google Scholar] [CrossRef] [PubMed]
- Gowrishankar, S.; Kamaladevi, A.; Balamurugan, K.; Pandian, S.K. In vitro and in vivo biofilm characterization of methicillin-resistant Staphylococcus aureus from patients associated with pharyngitis infection. BioMed Res. Int. 2016, 2016, 1289157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lade, H.; Park, J.H.; Chung, S.H.; Kim, I.H.; Kim, J.-M.; Joo, H.-S.; Kim, J.-S. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med. 2019, 8, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, R.A.; AbuShady, H.M.; Hussein, H.S. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. Egypt. J. Med. Hum. Genet. 2012, 13, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Carnicer-Pont, D.; Bailey, K.A.; Mason, B.; Walker, A.; Evans, M.R.; Salmon, R. Risk factors for hospital-acquired methicillin-resistant Staphylococcus aureus bacteraemia: A case-control study. Epidemiol. Infect. 2006, 134, 1167–1173. [Google Scholar] [CrossRef]
- Wayne, P. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Atshan, S.S.; Shamsudin, M.N.; Thian Lung, L.T.; Sekawi, Z.; Ghaznavi-Rad, E.; Pei Pei, C. Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J. Biomed. Biotechnol. 2012, 2012, 417247. [Google Scholar] [CrossRef] [Green Version]
- Boye, K.; Bartels, M.; Andersen, I.; Møller, J.; Westh, H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin. Microbiol. Infect. 2007, 13, 725–727. [Google Scholar] [CrossRef] [Green Version]
- Shopsin, B.; Mathema, B.; Alcabes, P.; Said-Salim, B.; Lina, G.; Matsuka, A.; Martinez, J.; Kreiswirth, B. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J. Clin. Microbiol. 2003, 41, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, S.; Farahani, N.N.; Mir, Z.; Alinejad, F.; Haeili, M.; Dahmardehei, M.; Mirzaii, M.; Khoramrooz, S.S.; Nasiri, M.J.; Darban-Sarokhalil, D. Genotypic characterization of Staphylococcus aureus isolated from a burn centre by using agr, spa and SCCmec typing methods. New Microbes New Infect. 2018, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.; Caugant, D.A. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef] [Green Version]
- Nishitani, K.; Sutipornpalangkul, W.; de Mesy Bentley, K.L.; Varrone, J.J.; Bello-Irizarry, S.N.; Ito, H.; Matsuda, S.; Kates, S.L.; Daiss, J.L.; Schwarz, E.M. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 2015, 33, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, E.M.; Parvizi, J.; Gehrke, T.; Aiyer, A.; Battenberg, A.; Brown, S.A.; Callaghan, J.J.; Citak, M.; Egol, K.; Garrigues, G.E. 2018 international consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. J. Orthop. Res. 2019, 37, 997–1006. [Google Scholar] [CrossRef]
- Urish, K.L.; Cassat, J.E. Staphylococcus aureus osteomyelitis: Bone, bugs, and surgery. Infect. Immun. 2020, 88, e00932-19. [Google Scholar] [CrossRef] [PubMed]
- Walls, R.; Roche, S.; O’Rourke, A.; McCabe, J. Surgical site infection with methicillin-resistant Staphylococcus aureus after primary total hip replacement. J. Bone Jt. Surgery. Br. Vol. 2008, 90, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, A.; Saeed, M.U.; Nadeem, A.; Yaqoob, A.; Rabaan, A.A.; Bakhrebah, M.A.; Al Mutair, A.; Alhumaid, S.; Aljeldah, M.; Al Shammari, B.R.; et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan. Medicina 2022, 58, 904. [Google Scholar] [CrossRef]
- Jahanmard, F.; Croes, M.; Castilho, M.; Majed, A.; Steenbergen, M.; Lietaert, K.; Vogely, H.; Van Der Wal, B.; Stapels, D.; Malda, J. Bactericidal coating to prevent early and delayed implant-related infections. J. Control. Release 2020, 326, 38–52. [Google Scholar] [CrossRef]
- Zimmerli, W.; Widmer, A.F.; Blatter, M.; Frei, R.; Ochsner, P.E. Role of rifampin for treatment of orthopedic implant–related staphylococcal infections: A randomized controlled trial. Jama 1998, 279, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Naimi, H.M.; Rasekh, H.; Noori, A.Z.; Bahaduri, M.A. Determination of antimicrobial susceptibility patterns in Staphylococcus aureus strains recovered from patients at two main health facilities in Kabul, Afghanistan. BMC Infect. Dis. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Xu, K.; Li, C.; Li, Y. Molecular characteristics and virulence gene profiles of Staphylococcus aureus isolates in Hainan, China. BMC Infect. Dis. 2019, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yao, Y.; Weng, Q.; Li, J.; Huang, J.; Liao, Y.; Zhu, F.; Zhao, Q.; Shen, X.; Niu, J. Dissemination and molecular characterization of Staphylococcus aureus at a Tertiary Referral Hospital in Xiamen City, China. BioMed Res. Int. 2017, 2017, 1367179. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Uria, G.; Reddy, R. Prevalence and antibiotic susceptibility of community-associated methicillin-resistant Staphylococcus aureus in a rural area of India: Is MRSA replacing methicillin-susceptible Staphylococcus aureus in the community? Int. Sch. Res. Not. 2012, 2012, 248951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, H.; Khan, M.N.; Rehman, T.; Hameed, M.F.; Yang, X. Antibiotic resistance in Pakistan: A systematic review of past decade. BMC Infect. Dis. 2021, 21, 1–19. [Google Scholar] [CrossRef]
- Chait, R.; Craney, A.; Kishony, R. Antibiotic interactions that select against resistance. Nature 2007, 446, 668–671. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Alhumaid, S.; Mutair, A.A.; Garout, M.; Abulhamayel, Y.; Halwani, M.A.; Alestad, J.H.; Bshabshe, A.A.; Sulaiman, T.; AlFonaisan, M.K.; et al. Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates. Antibiotics 2022, 11, 784. [Google Scholar] [CrossRef]
- Post, V.; Wahl, P.; Uçkay, I.; Ochsner, P.; Zimmerli, W.; Corvec, S.; Loiez, C.; Richards, R.G.; Moriarty, T.F. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int. J. Med. Microbiol. 2014, 304, 565–576. [Google Scholar] [CrossRef]
- Ghasemian, A.; Peerayeh, S.N.; Bakhshi, B.; Mirzaee, M. Comparison of biofilm formation between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus. Iran. Biomed. J. 2016, 20, 175. [Google Scholar]
- Navidinia, M.; Mohammadi, A.; Arjmand, R.; Dadashi, M.; Goudarzi, M. Molecular typing, biofilm formation, and analysis of adhesion factors in Staphylococcus aureus strains isolated from urinary tract infections. Gene Rep. 2021, 22, 101008. [Google Scholar] [CrossRef]
- Hamada, M.; Yamaguchi, T.; Sato, A.; Ono, D.; Aoki, K.; Kajiwara, C.; Kimura, S.; Maeda, T.; Sasaki, M.; Murakami, H. Increased incidence and plasma-biofilm formation ability of SCC mec type IV methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with bacteremia. Front. Cell. Infect. Microbiol. 2021, 11, 602833. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
The Pathogen Identified following CLSI Guidelines | Number (n) | % Prevalence | |
---|---|---|---|
S. aureus (n = 736) | MRSA | 221 | 7.43 |
MSSA | 501 | 16.85 | |
CONS | 14 | 0.47 | |
Enterococcus faecalis | 39 | 1.31 | |
Klebsiella pneumoniae | 778 | 26.16 | |
Acinetobacter baumannii | 336 | 11.30 | |
Escherichia coli | 801 | 26.94 | |
Pseudomonas aeruginosa | 257 | 8.64 | |
Stenotrophomonas maltophilia | 26 | 0.87 |
Biofilm | Biofilm Formation Genes | SCCmec Typing | agr Typing |
---|---|---|---|
Strong (OD > 1.0) | clfA (21%), clfB (24%), icaAD (23%), icaBC (24%), eno (24%), fnbA (22%), fnbB (20%), fib (23%), sdrC (25%), sdrD (24%), sdrE (27%), and cna (14%) | SCCmec II (25%), SCCmec III (15%), SCCmec IV (21%), SCCmec V (6%) | agr I (54%), agr II (15%), agr III (17%), agr IV (14%) |
Moderate (OD 0.6–1.0) | clfA (27%), clfB (28%), icaAD (28%), icaBC (24%), eno (28%), fnbA (27%), fnbB (23%), fib (28%), sdrC (24%), sdrD (21%), sdrE (24%), and cna (20%) | SCCmec II (15%), SCCmec III (13%), SCCmec IV (33%), SCCmec V (12%) | agr I (15%), agr II (13%), agr III (33%), agr IV (13%) |
Weak (< 0.6) | clfA (52%), clfB (49%), icaAD (49%), icaBC (53%), eno (48%), fnbA (50%), fnbB (57%), fib (49%), sdrC (51%), sdrD (54%), sdrE (48%), and cna (38%) | SCCmec II (14%), SCCmec III (21%), SCCmec IV (39%), SCCmec V (7%) | agr I (27%), agr II (5%), agr III (2%), agr IV (67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohail, M.; Muzzammil, M.; Ahmad, M.; Rehman, S.; Garout, M.; Khojah, T.M.; Al-Eisa, K.M.; Breagesh, S.A.; Hamdan, R.M.A.; Alibrahim, H.I.; et al. Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic. Antibiotics 2023, 12, 157. https://doi.org/10.3390/antibiotics12010157
Sohail M, Muzzammil M, Ahmad M, Rehman S, Garout M, Khojah TM, Al-Eisa KM, Breagesh SA, Hamdan RMA, Alibrahim HI, et al. Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic. Antibiotics. 2023; 12(1):157. https://doi.org/10.3390/antibiotics12010157
Chicago/Turabian StyleSohail, Muhammad, Moazza Muzzammil, Moaz Ahmad, Sabahat Rehman, Mohammed Garout, Taghreed M. Khojah, Kholoud M. Al-Eisa, Samar A. Breagesh, Rola M. Al Hamdan, Halimah I. Alibrahim, and et al. 2023. "Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic" Antibiotics 12, no. 1: 157. https://doi.org/10.3390/antibiotics12010157
APA StyleSohail, M., Muzzammil, M., Ahmad, M., Rehman, S., Garout, M., Khojah, T. M., Al-Eisa, K. M., Breagesh, S. A., Hamdan, R. M. A., Alibrahim, H. I., Alsoliabi, Z. A., Rabaan, A. A., & Ahmed, N. (2023). Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic. Antibiotics, 12(1), 157. https://doi.org/10.3390/antibiotics12010157