Teicoplanin-Resistant Coagulase-Negative Staphylococci: Do the Current Susceptibility Testing Methods Reliably Detect This Elusive Phenotype?
Abstract
:1. Introduction
2. Results
2.1. Patients and Included Isolates
2.2. Vitek-2
2.3. Standard and High-Broth Microdilution (sBMD and hBMD)
2.4. Agar-Diffusion 24 h and 48 h Incubation (AD-24 h and AD-48 h)
2.5. Standard Gradient Diffusion Test (sGDT) and Macrodilution Gradient Test (MET)
2.6. Disc Diffusion and Screening Agar
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antimicrobial Susceptibility Testing (AST)
4.2.1. Broth Microdilution
4.2.2. Agar Dilution
4.2.3. Glycopeptide Antibiotic Susceptibility Testing (EUCAST)
4.2.4. Screening Agar
4.2.5. Disc Diffusion
4.2.6. Quality Controls
4.3. EUCAST Rules, Results Interpretation, and Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Epps, J.S.; Younger, J.G. Implantable Device-Related Infection. Shock 2016, 46, 597–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plachouras, D.; Savey, A.; Palomar, M.; Moro, M.; Lebre, A.; McCoubrey, J. Incidence and microbiology of central line-associated bloodstream infections in European intensive care units: Results from the European Healthcare-Associated Infections surveillance Network (HAI-Net). In Proceedings of the European Conference of Clinical Microbiology and Infectious Diseases (ECCMID), Madrid, Spain, 24 April 2018. [Google Scholar]
- Amat-Santos, I.J.; Messika-Zeitoun, D.; Eltchaninoff, H.; Kapadia, S.; Lerakis, S.; Cheema, A.N.; Gutiérrez-Ibanes, E.; Munoz-Garcia, A.J.; Pan, M.; Webb, J.G.; et al. Infective endocarditis after transcatheter aortic valve implantation: Results from a large multicenter registry. Circulation 2015, 131, 1566–1574. [Google Scholar] [CrossRef] [Green Version]
- Bora, P.; Datta, P.; Gupta, V.; Singhal, L.; Chander, J. Characterization and antimicrobial susceptibility of coagulase-negative staphylococci isolated from clinical samples. J. Lab. Physicians 2018, 10, 414–419. [Google Scholar] [CrossRef] [Green Version]
- ECDC. Healthcare-associated infections: Surgical site infections. In Annual Epidemiological Report for 2017; ECDC: Solna, Sweden, 2019. [Google Scholar]
- Kloos, W.E.; Bannerman, T.L. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 1994, 7, 117–140. [Google Scholar] [CrossRef]
- Klingenberg, C.; Aarag, E.; Rønnestad, A.; Sollid, J.E.; Abrahamsen, T.G.; Kjeldsen, G.; Flaegstad, T. Coagulase-negative staphylococcal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr. Infect. Dis. J. 2005, 24, 817–822. [Google Scholar] [CrossRef]
- ECDC. Healthcare-Associated Infections Acquired in Intensive Care Units. 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-HAI.pdf (accessed on 6 December 2021).
- Kusumoto, F.M.; Schoenfeld, M.H.; Wilkoff, B.L.; Berul, C.I.; Birgersdotter-Green, U.M.; Carrillo, R.; Cha, Y.-M.; Clancy, J.; Deharo, J.-C.; Ellenbogen, K.A.; et al. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 2017, 14, e503–e551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.S.; Hansford, K.A.; Blaskovich, M.A.; Halai, R.; Cooper, M.A. Glycopeptide antibiotics: Back to the future. J. Antibiot. 2014, 67, 631–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, G.; Thaker, M.N.; Koteva, K.; Wright, G. Glycopeptide antibiotic biosynthesis. J. Antibiot. 2014, 67, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svetitsky, S.; Leibovici, L.; Paul, M. Comparative efficacy and safety of vancomycin versus teicoplanin: Systematic review and meta-analysis. Antimicrob. Agents Chemother. 2009, 53, 4069–4079. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.J. The comparative efficacy and safety of teicoplanin and vancomycin. J. Antimicrob. Chemother. 1996, 37, 209–222. [Google Scholar] [CrossRef]
- Kato-Hayashi, H.; Niwa, T.; Ohata, K.; Harada, S.; Matsumoto, T.; Kitagawa, J.; Tsurumi, H.; Suzuki, A. Comparative efficacy and safety of vancomycin versus teicoplanin in febrile neutropenic patients receiving hematopoietic stem cell transplantation. J. Clin. Pharm. Ther. 2019, 44, 888–894. [Google Scholar] [CrossRef]
- Lee, J.Y.H.; Monk, I.R.; Gonçalves da Silva, A.; Seemann, T.; Chua, K.Y.L.; Kearns, A.; Hill, R.; Woodford, N.; Bartels, M.D.; Strommenger, B.; et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 2018, 3, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Baris, A.; Malkocoglu, G.; Buyukyanbolu, E.; Aslan, F.M.; Bayraktar, B.; Aktas, E. Evaluation of Teicoplanin Resistance Detected by Automated System in Coagulase Negative Staphylococci: A Comparison with Gradient Test and Broth Microdilution Methods. Curr. Microbiol. 2020, 77, 3355–3360. [Google Scholar] [CrossRef] [PubMed]
- Marincola, G.; Liong, O.; Schoen, C.; Abouelfetouh, A.; Hamdy, A.; Wencker, F.D.R.; Marciniak, T.; Becker, K.; Köck, R.; Ziebuhr, W. Antimicrobial Resistance Profiles of Coagulase-Negative Staphylococci in Community-Based Healthy Individuals in Germany. Front. Public Health. 2021, 9, 684456. [Google Scholar] [CrossRef] [PubMed]
- Del Bene, V.E.; John, J.F.; Twitty, J.A., Jr.; Lewis, J.W. Anti-staphylococcal activity of teicoplanin, vancomycin, and other antimicrobial agents: The significance of methicillin resistance. J. Infect. Dis. 1986, 154, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Cherifi, S.; Byl, B.; Deplano, A.; Nonhoff, C.; Denis, O.; Hallin, M. Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J. Clin. Microbiol. 2013, 51, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satola, S.W.; Farley, M.M.; Anderson, K.F.; Patel, J.B. Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. J. Clin. Microbiol. 2011, 49, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miragaia, M.; Couto, I.; Pereira, S.F.F.; Kristinsson, K.G.; Westh, H.; Jarløv, J.O.; Carriço, J.; Almeida, J.; Santos-Sanches, I.; de Lencastre, H. Molecular characterization of methicillin-resistant Staphylococcus epidermidis clones: Evidence of geographic dissemination. J. Clin. Microbiol. 2002, 40, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Camargo, C.H.; Mondelli, A.L.; Boas, P.J. Comparison of teicoplanin disk diffusion and broth microdilution methods against clinical isolates of Staphylococcus aureus and S. epidermidis. Braz. J. Microbiol. 2011, 42, 1265–1268. [Google Scholar] [CrossRef] [Green Version]
- Sieradzki, K.; Villari, P.; Tomasz, A. Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob. Agents Chemother. 1998, 42, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Howden, B.P.; Davies, J.K.; Johnson, P.D.; Stinear, T.P.; Grayson, M.L. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev. 2010, 23, 99–139. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [Green Version]
- Schwalbe, R.S.; Stapleton, J.T.; Gilligan, P.H. Emergence of vancomycin resistance in coagulase-negative staphylococci. N. Engl. J. Med. 1987, 316, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Arioli, V.; Pallanza, R. Teicoplanin-resistant coagulase-negative staphylococci. Lancet 1987, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Biavasco, F.; Vignaroli, C.; Varaldo, P.E. Glycopeptide resistance in coagulase-negative staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 403–417. [Google Scholar] [CrossRef]
- Cavenaghi, L.A.; Biganzoli, E.; Danese, A.; Parenti, F. Diffusion of teicoplanin and vancomycin in agar. Diagn. Microbiol. Infect. Dis. 1992, 15, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Vaudaux, P.; Huggler, E.; Bernard, L.; Ferry, T.; Renzoni, A.; Lew, D.P. Underestimation of vancomycin and teicoplanin MICs by broth microdilution leads to underdetection of glycopeptide-intermediate isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 3861–3870. [Google Scholar] [CrossRef] [Green Version]
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K. CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. J. Clin. Microbiol. 2018, 56, e01934-17. [Google Scholar] [CrossRef] [Green Version]
- Campana, E.H.; Carvalhaes, C.G.; Nonato, B.; Machado, A.M.; Gales, A.C. Comparison of M.I.C.E. and Etest with CLSI agar dilution for antimicrobial susceptibility testing against oxacillin-resistant Staphylococcus spp. PLoS ONE 2014, 9, e94627. [Google Scholar] [CrossRef] [Green Version]
- Wootton, M.; Howe, R.A.; Hillman, R.; Walsh, T.R.; Bennett, P.M.; MacGowan, A.P. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J. Antimicrob. Chemother. 2001, 47, 399–403. [Google Scholar] [CrossRef]
- Matuschek, E.; Åhman, J.; Webster, C.; Kahlmeter, G. Antimicrobial susceptibility testing of colistin—Evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST. Media Preparation for EUCAST Disk Diffusion Testing and for Determination of MIC Values by the Broth Microdilution Method. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Media_preparation_v_6.0_EUCAST_AST.pdf (accessed on 6 December 2021).
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. 2012. Available online: https://clsi.org/standards/products/microbiology/documents/m07/ (accessed on 6 December 2021).
- EUCAST. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Version 2.0. 2017. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 6 December 2021).
- Liofilchem. MTSTM Technical Sheet Staphylococci-Rev.5/ 31 May 2021. 2021. Available online: https://www.liofilchem.com/images/brochure/mic_test_strip_patent/MTS20.pdf (accessed on 10 June 2022).
- Hiramatsu, K.; Aritaka, N.; Hanaki, H.; Kawasaki, S.; Hosoda, Y.; Hori, S.; Fukuchi, Y.; Kobayashi, I. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997, 350, 1670–1673. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. 2016. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/QC/v_6.1_EUCAST_QC_tables_routine_and_extended_QC.pdf (accessed on 10 June 2022).
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 7.1, valid from 10 March 2017. 2017. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf (accessed on 10 June 2022).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement 2012; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
Year | Total | OXA | GEN | LEV | SXT | ERN | CLI | VAN | TEI | LIN | TIG | FOS | FUS | RIF | TET | DAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 650 | 36 | 57 | 44 | 72 | 30 | 47 | 100 | 68 | 100 | 99 | 56 | 61 | 93 | 55 | 100 |
2016 | 669 | 31 | 54 | 42 | 72 | 28 | 44 | 100 | 71 | 100 | 100 | 57 | - | 92 | - | 99 |
2017 | 759 | 32 | 58 | 45 | 72 | 31 | 43 | 100 | 74 | 100 | 100 | 51 | - | 93 | - | 99 |
2018 | 619 | 39 | 64 | 49 | 73 | 33 | 50 | 100 | 69 | 100 | 100 | 59 | - | 92 | - | 100 |
2019 | 562 | 36 | 63 | 54 | 71 | 34 | 50 | 100 | 84 | 99 | 100 | 56 | - | 92 | - | 99 |
2020 | 497 | 37 | 66 | 54 | 70 | 36 | 52 | 100 | 80 | 99 | 100 | 61 | - | 94 | - | 98 |
Vitek-2 | EUCAST | |||||||
---|---|---|---|---|---|---|---|---|
Susceptible (S) ≤ 4 mg/L (%) | Resistant > 4 mg/L (%) | Total | ||||||
MIC Teicoplanin mg/L | ≤0.5 | 1 | 2 | 4 | 8 | 16 * | 32 * | |
S. epidermidis | 15 (9.3) | 3 (1.8) | 24 (14.8) | 46 (28.4) | 44 (27.2) | 24 (14.8) | 1 (0.6) | 157 |
S. haemolyticus | - | - | - | - | 1 (0.6) | 1 (0.6) | - | 2 |
S. hominis | - | - | - | - | 1 (0.6) | 2 (1.2) | - | 3 |
Total % | 88 (54.3) | 74 (45.7) | 162 |
Tei | AB | OXA | GEN | LEV | SXT | ERN | CLI | VAN | LIN | TIG | FOS | FUS | RIF | TET | DAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S (88) | R | 62 | 37 | 42 | 23 | 59 | 41 | - | - | - | 17 | 42 | 5 | 57 | 1 |
S | 26 | 51 | 46 | 65 | 29 | 57 | 88 | 88 | 88 | 71 | 46 | 83 | 31 | 87 | |
R (74) | R | 66 | 38 | 58 | 25 | 57 | 53 | - | - | - | 17 | 35 | 3 | 29 | - |
S | 8 | 36 | 16 | 49 | 17 | 21 | 74 | 74 | 73 ** | 56 ** | 28 ** | 71 | 45 | 73 ** | |
Total | |||||||||||||||
R | 128 | 75 | 100 | 48 | 116 | 94 | - | - | - | 34 | 77 | 8 | 86 | 1 | |
% | 79 | 46.3 | 61.7 | 29.6 | 71.6 | 58.0 | - | - | - | 21.0 | 47.5 | 4.9 | 53.1 | 0.6 | |
S | 34 | 87 | 62 | 114 | 46 | 68 | 162 | 161 | 161 | 127 | 84 | 154 | 76 | 160 | |
% | 21 | 53.7 | 38.3 | 70.4 | 28.4 | 42.0 | 100 | 99.4 | 99.4 | 78.4 | 51.8 | 95.1 | 46.9 | 98.7 |
sBMD | EUCAST | |||||||
---|---|---|---|---|---|---|---|---|
Susceptible (S) ≤ 4 mg/L (%) | Resistant > 4 mg/L (%) | Total | ||||||
MIC Teicoplanin mg/L | ≤0.5 | 1 | 2 | 4 | 8 | 16 | >16 | |
S. epidermidis | 15 | 29 | 48 | 53 | 12 | - | - | 157 |
S. haemolyticus | - | - | - | - | - | 1 * | 1 * | 2 |
S. hominis | - | - | - | - | 2 | - | - | 3 |
9.3 | 17.9 | 29.6 | 33.3 | 8.6 | 0.6 | 0.6 | 162 |
hBMD | EUCAST | |||||||
---|---|---|---|---|---|---|---|---|
Susceptible (S) ≤ 4 mg/L (%) | Resistant > 4 mg/L (%) | Total | ||||||
MIC Teicoplanin mg/L | ≤0.5 | 1 | 2 | 4 | 8 | 16 | >16 | |
S. epidermidis | 11 | 16 | 35 | 45 | 44 | 5 * | 1 * | 157 |
S. haemolyticus | - | - | - | - | 2 | - | - | 2 |
S. hominis | - | - | - | - | 1 | - | - | 3 |
6.8 | 9.9 | 21.6 | 29.0 | 29.0 | 3.1 | 0.6 | 162 |
EUCAST Category | sBMD Teicoplanin mg/L | sBMD No. | MIC by Vitek-2, (No.) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Susceptible | Resistant | |||||||||
0.5 | 1 | 2 | 4 | 8 | 16 | 32 | ||||
Resistant (R) | 32 | - | - | - | - | - | - | - | - | EA 81 (50) CA 106 (65.4) ME 59 (36.4) |
16 | 2 | - | - | - | - | 2 | - | - | ||
8 | 11 | - | - | - | - | 3 | 7 | 1 | ||
Total R | 13 (8%) | - | 13 | |||||||
Susceptible (S) | 4 | 40 | - | - | 4 | 6 | 18 | 12 | - | |
2 | 49 | 2 | 2 | 4 | 20 | 18 | 3 | - | ||
1 | 22 | 2 | 1 | 6 | 7 | 3 | 3 | - | ||
0.5 | 25 | 5 | - | 8 | 11 | - | 1 | - | ||
<0.5 | 11 | 6 | - | 3 | 1 | 1 | - | - | ||
Total S | 147 (90.7%) | 88 (54.3) | 59 (36.4) |
Agar Dilution (AD) * | EUCAST | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Susceptible (S) ≤ 4 mg/L | Resistant > 4 mg/L | |||||||||
Incubation | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
Teicoplanin (mg/L) | 0.5 | 1 | 2 | 4 | ≥8 | ≥8 | ||||
S. epidermidis | 1 | 1 | 16 | 6 | 61 | 46 | 48 | 44 | 31 | 59 |
S. haemolyticus | - | - | - | - | - | - | - | - | - | 2 |
S. hominis | - | - | - | - | - | - | - | - | 2 | 3 |
AD-24 h | sBMD | AD-48 h | Vitek-2 | sGDT | Screening McF 0.5 | Screening McF 2 | Disc Diffusion (CLSI) |
---|---|---|---|---|---|---|---|
128 S | 125 S | 97 S | 80 S | 125 S | 80 pos | 114 pos | 126 S |
3 R | 31 R | 48 R | 1 R | 44 neg | 12 neg | - | |
- | - | - | 2 NE | 4 NE | 2 NE | 2 NE | |
33 R | 20 S | - | 7 S | 31 S | 33 pos | 33 pos | 31 S |
13 R | 33 R | 26 R | 2 R | - | - | 2 I | |
- | - | - | - | - | - | ||
1 NG | 1 S | NG | 1 S | NE | - | - | NG |
AD-24 h | sBMD | AD-48 h | Vitek-2 | sGDT | Screening McF 0.5 | Screening McF 2 | Disc Diffusion (CLSI) |
---|---|---|---|---|---|---|---|
97 S | 95 S | 97 S | 74 S | 96 S | 50 pos | 84 pos | 96 S |
2 R | - | 23 R | 44 neg | 12 neg | - | ||
- | - | - | 1 NE * | 3 NE | 1 NE | 1 NE | |
64 R | 50 S | 31 S | 13 S | 60 S | 63 pos | 63 pos | 60 S |
14 R | 33 R | 51 R | 3 R | - | - | 2 I | |
- | - | - | 1 NG | 1 NE- | NE | 2 NE | |
1 NG | 1 S | NG | 1 S | NE | - | - | NG |
sGDT | EUCAST | |||||
---|---|---|---|---|---|---|
Susceptible (S) ≤ 4 mg/L (%) | Resistant > 4 mg/L (%) | |||||
MIC Teicoplanin mg/L | ≤0.5 | 1 | 2 | 4 | 8 | 16 |
S. epidermidis | 23 | 81 | 42 | 8 | - | - |
S. haemolyticus | - | - | - | - | 2 | - |
S. hominis | - | - | 2 | - | - | 1 |
% * | 14.2 | 50 | 27.2 | 4.9 | 1.2 | 0.6 |
No. | MET | sBMD | hBMD | Vitek-2 | sGDT | AD-24 h | AD-48 h | Screening McF 0.5 | Disc Diffusion | Material | Strain ID |
---|---|---|---|---|---|---|---|---|---|---|---|
71 | 8 | R | R | R | R | S | R | pos | S | BC | S. haemolyticus |
72 | 12 | R | R | R | R | R | R | pos | I | BC | S. hominis |
Method | Strain | No. % Isolates | EA | CA | vME | ME | |
---|---|---|---|---|---|---|---|
Susceptible | Resistant | ||||||
≤4 | >4 | ||||||
sBMD | All strains | 146 (90.1) | 16 (9.9) | ||||
S. epidermidis | 145 (89.5) | 12 (7.4) | |||||
S. haemolyticus | - | 2 (1.2) | |||||
S. hominis | 1 (0.6) | 2 (1.2) | |||||
hBMD | All strains | 109 (67.3) | 53 (32.7) | 137 (84.6) | 121 (74.7) | 2 (1.2) | 39 (24.1) |
S. epidermidis | 107 (66) | 50 (30.9) | 132 (81.5) | 117 (72.2) | 1 (0.6) | 39 (24.1) | |
S. haemolyticus | - | 2 (1.2) | 2 (1.2) | 2 (1.2) | - | - | |
S. hominis | 2 (1.2) | 1 (0.6) | 3 (1.8) | 2 (1.2) | 1 (0.6) | - | |
Vitek-2 | All strains | 88 (54.3) | 74 (45.7) | 103 (63.6) | 94 (58.0) | 5 (3.1) | 63 (38.9) |
S. epidermidis | 88 (54.3) | 69 (42.6) | 99 (61.1) | 90 (55.6) | 5 (3.1) | 62 (38.2) | |
S. haemolyticus | - | 2 (1.2) | 2 (1.2) | 2 (1.2) | - | - | |
S. hominis | - | 3 (1.8) | 2 (1.2) | 2 (1.2) | - | 1 (0.6) | |
AD-24 h 1 | All strains | 128 (79) | 33 (20.4) | 146 (90.1) | 138 (85.2) | 3 (1.8) | 20 (12.4) |
S. epidermidis | 125 (77.2) | 31 (19.1) | 142 (87.7) | 134 (82.7) | 2 (1.2) | 20 (12.4) | |
S. haemolyticus | 1 (0.6) | 1 (0.6) | 1 (0.6) | 1 (0.6) | 1 (0.6) | - | |
S. hominis | 1 (0.6) | 2 (1.2) | 3 (1.8) | 3 (1.8) | - | - | |
AD-48 h 1 | All strains | 97 (59.9) | 64 (39.5) | 132 (81.5) | 109 (67.3) | 2 (1.2) | 50 (30.9) |
S. epidermidis | 97 (59.9) | 59 (36.4) | 127 (78.4) | 105 (64.8) | 2 (1.2) | 49 (30.2) | |
S. haemolyticus | - | 2 (1.2) | 2 (1.2) | 2 (1.2) | - | - | |
S. hominis | - | 3 (1.8) | 3 (1.8) | 2 (1.2) | - | 1 (0.6) | |
sGDT 2 | All strains | 156 (96.3) | 3 (1.8) | 118 (72.8) | 146 (90.1) | 13 (8.0) | - |
S. epidermidis | 154 (95.1) | - | 114 (70.4) | 142 (87.7) | 12 (7.4) | - | |
S. haemolyticus | - | 2 (1.2) | 2 (1.2) | 2 (1.2) | - | - | |
S. hominis | 2 (1.2) | 1 (0.6) | 2 (1.2) | 2 (1.2) | 1 (0.6) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasiu, A.D.; MacKenzie, C.R. Teicoplanin-Resistant Coagulase-Negative Staphylococci: Do the Current Susceptibility Testing Methods Reliably Detect This Elusive Phenotype? Antibiotics 2023, 12, 611. https://doi.org/10.3390/antibiotics12030611
Balasiu AD, MacKenzie CR. Teicoplanin-Resistant Coagulase-Negative Staphylococci: Do the Current Susceptibility Testing Methods Reliably Detect This Elusive Phenotype? Antibiotics. 2023; 12(3):611. https://doi.org/10.3390/antibiotics12030611
Chicago/Turabian StyleBalasiu, Adriana D., and Colin R. MacKenzie. 2023. "Teicoplanin-Resistant Coagulase-Negative Staphylococci: Do the Current Susceptibility Testing Methods Reliably Detect This Elusive Phenotype?" Antibiotics 12, no. 3: 611. https://doi.org/10.3390/antibiotics12030611
APA StyleBalasiu, A. D., & MacKenzie, C. R. (2023). Teicoplanin-Resistant Coagulase-Negative Staphylococci: Do the Current Susceptibility Testing Methods Reliably Detect This Elusive Phenotype? Antibiotics, 12(3), 611. https://doi.org/10.3390/antibiotics12030611